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This paper focuses on the critical role of dataset accuracy in the context of machinery functional safety within

an Al-based predictive maintenance system in a manufacturing setting. Through experiments introducing
perturbations simulating real-world challenges, a decrease in performance metrics was observed—factors such
as sensor noise, labeling errors, missing data, and outliers were identified as contributors to the compromise
of the Al model’s accuracy. Implications for reliability and availability were discussed, emphasizing the
need for high-quality datasets to minimize the risk of unplanned downtime. Recommendations include the
implementation of robust data quality assurance processes and improved outlier detection mechanisms to
ensure the reliability and availability of machinery in high-risk environments.

1 INTRODUCTION

Al-enabled machinery functional safety involves the
application of Artificial Intelligence (AI) techniques
to enhance safety functions within machinery in ad-
herence to established standards such as ISO 13849
(ISO13849, 2023) and ISO 62061 (IEC62061, 2022).
One prominent example is predictive maintenance,
where Al algorithms analyse data from sensors and
equipment to predict potential failures before they oc-
cur. By employing Machine Learning (ML) mod-
els, such systems can identify patterns, anomalies,
and degradation in machinery performance, enabling
timely maintenance interventions to prevent unex-
pected breakdowns. This approach aligns with the
broader principles of machinery functional safety,
aiming to minimize risks and ensure safe operation.
However, recognizing the pivotal role of data
quality is essential for the effective implementation
of Al-driven enhancements in a machinery functional
safety. Multiple definitions of data quality exist in the
literature. A commonly adopted definition is fitness
for use for a specific purpose. In the context of func-
tional safety, this entails ensuring that the data is suit-
able for attaining technological objectives, facilitating
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informed and effective decision-making, and optimiz-
ing functional safety processes for Al-based software
and systems. Poor data quality can lead to unreliable
models and may pose significant risks. Thus, ensuring
data quality is crucial when developing AI/ML mod-
els for high-risk applications in the context of func-
tional safety.

In the aforesaid context, this paper conducts a
comprehensive investigation on the impact of dataset
accuracy in machinery functional safety example.
The study provides novel insights into the implica-
tions of dataset inaccuracies on the reliability and
availability of machinery in high-risk environments.
Beyond analysis, the paper offers practical recom-
mendations for practitioners, suggesting measures to
enhance data quality assurance processes and improve
outlier detection mechanisms. The findings and rec-
ommendations serve as valuable guidance for practi-
tioners involved in the development of Al systems for
machinery functional safety and beyond, emphasiz-
ing practical considerations for achieving reliable and
available machinery.

Inline with the aforementioned contributions, the
following represent the novelties:

* Real-world use case focus: The paper centres on
a practical use case of predictive maintenance in a
manufacturing setting, providing insights into the
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implications of dataset inaccuracies.

* Systematic experimentation: The study employs
systematic experiments introducing perturbations
(i.e., intentional disruptions or alternations), sim-
ulating common challenges faced by real-world
datasets used for training AI models.

Identification of contributing factors: Specific
factors, including sensor noise, labelling errors,
missing data, and outliers, are identified and anal-
ysed for their contribution to the compromise of
the AI model’s accuracy.

The remainder of the paper is organized as fol-
lows. Following this introduction section, related
work and a summary of key insights on data quality
assurance for AI/ML model in the context of func-
tional safety is presented in section 2. The real-world
practical use case and experimental scenarios are de-
tailed in section 3. Results and analysis are presented
in section 4. Discussion and conclusion is presented
in section 5.

2 RELATED WORK AND
SUMMARY OF KEY INSIGHTS

Data quality is a fundamental consideration in the de-
velopment of AI/ML models, because it directly im-
pacts the performance, accuracy, and reliability of Al
models'. The critical importance of high-quality data
for Al applications is empirically investigated in (Bu-
dach, 2022). The impact of six traditional data quality
dimensions such as consistent representation, com-
pleteness, feature accuracy, target accuracy, unique-
ness and target class balance on the performance of
fifteen popular ML algorithms across various tasks,
highlighting the relationship between data quality di-
mensions and algorithm effectiveness, is presented in
(Budach, 2022). This study underscores the critical
role of accurate labelling, feature accuracy, and data
quality dimensions in different ML scenarios, pro-
viding insights on algorithm performance robustness.
But, a specific use case pertaining to a specific domain
like functional safety is missing in (Budach, 2022).
More recently, in (Priestley et al., 2023) a survey
of data quality requirements that matter in ML devel-
opment pipelines is presented. The proposed frame-
work categorizes data quality criteria based on both
the stage of the ML lifecycle and the main dimen-
sions of data quality, providing a practical guide for
data practitioners and organizations to enhance their

Uhttps://research.aimultiple.com/data-quality-ai/

data management routines in preparation for ML ap-
plications. While (Sessions and Valtorta, 2009) in-
troduces a data accuracy assessment method employ-
ing a Bayesian Network learning algorithm, empirical
studies examining the influence of dataset accuracy
on machinery functional safety, particularly in real-
world scenarios, are currently lacking.

