A Monitoring Methodology and Framework to Partition Embedded
Systems Requirements

Behnaz Rezvani®? and Cameron Patterson

b

Bradley Dept. of Electrical and Computer Engineering,
Virginia Tech, Blacksburg VA 24060, U.S.A.

Keywords:

Abstract:

Runtime Verification, Monitor, Functional Requirements, Timing Requirements.

The adoption of runtime monitoring has historically been limited to experts, primarily due to the intricate

complexities associated with formal notations and the verification process. In response to this limitation, this
paper introduces GROOT, a methodology and framework specifically designed for the automated synthesis
of runtime verification monitors from structured English requirements. GROOT is tailored to address the
challenges of adhering to both functional and timing constraints within complex real-time embedded systems.
It accomplishes this through a dual approach that handles functional and timing requirements separately, al-
lowing customized verification processes for each category. To demonstrate GROOT’s practical utility, its
monitors are applied to an autonomous system modeled in Simulink.

1 INTRODUCTION

Real-time embedded systems are used in a wide
range of safety-critical applications such as avionics,
robotics, and autonomous systems, where system per-
formance depends on timely responses. These sys-
tems must meet both functional and timing require-
ments. Common verification techniques such as test-
ing can efficiently detect straightforward errors. How-
ever, exhaustive and time-consuming test cases are re-
quired to achieve maximum coverage, and yet it is
possible to miss a subtle error in a large and complex
system. Runtime verification (RV) is a dynamic ver-
ification approach that utilizes monitors derived from
formal system requirements to determine whether the
real-time behaviors of a system adhere to its specifi-
cations (Leucker and Schallhart, 2009).

Formal approaches such as metric temporal logic
(MTL) (Koymans, 1990) and TeSSLa (Leucker et al.,
2018) have been developed to address both functional
and timing specifications. However, the lack of a
standardized specification language complicates the
practical application of these methods (Dwyer et al.,
1999). Practitioners are often required to have a deep
understanding of formal methods and domain-specific
tool notations. In contrast to functional requirements,

https://orcid.org/0000-0002-1947-1764
@ nttps://orcid.org/0000-0003-2482-5261

Rezvani, B. and Patterson, C.

A Monitoring Methodology and Framework to Partition Embedded Systems Requirements.

DOI: 10.5220/0012696300003687
Paper published under CC license (CC BY-NC-ND 4.0)

timing requirements often have fewer variations, en-
abling the reuse of monitors and minimizing resource
usage. This could be achieved by applying suitable
formalisms for each type of requirement.

To facilitate RV adoption without formal meth-
ods training, this paper introduces GROOT (Gener-
alized Runtime mOnitOring Tool), a novel methodol-
ogy and framework to automate the synthesis of mon-
itors from structured English specifications. GROOT
achieves its goals by offering a dual approach for
functional and timing requirements, enabling cus-
tomized verification for precise validation of runtime
system behavior. This fully automated process in-
volves translating English properties to formalisms,
converting them to monitor automata, and formally
verifying the monitors.

Embedded systems may combine software pro-
gramming with hardware elements such as FPGAs
to perform dedicated functions. These systems have
a wide range of requirements from high-level sys-
tem functionalities to detailed low-level aspects such
as signal generation and clock timing complexities.
For the functional requirements, the NASA FRET
tool (Giannakopoulou et al., 2020) is used to formal-
ize structured English expressions into linear tempo-
ral logic formulas (LTL) (Pnueli, 1977). For tim-
ing requirements, we introduce TIMESPEC, a struc-
tured English language specifically designed to cap-
ture metric time constraints. GROOT transforms

563

In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 563-570

ISBN: 978-989-758-696-5; ISSN: 2184-4895

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

these natural language statements into deterministic
automata through an automated synthesis process.
The generated monitors are executed outside the soft-
ware/hardware system, treating the application as a
black box. This makes GROOT a versatile and adapt-
able framework for RV. Monitor inputs and violation
handling are managed separately in external modules
to keep monitor structure simple, easing formal anal-
ysis. This framework establishes monitor correctness
through rigorous static formal verification. The mon-
itors can aid debugging during development or in-
crease application trust after system deployment.