On the other hand, several approaches have
emerged to validate data fed to ML pipelines. For ex-
ample, the validation system implemented in (Poly-
zotis et al., 2019) and (Schelter et al., 2020) focus
on validating data given a classification pipeline as a
black box. In (Schelter et al., 2021), an experimental
library JENGA is introduced for testing ML-model’s
robustness under data errors. While the authors use
the concept of polluters or data corruptions, an exten-
sive experimental study is missing in (Schelter et al.,
2021). Automatic and precise data validation for ML
is discussed in (Shankar et al., 2023).

A most recent survey on Al for safety-critical sys-
tems in industrial and transportation domains is pre-
sented in (Perez-Cerrolaza, 2023). However, it lacks
an in-depth experimental evaluation on a specific as-
pect such as dataset quality in an industrial use case.
Further, experiences of adopting automated data val-
idation in an industrial ML project is presented in
(Lwakatare et al., 2021). The results in (Lwakatare
et al., 2021) indicate that adopting a data validation
process and tool in ML projects is an effective ap-
proach of testing ML-enabled software systems.

The literature review, state-of-the-art analysis, and
related work collectively reveal that various dimen-
sions of data quality have been scrutinized in relation
to the performance of ML algorithms. Nevertheless,
there is a noticeable gap in specific research focusing
on data quality assurance within the functional safety
domain. Moreover, there is a lack of exploration into
crucial aspects like dataset accuracy in a machinery
setting, particularly in real-world use cases such as
Al-based predictive maintenance systems.

2.1 Data Quality Assurance Facets

In this section, some important facets of data qual-
ity assurance within Al-based machinery functional
safety software/systems are summarized. General in-
sights are drawn from the literature review, neverthe-
less, an effort is made to adapt these insights to the
specific requirements of the functional safety domain
wherever applicable.

1. Safety critical scenario identification (data rele-
vance): In the context of machinery functional
safety, it’s crucial to identify safety-critical sce-
narios. This involves collaboration with domain

485



experts to understand potential hazards and risks
associated with machinery operations. Simulation
tools like Simulink? and LabVIEW 3 can be em-
ployed to analyse and simulate critical scenarios

functional safety must address bias, especially if
it could impact safety-critical decisions. Conduct-
ing bias analysis specific to safety-related data and
employing tools like TensorFlow’s Fairness Indi-
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cators ° and Al Fairness 360'° becomes essen-
tial for mitigating biases in safety-critical appli-
cations.

S 7. Functional safety security measures (data security
to .ensure the system’s response meets safety re- and privacy): Data security and privacy in ma-
quirements. chinery functional safety involve additional con-

. Safety validation procedures (data accuracy): En- siderations due to the potential impact on hu-
suring data accuracy includes implementing val- man safety. Encryption and anonymization tech-
idation procedures during data collection and niques must be robustly implemented. Privacy-
cross-referencing with authoritative sources. Im- preserving libraries like PySyft!! are valuable for
plementing validation procedures specific to safeguarding safety-critical data in the context of
safety-critical data involves rigorous testing and machinery operations.
verlﬁcgtlon Pprocesses dpnng4 data CO]leCtI.OIl. 8. Safety critical event labeling (data labelling
Tools like Great E)Fpecta'tlons or custom scripts quality: In the realm of machinery functional
are useful for data integrity checks. safety, labelling quality extends beyond general

. Safety standard compliance (data consistency): data labelling. It involves accurately labelling
Machinery functional safety often requires adher- safety-critical events and standardizing proce-
ence to specific safety standards (e.g., ISO 13849 dures for doing so. Labelling tools like Label-
for machinery safety). Data consistency in terms box!2, along with tools like Dataturks'? for reli-
of formats, units, and representations becomes ability testing, are instrumental in accurate data
crucial for compliance. Libraries such as Pandas’ labelling. They can be adapted to ensure accurate
or TensorFlow Data Validation® can be applied for labelling of safety-critical data/events.
standardization and cleaning. 9. Safety outlier detection and handling: Outliers

. Safety gap analysis (data completeness): Ad- in safety-critical data may indicate abnormal be-
dressing data completeness involves performing haviour that could lead to hazardous situations.
gap analysis specifically tailored to safety require- Specialized outlier detection methods using sta-
ment. Identifying missing data points that are tistical techniques or ML algorithms Tools like
critical for safety assessments and augmenting Scikit-learn (Pedregosa, 2011) for Python provide
datasets with relevant safety-related information various algorithms for outlier detection, and cus-
is essential. Tools like Apache NiFi 7 or custom tom preprocessing scripts can be employed for
scripts are valuable for data augmentation. identifying and handling safety-critical outliers.