In this paper, the practical aspects of GROOT
are shown through its application to an autonomous
system modeled in Simulink® (The MathWorks Inc.,
2023). The main contributions are:

* Automated three-step methodology: GROOT em-
ploys a sequential and automated process involv-
ing the translation of English properties into for-
malisms, transformation into monitor automata,
and formal verification of these monitors. This
helps to make RV more accessible and under-
standable to practitioners by hiding formal nota-
tions and automating the entire process of monitor
generation and verification.

* Dual approach: GROOT uses a novel approach
that separately addresses functional and timing re-
quirements. This separation facilitates the cus-
tomization of monitor synthesis and formal analy-
sis according to the specific needs of each require-
ment type, thereby enhancing the verification’s ef-
fectiveness.

* Application versatility: As standalone entities,
GROOT monitors can either use system resources
or execute on independent resources, offering
flexibility in implementation. The generated mon-
itors can be applied during both the development
phase and post-deployment. This makes GROOT
a valuable tool in various stages of the system de-
velopment life cycle.

2 METHODOLOGY

GROQOT aims to make RV more accessible and practi-
cal for a broader range of users, especially those who
are not experts in the field. It achieves this by express-
ing system requirements in structured English to mask
the complexities of formal notations. As shown in
Figure 1, the monitor synthesis flow consists of three
steps: formalization, monitor generation, and formal
analysis. To aid practitioners, the entire process is
mostly automated. Verification engineers are only re-

564

Formal specifications

Informal ¥ Analysis
specification ~ . |Automaton| Monitor [C code| Monitor |results
Formalization . . .
generation verification

Figure 1: GROOT flow visualization.

quired to provide the initial properties and offer occa-
sional guidance throughout the process to ensure the
generated monitors align with their expectations.

2.1 Formalization

The formalization step forms the foundation for sub-
sequent stages, and its goal is reducing ambiguity
by automating the translation of structured English
properties into formalisms, specifically automata. It
also provides visual models of automata for an in-
tuitive comprehension of monitor dynamics. In this
phase, various structured English patterns are tailored
for functional and timing requirements. Specification
patterns, inherently amenable to automation, make
GROQT an efficient method by significantly reducing
the manual effort, ensuring consistent representation
of similar concepts across specifications and enhanc-
ing the reliability of monitor synthesis.

2.2 Automated Monitor Generation

The generated formal models are automatically trans-
formed into finite state machines (FSMs) during this
step. FSMs are a familiar abstraction to most com-
puter engineers and fulfill GROOT’s objective of
creating clear and understandable monitors. They
are particularly effective in tracking event sequences,
making them well-suited for monitoring system tran-
sitions. The widespread use of FSMs, compared to
other formal languages (Havelund, 2008), reduces
GROOT’s learning curve.

2.3 Monitor Verification

Monitors are generated using several transformations
on the specified requirements. To ensure correct-
ness of these synthesized monitors, GROOT employs
static formal verification techniques including model
checking (Baier and Katoen, 2008) and theorem prov-
ing (Harrison et al., 2014). This process checks for
logical errors and design flaws in the final translation
using rigorous mathematical methods without modi-
fying the source code. The use of specification pat-
terns results in standardization of monitor code struc-
ture and also consistency and predictability in monitor
behavior. Leveraging these patterns, GROOT auto-
mates the generation of formal specifications essen-
tial for the execution of model checking and theo-

A Monitoring Methodology and Framework to Partition Embedded Systems Requirements

i
i Main {state

Monitor_State {

]
]
> Input_Handler
]
'
]

pass
state_duration

]
Output_Handler|
Monitor_Inputs put_ g

EVE1 Monitor_State
EVE2
EVE3

.
\ Property violation annunciation

Figure 2: Structure of GROOT monitoring process.

rem proving. Embedding formal analysis ensures that
monitors strictly adhere to state transitions defined in
the abstract automata.

3 MONITOR STRUCTURE

To ensure adequate performance in systems with con-
strained resources, it is crucial to add the monitors
with care. GROOT allows flexible deployment of
monitors on the same or separate hardware to min-
imize overhead and prevent interference with sys-
tem timings. An example would be implementing
monitors directly in digital hardware rather than on
an instruction set processor. Monitors handle inputs
and responses through external entities, which can be
shared and simplified to reduce resource usage and
better suit formal analysis. Figure 2 illustrates the
monitor structure containing the auto-generated Main
block and its fundamental components.