. Real-time safety monitoring (temporal relevance): 10. Safety documentation protocols: Documentation
Here, temporal relevance extends to real-time in machinery functional safety domain involves
monitoring of safety-critical data. Ensuring that not only general data documentation but also spe-
the safety data is continuously updated to reflect cific safety documentation. Comprehensive data
changes in the operational environment is cru- dictionaries, safety protocols, and preprocess-
cial. Automated data update scripts, alongside ing steps must be documented. Documentation
version control systems like Git 8, facilitate track- systems like Confluence'* or version-controlled
ing changes over time. repositories like GitHub!® are effective for man-

. Safety critical bias mitigation (data collection aging data documentation.
bias): Similar to general Al systems, machinery 11. Validation and Testing: Validation and testing in

the context of machinery functional safety require
a heightened focus on ensuring that safety require-
ments are met. Using separate datasets for train-
ing, validation, and testing becomes critical, and

https://www.tensorflow.org/tfx/guide/tfma
10nttps://github.com/Trusted-AI/AIF360
https://github.com/OpenMined/PySyft
Zhttps://www.labelbox.com/
Bhttps://www.dataturks.com/
https://www.atlassian.com/software/confluence
Bhtps://github.com/

Zhttps://www.mathworks.com/help/simulink/
3https://www.ni.com/documentation/en/labview/
“https://greatexpectations.io/
Shitps://pandas.pydata.org/
Ohttps://www.tensorflow.org/tfx/guide/tfdv
7https:/Mmifi.apache.org/docs.html
8https://git-scm.com/doc
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automated testing frameworks like TensorFlow
Extended (TFX)!® or pytest!” should be adapted
for safety-critical model validation and testing.

12. Continuous Monitoring: Continuous monitoring
in the context of machinery functional safety
involves real-time monitoring of safety-critical
data and model performance. Establishing alert-
ing systems for drift detection like Seldon Al-
ibi Detect!® and utilizing monitoring platforms
contribute to effective continuous monitoring of
safety-related aspects in machinery operations.

Thus, to ensure reliability and integrity of data
in functional safety-critical applications, a compre-
hensive data quality assurance framework is essen-
tial. The crux of the such a framework involves en-
suring accuracy, consistency, completeness, and rel-
evance of data. This includes measures such as do-
main analysis, accurate data handling, standardiza-
tion, addressing bias, security measures, high-quality
labelling, outlier detection, thorough documentation,
and continuous monitoring. The selection of tools is
crucial, emphasizing the need for careful evaluation
based on project requirements and technology stack
in functional safety domains.

While various aspects have been discussed above,
the work presented in this paper primarily focuses on
assessing the influence of dataset accuracy on func-
tional safety. The evaluation is conducted through the
analysis of an Al-based predictive maintenance sys-
tem, extracting valuable insights on dataset accuracy
from a systematic experimentation.

3 SYSTEMATIC
EXPERIMENTATION

Let us consider a real-world scenario in the context of
machinery functional safety, specifically for a manu-
facturing process where an Al-based system is used
for predictive maintenance. The Al model is trained
to predict potential failures in a critical component of
a machine. The machine has a key component, a mo-
tor, and the aforementioned AI model has been de-
ployed to predict potential failures in the motor based
on (historical) sensor data.

As outlined in section 2.1, data accuracy stands
out as one of the key aspects in ensuring data qual-
ity assurance. The objective of our systematic exper-
imentation is to illustrate the impact of input data ac-
curacy on the performance of the model, subsequently

16https://www.tensorflow.org/tfx
https://docs.pytest.org/en/7.4.x/
Bhttps://github.com/SeldonIO/alibi-detect

influencing predictive maintenance outcomes and im-
plications for functional safety aspects, such as relia-
bility and availability.

3.1 Dataset Description

The sensor values are used to simulate input data for
the aforesaid predictive maintenance Al model. In the
real-world scenario, this involves training a model to
predict whether a machine is likely to experience a
failure or malfunction based on historical sensor data.

The AI model, is trained to learn patterns in the
input data (features) to predict the target variable (la-
bels). The synthetic dataset is generated with five
features for each data point. They are, temperature:
which is the operating temperature of the motor, vi-
bration: the vibration levels experienced by the mo-
tor, current draw: the amount of current the motor is
drawing during operation, voltage fluctuations: fluc-
tuations in the voltage supplied to the motor and run-
ning hours: the total number of hours the motor has
been in operation. These values are intended to sim-
ulate readings from sensors on machinery. The labels
are binary (0 or 1) and represent the target variable.
In the context of predictive maintenance, these labels
indicate whether a machine is operating normally (0)
or if there is a potential issue (1).

In the experimental setup, a range of datasets
each comprising different sample sizes namely, 1000,
10000, 20000, 50000, 100000, 150000, and 300000
is utilized. The investigation aims to analyse the im-
pact of varying data quality and also incorporates a
sensitivity analysis by simulating issues within the
datasets. This approach allows to comprehensively
assess how challenges in data accuracy affect the per-
formance of AI/ML models, especially concerning
accuracy and generalization across different dataset
sizes.

Please note that, while the paper presents a real-
life case study of predictive maintenance, the uti-
lization of synthetic datasets is a common practice
in ML research for several reasons. Firstly, syn-
thetic datasets offer control over various parameters,
enabling systematic experimentation and analysis of
model behaviour under different conditions. Sec-
ondly, real-world datasets for high-risk environments
like predictive maintenance can be limited or inacces-
sible due to privacy concerns or proprietary reasons.
Therefore, synthetic data allows to simulate realistic
scenarios while maintaining data privacy and acces-
sibility. Additionally, using synthetic data facilitates
the reproducibility of the study, as the dataset gen-
eration process can be fully documented and shared,
ensuring transparency and enabling other researchers
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to validate and build upon the findings. Thus, while
the data may be synthetic, the study’s focus remains
on addressing real-world challenges and providing in-
sights applicable to practical predictive maintenance
scenarios.

3.2 Issues in Dataset

The experimental setup considers a specific set of
issues with the Al dataset, and the subsequent text
briefly each identified issue. A remark on the solu-
tions to avoid each of the issue is briefly mentioned.
Note that the selection of these specific issues is based
on their critical impact on the overall quality and re-
liability of the AI model for predictive maintenance.
This decision is based on a combination of domain
knowledge, best practices in AI/ML and literature
reviews (Katsuki and Osogami, 2023), (Teh et al.,
2020), (Northcutt et al., 2021).

3.2.1 Sensor Precision and Calibration

* Issue: Sensor measurements may have inherent
inaccuracies or imprecisions.

* Solution: Implement sensor calibration proce-
dures to enhance the precision of measurements.
Regularly validate and adjust sensor accuracy to
minimize errors in the dataset.

3.2.2 Labelling Errors

* Issue: Errors in labelling data instances can lead
to misinterpretations by the Al model.

* Solution: Conduct a thorough review and vali-
dation of labelled data. Implement a process for
cross-checking and verifying labelled instances to
ensure accuracy.

3.2.3 Incomplete or Missing Data

* Issue: Incomplete or missing data points may
result in an imprecise understanding of the ma-
chine’s health.

* Solution: Perform a gap analysis to identify and
address missing data. Augment the dataset with
additional instances to ensure completeness and
accuracy.

3.2.4 Outliers in Training Data

* Issue: An outlier refers to anomalies or extreme
values present in the training dataset and can neg-
atively impact model accuracy.
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* Solution: Utilize outlier detection techniques to
identify and handle anomalies in the dataset. En-
sure that the model is not biased by rare or ex-
treme cases.

3.3 Experiments on Dataset Accuracy
Impact

To empirically illustrate the importance of Al dataset
accuracy in the context of machinery functional
safety, experiments are designed that highlight the im-
pact of inaccurate or incomplete datasets on the per-
formance of the predictive maintenance AI model.
The Al model is trained using a dataset with properly
labelled instances and minimal noise. This is referred
to as the baseline model for the experiments.

3.3.1 Data Perturbation

Perturbations are introduced (in the baseline model)
to simulate common issues in real-world datasets, as
listed below

¢ Sensor Noise: Random noise is added to sensor
measurements to simulate inaccuracies.

* Labelling Errors: Labelling errors are introduced
to simulate inaccuracies in the ground truth (i.e.,
accurate and reliable data)

* Missing Data: Random data points are removed
to simulate incomplete datasets.

e QOutliers: Outliers are introduced to test the
model’s robustness to extreme cases.

The perturbation strength ranges from 0.1 to
0.9 indicating the proportion or percentage of the
dataset that will be perturbed. For example, perturba-
tion_strength = 0.1 implies that 10% of the dataset will
be perturbed. The specific behaviour of the perturba-
tion depends on the perturbation type, and each type
of perturbation (sensor noise, labelling errors, missing
data, outliers) has its own mechanism for introducing
changes to the dataset.

For the experiments in this paper, perturbations in-
troduced are: sensor noise: adds random noise to the
features, labelling errors: flips a certain percentage of
labels, missing data: introduces missing values (NaN)
in a certain percentage of data and outliers: replaces
a certain percentage of data with outliers. The combi-
nation of perturbation type and perturbation strength
allows simulating different scenarios of data imper-
fections and evaluate how well the AI/ML model per-
forms under such conditions.
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3.4 Performance Metrics and
Evaluation Scenarios

To demonstrate the impact of data accuracy and noisy
data on model performance, various evaluation met-
rics such as accuracy, precision, recall, and F1 score
are used to compare the model’s performance for var-
ious evaluation scenarios. In the following, the per-
formance metrics are defined, and the evaluation sce-
narios are briefly described.