The Input_Handler module acts as an intermedi-
ary between the system under scrutiny (SUS) and
the monitoring framework, translating system data
into Boolean atomic propositions (APs) representing
specific events. The Monitor_Inputs structure cap-
tures these events and is exclusively updated by In-
put_Handler. The Monitor component, synced with the
system’s time base, is the core of the monitoring pro-
cess. The Monitor_State structure provides a snapshot
of the current state, with error and pass variables in-
dicating violation or successful event sequencing, re-
spectively. The state_duration counter keeps track of
self-transitions from the current state. Upon reaching
a verdict, Monitor triggers Output_Handler to inform
the SUS and reset Monitor_State. The architecture can
adapt to various requirements, with Monitor being the
variable component for different requirements.

4 FRAMEWORK

In our experience, employing a single logic or type of
automaton for both functional and timing specifica-
tions introduces complications that may adversely im-
pact formal analysis outcomes. In GROOT, these two
classes of requirements are handled in different ways,

1
FRET Parser LTL2C :
i
[LTL Generator] |LTL if [Requirement Diet | :
sl)
T [NusmV Simulator| b LTLParser |4 m Code-Gen : ESBMC
H
: = Modified ic -
FRETish IPLERE sh Parser | f;py o E Files ﬁé‘:\ﬁxssls
i
Requirement E § o
Modified FRETish Requirement Monitor Name,
Variable Types

Figure 3: GROOT functional requirements flow.

which is consistent with the conventional practice in
hardware engineering where the documentation and
design of functionality and timing aspects are treated
separately. These two flows are now described.

4.1 Monitor Synthesis for Functional
Requirements

Figure 3 depicts the monitor synthesis process within
the functional requirements branch of GROOT. Simi-
lar to a compiler, there is a front-end and back-end ar-
chitecture. The front-end utilizes NASA’s FRET tool
to capture system specifications phrased in a struc-
tured English language and transform them into corre-
sponding LTL formulas (formalization step). Subse-
quently, the back-end parses and translates these LTL
formulas into Biichi automata (BA) (Biichi, 1990) us-
ing the Spot tool (Duret-Lutz et al., 2016). The gener-
ated automata are then converted to FSMs expressed
in C (monitor generation step). Finally, the ESBMC
model checker (Gadelha et al., 2018) is applied to
confirm that state transitions within the monitors com-
ply with a set of generated assertions (monitor verifi-
cation step).

4.1.1 Synthesis Front-End

One way to improve the accessibility of formal meth-
ods for practitioners is to define a set of property
patterns tailored to common types of requirements.
NASA’s FRET tool offers the structured English lan-
guage FRETish to conceal the LTL patterns. The
FRETish requirement structure consists of six sequen-
tial fields: SCOPE, CONDITIONS, COMPONENT,
SHALL, TIMING, and RESPONSES. While COM-
PONENT, SHALL and RESPONSES are mandatory,
the other fields are optional. FRET also provides re-
quirement visualization using the integrated NuSMV
simulator (Cimatti et al., 2002).

4.1.2 Synthesis Back-End

Biichi automata (BA) are commonly used to gener-
ate monitor automata from LTL requirements (Gian-
nakopoulou and Havelund, 2001). To facilitate this
conversion process, the LTL2C module has been de-
veloped and consists of three core elements: (i) the

565

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

i]
' Parser]

! - —1 | |TAgeneramr| TA ! Analysis
TIMESPEC | and visualizer ic . %
i i]

i]

B{TIMESPEC parse] lT'dT‘_ .L

Monitor name,
variable types

Figure 4: GROOT timing requirements flow.

Spot API, (ii) LTL2C parser, and (iii) Code-Gen. Af-
terwards, LTL2C invokes ESBMC to ensure the mon-
itor implementations adhere to the generated BA.

Spot API. Spot is a robust open-source tool able to
translate LTL formulas into BA, with its maturity, op-
tions and efficiency suiting industrial applications. Its
Python interface allows LTL2C to generate and visu-
alize the associated BA.

LTL2C Parser. FRET allows requirements to be
specified with basic arithmetic/comparison operations
and numeric variables. However, Spot and NuSMV
exclusively handle Boolean APs. To reconcile this,
LTL2C employs a specialized parser, which replaces
arithmetic/comparison operations with Boolean vari-
ables. This parser generates LTL formulas compatible
with Spot and FRETish requirements compatible with
NuSMY, as depicted in Figure 3.

Code Generator. The Code-Gen module translates
the generated automaton into a concrete FSM im-
plemented in C. It also handles undefined behavior,
which directs the FSM to an error state. Human inter-
vention is only required to assign the monitor’s name
and specify the types of monitor’s arguments. This
phase automatically generates the source code and
header files for Main, Input_Handler, Output_Handler,
and Monitor. To ease the model checking step, Code-
Gen provides assertions extracted from the produced
BA to scrutinize the final monitor for any deviation
from the expected behavior.

Formal Analysis. ESBMC is a model checker de-
signed for validating C and C++ programs against es-
tablished properties such as pointer validity and dead-
lock prevention. It also allows for user-defined as-
sertions. To complete the synthesis process, ESBMC
verifies the generated assertions, ensuring consistent
adherence to correct state and transitions throughout
the monitoring process.

4.2 Monitor Synthesis for Timing
Requirements

The GROOT timing flow defines TIMESPEC, a struc-
tured English language for articulating timing spec-

566

of should be TIMING_CONSTRAINT .

period Source of events: TL (duration)
duty_cycle CLK, RESET 2TLmin (lower bound)
active_pulse_width

<TLmax (upper bound)
2TLmin @and <TLmax

Figure 5: TIMESPEC pulse duration template.

ifications. This language enables engineers to eas-
ily capture timing constraints without needing any
knowledge of formal methods. Similar to functional
requirements, monitor generation and verification are
automated, reducing manual effort and error risk.

Figure 4 depicts the monitor synthesis process for
timing properties. It starts with parsing TIMESPEC
statements to extract essential information. This data
is used to generate timed automata (TA) (Alur and
Dill, 1994), which represent the formalized version of
timing requirements (formalization phase). The TA
is transformed into FSMs implemented in C (mon-
itor generation step). Lastly, the Frama-C theorem
prover (Cuoq et al., 2012) checks that the monitor
implementations adhere to predefined set of behav-
ioral properties which establish correct state sequenc-
ing (monitor verification step). This paper provides
a brief overview of the GROOT flow for timing re-
quirements, with a more comprehensive explanation
available in (Rezvani and Patterson, 2023).

4.2.1 TIMESPEC

Ensuring metric time constraints is vital in safety-
critical systems, where any violation could lead to
system failure. Timing specifications are captured
with TIMESPEC requirements. TIMESPEC aids
practitioners by providing a collection of natural lan-
guage templates for common timing constraints.

Pulse Duration Template. In digital systems, cor-
rect functionality relies heavily on signals and clock
timings. Timing requirements often involve pulse
width for signals, which must meet specific criteria
to trigger intended events. To manage these require-
ments, a template is used to specify pulse duration of
signals or period and duty cycle of clock signals. Fig-
ure 5 shows the pulse duration template and its sup-
ported values. The TYPE field defines the requirement
type, while SIGNAL indicates either a clock signal or
an event. TIMING_CONSTRAINT specifies the time
limit, with each time limit (TL/TLy) consisting of a nu-
merical value and time unit. While most TYPEs are in
absolute units like nanoseconds (ns), duty cycle limits
are typically expressed as percentages.

Causality Template. In protocols such as hand-
shaking, events are often causally linked, where one

A Monitoring Methodology and Framework to Partition Embedded Systems Requirements

If- , TIMING_CONSTRAINT .

assert Sourccofevents: [assert Source of events: for TL (duration)
deassert CLK, RESET deassert CLK, RESET after TLmin (lower bound)

start start within TLyax (upper bound)
between TLmin and TLmax

Figure 6: TIMESPEC causality template.

event triggers another within a specific time frame.
This behavior is addressed with the causality tem-
plate, depicted in Figure 6. The ACTION field spec-
ifies the type of event (like asserting or deasserting
signals, or starting a clock), and SIGNAL identifies the
events involved. The TIMING_CONSTRAINT field de-
fines the time-dependent relationships between these
events.

4.2.2 Synthesis Workflow

FRET translates certain timing properties into MTL
formulas, but its effectiveness is limited by partial
support for timing constraints and the lack of a frame-
work for transforming MTL to automata. Acknowl-
edging the importance of TA in capturing system tem-
poral behaviors, GROOT automates the conversion
of TIMESPEC statements into TA with TS2C. This
tool generates C-based monitors via three modules:
(1) TS2C parser, (ii) TA-Gen, and (iii) Code-Gen, also
providing necessary specifications for formal analysis
of the generated monitors.