3.4.1 Performance Metrics

Accuracy metric represents the overall correctness of
the model’s predictions. It’s calculated as the ratio
of correctly predicted instances to the total instances.
Precision is the proportion of true positive predic-
tions among all positive predictions. It indicates the
model’s ability to avoid false positives. Recall (sen-
sitivity) is the proportion of true positive predictions
among all actual positive instances. It measures the
model’s ability to capture all relevant instances. FI-
Score is the harmonic mean of precision and recall. It
provides a balanced measure of precision and recall,
especially when there is an imbalance in the class dis-
tribution.

Apart from these performance metrics, sensitivity
analysis is conducted to assess the model’s robustness
and performance under varying conditions or param-
eter changes, providing insights into how the model’s
predictions may be influenced by alterations in input
parameters or external factors. Thus, sensitivity anal-
ysis contributes to quality assurance for data quality
by revealing the impact of data variations on model
performance. It facilitates the identification of poten-
tial data quality issues and guides strategies for im-
proving both data quality and model robustness.

3.4.2 Evaluation Scenarios

The evaluation scenarios in the empirical study are
outlined below.

¢ Baseline Evaluation: The baseline model is eval-
uated on a clean, accurate dataset to establish a
reference performance level.

* Impact of Sensor Noise: The model’s perfor-
mance when trained and tested with datasets con-
taining varying degrees of sensor noise is evalu-
ated.

* Effect of Labelling Errors: The model’s robust-
ness to labelling errors by training it on datasets
with introduced label inaccuracies is evaluated.

* Handling Missing Data: The model’s perfor-
mance when faced with missing data points, as-

Baseline Evaluation Metrics for Different Dataset Sizes

= Accuracy
= precision
= Recall

m F1Score

Metrics

1000 10000 20000 30000 40000 50000
Dataset Size

Figure 1: Baseline evaluation metrics for different dataset
sizes.

sessing the impact of data incompleteness is in-
vestigated.

* Robustness to Outliers: The model’s ability to
handle outliers by training and testing on datasets
containing extreme values is tested.

3.5 Implementation

A custom-defined script is implemented in Python
which uses libraries such as NumPy, scikit-learn and
Matplotlib to generate synthetic datasets, perturb the
data, train and evaluate logistic regression models,
perform baseline evaluation, detailed sensitivity anal-
yses varying perturbation strength and type, and visu-
alize the results. The experiments are run on an Intel
Core i7-8550U-1.8 GHz CPU, X64-based PC system
running Windows 10.

4 RESULTS AND ANALYSIS

Results and analysis of the results is presented in this
section, primarily based on the performance metrics
and evaluation scenarios outlined in section 3.4.1 and
section 3.4.2 respectively.

4.1 Baseline Evaluation

The evaluation of the model on clean and accurate
datasets of varying sizes reveals interesting insights
into its performance metrics, as seen in Fig. 1. The
accuracy of our model, representing the proportion
of correctly classified instances, ranges between 49%
and 55%.

Precision, which measures the accuracy of posi-
tive predictions, demonstrates moderate values rang-
ing from approximately 48% to 53%. This implies
that when the model predicts a positive instance, it is
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reasonably accurate, but there is room for improve-
ment.

Recall (sensitivity) values, ranging from 26% to
81%, indicate the model’s ability to capture a sub-
stantial proportion of actual positive instances. De-
spite the variability, the model excels in identifying
positive instances.

F1 score, a harmonic mean of precision and re-
call, provides a balanced assessment. The F1 scores
in range from 34% to 62%, indicating a reasonable
compromise between precision and recall. The high
recall values suggest that the model is adept at iden-
tifying positive instances, but the lower overall accu-
racy implies challenges in correctly classifying neg-
ative instances. This discrepancy may stem from the
model’s struggle with certain negative cases.

Thus, the model used here model exhibits
strengths in capturing positive instances but faces
challenges in achieving higher overall accuracy. This
is left intentionally unoptimized, as the primary focus
of this work is on investigating the effects of pertur-
bations on data quality. Therefore, maintaining the
baseline performance as is, the performance on per-
turbed datasets was analysed.

4.2 Sensor Noise Perturbation

The sensitivity analysis for sensor noise perturbation
for each perturbation strength across different datasets
is shown in Fig.2. For a dataset size of 1000 samples,
the accuracy decreases as perturbation strength in-
creases. Precision and F1 Score show a similar trend.
High recall, at lower perturbation strengths, suggests
a trade-off between precision and recall. For a dataset
size of 10000, similar trends are seen as the 1000-
size dataset. The impact of sensor noise on accuracy
is consistent across dataset sizes. For dataset sizes
20000 and 30000 the general trend of decreasing ac-
curacy with increased perturbation strength persists.
In summary, from Fig. 2, it is evident that the model’s
performance is consistently affected by sensor noise
across different dataset sizes.

4.3 Labelling Errors Perturbation

The sensitivity analysis for labelling errors perturba-
tion for various dataset sizes is shown in Fig. 3. For
a dataset size of 1000, similar trends to sensor noise
are seen, but labelling errors have a slightly more pro-
nounced impact on accuracy. On the other hand, pre-
cision and recall are affected, showing a trade-off. For
dataset size of 10000, 20000 and 30000 consistent
patterns with a decrease in accuracy, precision, and
recall are seen as perturbation strength increases. In
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summary, labelling errors have a more significant im-
pact on performance compared to sensor noise.

4.4 Missing Data Perturbation

The sensitivity analysis for missing data perturbation
for various dataset sizes is shown in Fig. 4. For
dataset size of 1000, a similar pattern of decreas-
ing accuracy with higher perturbation strength is ob-
served. The impact is more pronounced in recall, sug-
gesting missing data features affects model sensitiv-
ity. For data set size of 10000, 20000 and 30000 con-
sistent trends across dataset sizes is observed. The
model is sensitive to missing data, and the impact in-
creases with dataset size.

4.5 Outliers Perturbation

The sensitivity analysis for outliers perturbation for
various dataset sizes is shown in Fig. 5. For dataset
size of 1000 samples, the accuracy shows a fluctuat-
ing pattern with perturbation strength. Precision and
recall also show a similar pattern. For dataset size of
10000, 20000 and 30000, accuracy, precision, and re-
call exhibit similar trends. Outliers have a noticeable
impact on the model’s performance, and the effect re-
mains consistent across different dataset sizes.

4.6 Overall Inference on Impact of Data
Accuracy

The baseline model performance serves as a reference
point or control and provides a basis for understand-
ing how the model responds to different data condi-
tions. Hence, the baseline model with about 50% ac-
curacy is justified in the context of demonstrating the
impact of perturbations on data accuracy.

The sensitivity analysis clearly demonstrates that
the model’s performance is sensitive to various types
of perturbations. The decrease in accuracy, precision,
and recall indicates that noisy data significantly af-
fects model performance. In general, as the dataset
size increases, the impact of perturbations on model
performance becomes more pronounced. Labelling
errors and missing data have a more substantial im-
pact on performance compared to sensor noise and
outliers. There’s a noticeable trade-off between preci-
sion and recall in many scenarios, indicating the sen-
sitivity of the model to noisy data.

The experiment underscores the importance of
data accuracy in training robust ML. Noisy data, in-
troduced through different perturbation types, con-
sistently degrades model performance across various
dataset sizes. Larger datasets provide some resilience
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Sensitivity Analysis for sensor_noise Perturbation (Dataset size: 1000)
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Sensitivity Analysis for sensor_noise Perturbation (Dataset size: 10000)
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Sensitivity Analysis for sensor_noise Perturbation (Dataset size: 20000)
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Sensitivity Analysis for sensor_noise Perturbation (Dataset size: 30000)
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Figure 2: Sensitivity analysis for sensor noise perturbation for various dataset sizes.

491



ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

Sensitivity Analysis for labeling_errors Perturbation (Dataset size: 1000)
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Figure 3: Sensitivity analysis for labelling errors perturbation for various dataset sizes.
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Sensitivity Analysis for missing_data Perturbation (Dataset size: 1000)
0

missing_data Accuracy
-®- missing_data Precision
®- missing_data Recall e
—@ missing_data F1 Score S

Metrics
[ ]

) o5 )
Perturbation Strength

Sensitivity Analysis for missing_data Perturbation (Dataset size: 10000)

missing_data Accuracy @
-@- missing_data Precision
@ missing_data Recall -
091 —@- missing_data F1 Score P
L
05y g
7]
(9]
-
o
[}
=07
@ S °
__________ e
&=
05
os{ b hd
s 09

o1 02 03

) o5 3
Perturbation Strength

Sensitivity Analysis for missing_data Perturbation (Dataset size: 20000)
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Figure 4: Sensitivity analysis for Missing data perturbation for various dataset sizes.
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Sensitivity Analysis for outliers Perturbation (Dataset size: 1000)
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Figure 5: Sensitivity analysis for Outliers perturbation for various dataset sizes.
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to perturbations, but maintaining data accuracy is still
critical.