TS2C Parser. This module is designed to process
TIMESPEC expressions and extract essential details
from temporal requirements. It creates a dictionary
containing Boolean events (APs), input variables,
types of timing constraints, and corresponding time
values and units. The parser can manage various SIG-
NAL expressions including Booleans, integers, and
logical/arithmetic/comparison operations, allowing a
wide range of temporal behaviors to be captured.

TA Generator. After parsing TIMESPEC require-
ments, TA-Gen maps each statement to a particular
TA. This template-based approach reduces the variety
of TA variations required, thereby providing both ef-
ficiency and structural consistency. Each automaton
has a single clock to enhance clarity and ease of anal-
ysis, with transitions determined by Boolean events
or temporal limits. The state_duration (sd) parameter
records the time spent in a specific state, facilitating
detection of deadline violations. TA-Gen also visual-
izes the generated TA to improve comprehension.

Code Generator. Similar to LTL2C, the Code-Gen
unit converts the TA into a C-based FSM. It defines
monitor_period in the header file to set the monitor in-
vocation frequency, enabling their reuse in environ-

ments with different timebases. Code-Gen also gen-
erates specifications required for theorem proving.

Formal Analysis. Formal verification is essential
to establish monitor trustworthiness, however, tra-
ditional model checkers struggle with the complex-
ity of integer arithmetic in time measurements due
to the state explosion problem (Clarke et al., 2012).
GROQT uses the Frama-C theorem prover along with
formal contracts generated by Code-Gen, which are
formulated in the ANSI/ISO C specification language
(ACSL) (Baudin et al., 2008). Each TIMESPEC re-
quirement template includes a set of predefined and
parameterized ACSL specifications. These specifica-
tions cover various aspects of monitor behavior such
as the validity of pointers or transition verification
within the monitor (Rezvani and Patterson, 2023).

5 FRAMEWORK
DEMONSTRATION

Adaptive cruise control (ACC) systems enhance tra-
ditional cruise control (CC) systems by autonomously
regulating a vehicle’s speed to match the driver’s pref-
erence. Unlike conventional CC systems, ACC auto-
matically decelerates to maintain a safe following dis-
tance (Dgafe) When it detects a lead vehicle in the same
lane ahead of the autonomous (ego) car. A critical pa-
rameter in ACC is the headway time (Theagway), Which
represents the constant time gap maintained between
the ego and lead vehicles. This parameter confirms
that the ego vehicle has sufficient time to react and
decelerate if the lead vehicle suddenly stops. To en-
sure safety, an offset distance (Dosser) is considered,
and Dg,f. can be written as:

Dyate = Vego X Theadway T Doffset (1

Table 1 shows two requirements of the ACC sys-
tem. The first requirement, R1, mandates that the rel-
ative distance (Drelative) between the ego and lead ve-
hicles must not fall below Dg,¢. throughout the entire
operation. R1 is articulated in FRETish and the asso-
ciated LTL formula is processed by LTL2C. The BA
generated by Spot is depicted in Figure 7. It demon-
strates that upon violation of the condition, the BA
moves to state 1 and remains there. Subsequently,
Code-Gen transforms the BA into C code and gen-
erates assertions, as illustrated in Figure 8. These as-
sertions validate that monitor state transitions comply
with those specified in the generated BA. ESBMC is
then applied to ensure these assertions hold true.

The second requirement, R2, guarantees that the
ego vehicle’s velocity (Vego) adjusts to the set tar-

567

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 1: ACC system requirements.

R1: Ego vehicle should always have a safe space from lead vehicle.

FRETish

ACC shall always satisfy (Drelative >= Dsafe).

LTL (LAST V (Drelative >= Dsafe))

R2: If relative distance is safe, ACC should reach set velocity within 3 seconds.

TIMESPEC ‘ If assert (Drelative >= Dsafe), assert (Vego >= Vset_n && Vego <= Vset_p) within 3 s.

Inf(@)
[Biichi]

"Drelative >= Dsafe" 1

0 !"Drelative >= Dsafe" 1
(0]

Figure 7: BA built by the Spot tool for R1.

assert(state == INITIAL || state == ERROR);
assert((state == ERROR) == error);
assert(state_duration >= @);

if (state == INITIAL) {
assert((!EVE®) == (state == ERROR && error));
assert(EVE@ == (state == INITIAL && !error));
}

Figure 8: Assertions provided by Code-Gen for R1.

get velocity (Vi) within a specific time frame, but
only when the relative distance is considered safe. To
ensure compliance with this requirement, a velocity
threshold (Vi) is established to verify that Vi, re-
mains within an acceptable range, shown as follows.