4.7 Implications on Functional Safety

The observed impact of dataset inaccuracies on the
performance of the AI model has significant implica-
tions for the reliability and availability of machinery.
These are crucial aspects in the context of functional
safety.

4.7.1 Reliability

Reliability, in this context, refers to the ability of the
Al model to consistently provide accurate predictions
regarding the health and maintenance needs of ma-
chinery. The decrease in performance metrics under
perturbations indicates that inaccuracies in the dataset
can compromise the reliability of the AI model. Fur-
ther, inaccuracies in the dataset can lead to false
alarms or missed predictions, affecting the overall re-
liability of the predictive maintenance system. An
unreliable Al model may result in unexpected break-
downs, leading to unplanned downtime and potential
safety risks. Thus, to enhance model reliability, it’s
crucial to address dataset inaccuracies through im-
proved data quality assurance processes. Implement-
ing a more robust outlier detection mechanisms to
handle extreme cases and to ensure the model’s pre-
dictions are trustworthy could help improve model re-
liability.

4.7.2 Availability

Auvailability, in the context of machinery functional
safety, refers to the system’s ability to operate as ex-
pected without disruptions, downtime, or failures. In-
accurate predictions from the Al model can impact
the availability of machinery, as maintenance actions
may be taken when unnecessary or delayed when
needed. Unreliable predictions may lead to unnec-
essary maintenance interventions, reducing the avail-
ability of machinery due to time spent on non-critical
tasks. Conversely, if the model fails to detect ac-
tual issues due to inaccuracies, it may lead to unex-
pected failures, increasing downtime and impacting
availability.

Thus, it is imperative to ensure that the Al model
is trained on a high-quality dataset to improve the ac-
curacy of predictions and reduce the likelihood of un-
necessary maintenance actions. Further, implement-
ing a well-defined feedback loop to continuously im-
prove the model’s accuracy over time, contributing
to increased availability by minimizing false predic-

tions and identifying actual issues promptly, is rec-
ommended.

4.7.3 Overall Considerations

Rigorous data quality assurance processes serve as a
critical risk mitigation strategy. By addressing dataset
inaccuracies, the overall risk of unreliable predictions
and potential safety hazards is reduced. Striking a
balance between accurate predictions and minimizing
downtime is essential. The Al model should provide
reliable insights without causing unnecessary disrup-
tions to machinery operations. The findings under-
score the importance of continuous monitoring, feed-
back loops, and adaptation to maintain and improve
the reliability and availability of the Al system over
time. The Al system should be integrated with exist-
ing safety measures and protocols to ensure that pre-
dictions align with the overall safety goals of the ma-
chinery.

Thus, addressing dataset inaccuracies is pivotal
for ensuring the reliability and availability of machin-
ery in functional safety applications. Accurate pre-
dictions from AI models contribute to efficient main-
tenance practices, reduce the risk of unplanned down-
time, and enhance overall safety in high-risk environ-
ments.

4.8 Discussion

Factors such as sensor noise, labelling errors, missing
data, and outliers were identified as contributors to
the compromise of the AI model’s accuracy through
systematic experimentation. Perturbations simulating
these factors were introduced into the datasets used
for training and testing the Al model. By observing
the changes in performance metrics such as accuracy,
precision, recall, and F1 score under different per-
turbation scenarios, the impact of each factor on the
model’s accuracy was quantified and analysed. This
empirical approach allowed for a comprehensive un-
derstanding of how inaccuracies in the dataset affect
the model’s predictive capabilities.

4.8.1 Importance of Dataset Quality

In the experiments, perturbations were systematically
introduced to simulate common real-world challenges
in datasets used for training Al models in machinery
functional safety. The consistent trend of decreasing
performance metrics across all scenarios underscores
the paramount importance of high-quality, accurate
datasets in ensuring the reliability and effectiveness
of Al models.
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* Sensor noise impact: The decline in performance
under increased sensor noise emphasizes the vul-
nerability of the AI model to inaccuracies in sen-
sor measurements. This underscores the need for
precise sensor calibration and robust data prepro-
cessing techniques to mitigate noise-induced er-
rors.

* Effect of labelling errors: The decrease in per-
formance when labelling errors were introduced
highlights the sensitivity of the AI model to in-
accuracies in ground truth information (i.e., accu-
rate or reliable data). It underscores the necessity
for rigorous data labelling validation processes to
prevent misinterpretations and subsequent model
inaccuracies.

* Handling missing data: The deterioration in per-
formance due to missing data emphasizes the
significance of data completeness. Incomplete
datasets compromise the model’s ability to un-
derstand and predict machine health accurately.
Strategies for data augmentation or careful han-
dling of missing data are crucial in maintaining
dataset completeness.

* Robustness to outliers: The observed decline in
performance in the presence of outliers under-
scores the importance of robust model architec-
ture. Models must be designed to handle extreme
cases without significant degradation in perfor-
mance. Additionally, outlier detection and prepro-
cessing steps are essential to ensure model stabil-

1ty.

4.8.2 Implications of Compromised Dataset
Accuracy

The implications of compromised dataset accuracy
are profound, particularly in safety-critical environ-
ments such as machinery operations. Inaccurate or
noisy data can lead to a cascade of issues that under-
mine the reliability and availability of machinery, ul-
timately impacting operational efficiency and safety.
Firstly, compromised dataset accuracy can result
in unreliable predictions from AI models. For in-
stance, sensor noise or labelling errors may cause
false alarms or missed detections of potential machin-
ery failures, leading to unnecessary maintenance in-
terventions or, conversely, delayed responses to crit-
ical issues. This not only affects the reliability of
predictive maintenance systems but also jeopardizes
the availability of machinery by increasing the risk
of unplanned downtime. Moreover, inaccurate pre-
dictions may erode trust in Al-driven systems, po-
tentially leading to scepticism among operators and
maintenance personnel, further exacerbating safety
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risks. Additionally, compromised dataset accuracy
can hinder the effectiveness of decision-making pro-
cesses, as unreliable insights may prompt inappropri-
ate actions or overlook genuine threats. These impli-
cations underscore the need for stringent data quality
assurance measures to ensure the integrity and relia-
bility of datasets used in Al-driven applications

4.8.3 Recommendations for Data Quality
Assurance

The findings in this paper have direct implications for
practitioners and organizations involved in the devel-
opment of Al models not only for machinery func-
tional safety but in high-risk environments across in-
dustries. The recommendations presented in this pa-
per, although lacking extensive real-world empirical
validation, are based on fundamental principles of
data quality assurance and ML. These principles, such
as sensor calibration, labeling validation, data com-
pleteness strategies, and outlier handling, transcend
specific industries and can be adapted to diverse do-
mains beyond manufacturing. The challenges posed
by sensor noise, labeling errors, missing data, and
outliers are ubiquitous in Al-driven systems, making
the strategies proposed here applicable across vari-
ous applications. While empirical validation would
strengthen the evidence, the transferability of these
strategies lies in their robustness and resilience to
address common data quality issues across different
contexts.

Thus, to enhance the robustness and reliability of
Al systems in high-risk applications, the following
recommendations are proposed:

* Investment in sensor calibration: Prioritize reg-
ular calibration of sensors to ensure precise and
accurate measurements. This reduces the impact
of sensor noise on the Al model’s predictions and
improves overall system reliability.

* Rigorous labelling validation: Establish robust
procedures for validating and cross-verifying la-
belled data. This includes periodic audits and con-
sistency checks to minimize the introduction of la-
belling errors during model training.

* Data completeness strategies: Implement strate-
gies to address missing data, such as data aug-
mentation or imputation techniques. Ensuring a
complete dataset enhances the model’s ability to
accurately capture the underlying patterns in ma-
chinery health.

* Enhanced outlier handling: Develop models with
enhanced outlier detection mechanisms. This in-
cludes preprocessing steps to identify and handle
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outliers effectively, preventing them from nega-
tively impacting model performance.

* Continuous monitoring and improvement: Estab-
lish continuous monitoring mechanisms to track
the performance of the Al model over time. Im-
plement feedback loops that allow the model to
adapt and improve based on corrected data, main-
taining accuracy in dynamic operational environ-
ments.

In summary, the experiments provide empirical evi-
dence supporting the critical role of accurate datasets
in machinery functional safety setting. By adhering
to these recommendations, practitioners can build Al
systems that are more resilient, accurate, and reliable,
ultimately contributing to enhanced safety outcomes
in high-risk applications.

S CONCLUSION

The empirical experiments conducted to investigate
the impact of dataset accuracy on Al model perfor-
mance in the realm of machinery functional safety
have yielded valuable insights into the critical na-
ture of high-quality data in ensuring the reliability
and effectiveness of Al systems. It is evident that in-
accuracies in the training dataset lead to diminished
predictive capabilities, potentially compromising the
safety and reliability of machinery in industrial set-
tings. The findings in this work underscore two key
points, namely the importance of dataset quality and
recommendations for data quality assurance.

Future work in this domain could explore ad-
vanced techniques for enhancing dataset quality, such
as the integration of anomaly detection algorithms
and robust preprocessing methods. Investigating
the adaptability of the AI model to dynamic opera-
tional environments and evolving machinery condi-
tions would be valuable. Another avenue for research
involves experimentation with a combination of real-
world datasets and synthetic datasets. This approach
would allow for a more comprehensive evaluation of
model performance and generalizability by incorpo-
rating the complexities and nuances present in real-
world data, while still maintaining the benefits of con-
trolled experimentation offered by synthetic datasets.
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