Vsetn <Vego < Vsetp, (2)
where Vit n = Viet—Vin and Vset.p = Vset +Vin

This requirement is formalized using a TIME-
SPEC causality template, as detailed in Table 1, and
subsequently processed by TS2C. For a clearer under-
standing of the monitor’s behavior, Figure 9 shows the
TA generated by TA-Gen. Following the transforma-
tion of the TA into C code, Code-Gen finalizes this
process by generating the ACSL specifications per-
taining to R2, as illustrated in Figure 10. The Frama-
C theorem prover is invoked to validate that the mon-
itor sequences through the states correctly.

//'/_\'\c\\\
N
[mmae |
4)
A
- N
I((Vego >= Vset_n) & (Vego <= Vset_p)) // ™~ V///(Sr/elat\ve >= Dsafe)
&& state_duration > MAX_TIME ‘e' \
A WAIT) \\
7 \ / - \\
// \7 /‘/ !(Drelative >= Dsafe) \)
A _ —
Y, N ~_ 4/ \\/

— I

/ \ f \

[MAX_TIME_ERROR| . RESPONSE |

| / ((vego >= Vset_n) & (Vego <= Vset_p)) |)i
\)

&& state_duration >= MIN_TIME
If assert (Drelative >= Dsafe), assert ((Vego >= Vset_n) & (Vego <= Vset_p)) within 3 s.

Figure 9: TA built by TA-Gen for R2.

568

)
requires \valid(monitor_state) && \valid_read(monitor_inputs);
requires \separated(monitor_state, monitor_inputs);
requires @ <= monitor_state->state_duration;
ensures unchanged_inputs: *monitor_inputs == \old(*monitor_inputs);

behavior not_started:
assumes monitor_state->state \in {INITIAL};
assumes monitor_inputs->EVE® == @;
ensures monitor_state->state == INITIAL;

behavior begin:
assumes monitor_state->state \in {INITIAL};
assumes monitor_inputs->EVE® == 1;
ensures monitor_state->state == WAIT;

behavior satisfaction:
assumes monitor_state->state \in {WAIT};
assumes monitor_inputs->EVELl == 1;
ensures monitor_state->state == RESPONSE;

behavior wait_or_max_time_violation:
assumes monitor_state-»state \in {WAIT};
assumes monitor_inputs->EVE1 == @;
ensures ((monitor_state->state_duration <= MAX_TIME ==>
monitor_state-»state == WAIT) ||
(monitor_state->state_duration > MAX_TIME ==>
monitor_state->state == MAX_TIME_ERROR));

behavior reset_trigger:
assumes monitor_state->state \in {RESPONSE};
assumes monitor_inputs->EVE® == 1;
ensures monitor state->state == RESPONSE;

behavior reintitialize:
assumes monitor_state->state \in {RESPONSE};
assumes monitor_inputs->EVE® == @;
ensures monitor_state->state == INITIAL;

behavior stop:
assumes monitor_state-»state \in{MAX_TIME_ERROR};
ensures monitor state-error == 1;

disjoint behaviors;
=

Figure 10: Ascl contracts provided by Code-Gen for R2.

In this paper, a Simulink model of an ACC sys-
tem (The MathWorks Inc., 2024) is used to demon-
strate the GROOT workflow which illustrates both
functional and timing requirements. We integrate the
two generated monitors into the ACC model to check
that a safe following distance is maintained and en-
sure the ACC system accelerates in a correct manner.
As shown in (3) and (4), the two events EVEO and
EVE1 are defined and managed by the Input_Handler
module. Table 2 shows the default parameter values
used to determine these two events.

EVEO : Drelative >= Dsafe 3
EVE1 : Vego >= Vsetn && Vego <= Vsetp (C))
Simulation results for the R1 monitor are depicted

in Figure 11. Initially, the ego vehicle maintains a safe
following distance (EVEO = 1). Around ¢ = 12.5 s, an-

A Monitoring Methodology and Framework to Partition Embedded Systems Requirements

Table 2: ACC model parameters default values.

Parameter Description Value
Theadway Headway time 15s
Dofset Offset distance 15m
Vset Set velocity 21.5 m/s
Vin Velocity threshold | 1 m/s

other vehicle cuts into its lane, causing Diejative to de-
crease. Att = 16.6 s, Dielative falls below D, (EVEO
= 0), triggering an error condition. This critical event
is immediately detected by the R1 monitor, which sets
the error flag until Dyelaive returns to the safe zone.
In this particular scenario, the monitor’s error signal
could be used to activate an alert system, ensuring the
driver is promptly informed in case the ACC system
fails to respond as expected.

Figure 12 presents the simulation results for the
R2 monitor. Given the simulation time step of 100
ms, monitor_period is set to 0.1, and MAX_TIME is au-
tomatically calculated as 30, corresponding to time
limit of 3 seconds. Att = 19.1 s, the lead vehicle from
the preceding scenario changes lanes, leading to a no-
ticeable increase in Dyejaive (EVEO = 1). This change
prompts the R2 monitor to check whether Veg, reaches
the specified range within the desired time frame. By
t =22.1 s, the velocity aligns with the target range
(EVE1 = 1), indicating a successful response before
the deadline expires. At this point, the monitor tran-
sitions to the RESPONSE state, and the pass flag is
set to true. The monitor remains in this state as long
as the relative distance is within the safe margin. This
monitoring approach is particularly useful during the
debugging phase, which provides a means to confirm
the ACC system’s ability to safely and promptly re-
sume acceleration after an obstruction clears.

6 RELATED WORK

The RV field has developed diverse methodologies,
which primarily focus on the synthesis of monitors
from system specifications. In a comprehensive sur-
vey, Falcone et al. profile over 60 software monitor-
ing frameworks (Falcone et al., 2021). These tools
predominantly use temporal logic, often a variant of
LTL, to translate system specifications into moni-
tors, with implementations typically in Java, C, or
C++ (Havelund and Rosu, 2004; Navabpour et al.,
2013; Cimatti et al., 2019). Despite the large number
of available tools, a common barrier persists: prac-
titioners are often expected to have a deep under-
standing in formal methods or a specific tool syntax,
which limits their accessibility. Furthermore, only a
small number support requirements with timing con-
straints (Pinisetty et al., 2017; Rajhans et al., 2021).

FDsafe 1872 | \‘\
.
BT
Drelative
50 54.1 345
0 EVEO_@
0 o
T
w state
ol
o 10 |
7
W error
o o L =5 § 4.1 166 & 2 24

Figure 11: Simulation results for R1 monitor.

Drelative ® Dsafe | |
86.7 88.5
50
308 35.8
W EveEo [fo0] 190
06
W Vset+ M Vset- M Vego Iﬂl 225
al 20.5 -20 6 |oum——""]
20.5
&
[k
W EVE1 1:00
o
5]
wstate
!
w error
51 51
1o 1
= ;;ass 1.00
05
[v]
40
/W state_duration
20
%o 1 7o ws o 185 [OlRPFres 200 205 210 215 [OLRf2s

Figure 12: Simulation results for R2 monitor.

Certain frameworks address both functional and
timing requirements. For example, RuSTL trans-
lates structured English templates into Python mon-
itors, though its application is primarily confined to
log files analysis (Khan, 2019). Another example
is a toolchain which converts FRETish requirements
into C monitors using the FRET, OGMA, and Copi-
lot tools (Perez et al., 2022). This approach is based
on analyzing data streams, which is best suited to sce-
narios with large data transfers. In contrast, GROOT
generates automata-based monitors, which have the
virtue of simplicity that assists both formal analysis

569

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

and comprehensibility by most verification engineers.

7 CONCLUSIONS

This paper presents GROOT, a methodology and
framework for automating synthesis and formal veri-
fication of RV monitors from structured English spec-
ifications, enhancing the accessibility and compre-
hensibility of RV for practitioners. It incorporates a
dual approach for functional and timing requirements.
This framework introduces TIMESPEC, a structured
English dialect to articulate timing constraints. Mon-
itors may be used during development and/or deploy-
ment. This approach bridges the often daunting gap
between formal methods and their practical use for
real-time embedded systems.

Future work will integrate several monitors, cov-
ering both functional and timing aspects, combined
with a “monitor of monitors”. We will also conduct a
comparative analysis of GROOT-generated monitors
with those from alternative methodologies.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation (NSF) under Grant No.
2123550. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical Comput. Sci., 126(2):183-235.

Baier, C. and Katoen, J.-P. (2008). Principles of Model
Checking. The MIT Press, Cambridge, MA, USA.

Baudin, P. et al. (2008). ACSL: ANSI/ISO C specification
language.

Biichi, J. R. (1990). On a Decision Method in Restricted
Second Order Arithmetic, pages 425-435. Springer.

Cimatti, A. et al. (2002). NuSMV 2: An open source tool
for symbolic model checking. In Comput. Aided Ver-
ification, pages 359-364, Berlin. Springer.

Cimatti, A. et al. (2019). NuRV: a nuXmv extension for
runtime verification. In Int. Conf. on Runtime Verifi-
cation, pages 382-392. Springer.

Clarke, E., Klieber, W., Novacek, M., and Zuliani, P.
(2012). Model Checking and the State Explosion
Problem, pages 1-30.

Cuoq, P. et al. (2012). Frama-C: A software analysis per-
spective. In Proc. Int. Conf. Softw. Eng. and Formal
Methods, page 233-247, Berlin. Springer.

570

Duret-Lutz, A. etal. (2016). Spot 2.0 — a framework for LTL
and w-automata manipulation. In Proc. Int. Symp. on
ATVA, volume 9938, pages 122—-129. Springer.

Dwyer, M. B. et al. (1999). Patterns in property specifica-
tions for finite-state verification. In Proc. Int. Conf.
Softw. Eng., pages 411-420.

Falcone, Y. et al. (2021). A taxonomy for classifying run-
time verification tools. Int. J. Softw. Tools for Technol.
Transfer, 23(2):255-284.

Gadelha, M. R. et al. (2018). ESBMC 5.0: An industrial-
strength C model checker. In Proc. ACM/IEEE Int.
Conf. Automated Softw. Eng., page 888—891.

Giannakopoulou, D. and Havelund, K. (2001). Automata-
based verification of temporal properties on running
programs. In Proc. Int. Conf. ASE, pages 412—416.

Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein,
J., Schumann, J., and Shi, N. (2020). Formal require-
ments elicitation with FRET. In REFSQ Workshops.

Harrison, J. et al. (2014). History of Interactive Theorem
Proving, volume 9, pages 135-214.

Havelund, K. (2008). Runtime verification of C programs.
In Testing of Software and Communicating Systems,
pages 7-22. Springer.

Havelund, K. and Rosu, G. (2004). An overview of the
runtime verification tool Java PathExplorer. Formal
methods in system design, 24(2):189-215.

Khan, W. (2019). RuSTL: Runtime verification using Sig-
nal Temporal Logic. Master’s thesis, University of
Waterloo. Available at: https://uwspace.uwaterloo.ca/
handle/10012/14552.

Koymans, R. (1990). Specifying real-time properties with
metric temporal logic. Real-Time Syst., 2(4):255-299.

Leucker, M. et al. (2018). TeSSLa: Runtime verification
of non-synchronized real-time streams. In Proc. Ann.
ACM SAC, page 1925-1933.

Leucker, M. and Schallhart, C. (2009). A brief account of
runtime verification. The Journal of Logic and Alge-
braic Programming, 78(5):293 — 303.

Navabpour, S. et al. (2013). RiTHM: A tool for enabling
time-triggered runtime verification for C programs.
ESEC/FSE 2013, page 603—606.

Perez, . et al. (2022). Automated translation of natural lan-
guage requirements to runtime monitors. In Tools and
Algorithms for the Construction and Anal. of Syst.,
pages 387-395, Cham. Springer.

Pinisetty, S. et al. (2017). Predictive runtime verification of
timed properties. J. of Syst. and Softw., 132:353-365.

Pnueli, A. (1977). The temporal logic of programs. In /8th
Annu. SFCS, page 46-57, USA. IEEE.

Rajhans, A. et al. (2021). Specification and runtime verifi-
cation of temporal assessments in Simulink. In Run-
time Verification, pages 288—296, Cham. Springer.

Rezvani, B. and Patterson, C. (2023). Differentiated mon-
itor generation for real-time systems. In Proc. IC-
SOFT, volume 1, pages 353-360. SciTePress.

The MathWorks Inc. (2023). Simulink: 10.7 (R2023a).
https://www.mathworks.com/products/simulink.html.

The MathWorks Inc. (2024). Adaptive cruise control
with sensor fusion. https://www.mathworks.com/
help/mpc/ref/adaptivecruisecontrolsystem.html.

