Industrial Validation of a Neural Network Model Using the Novel

Keywords:

Abstract:

MixTCP Tool

Arnold Szederjesi-Dragomir®?, Radu Giceanu®® and Andreea Vescan®¢

Computer Science Department, Faculty of Mathematics and Computer Science,
Babeg-Bolyai University, Cluj-Napoca, Romdnia

Test Case Prioritization, Continuous Integration, Neural Network, Elixir.

Test Case Prioritization (TCP) is crucial in the fast-paced world of software development to speed up and
optimize testing procedures, particularly in Continuous Integration (CI) setups. This paper aims to first validate
a state-of-the-art neural network model to TCP in CI environments, by applying it into a real-world industrial
context, and second to propose MixTCP, a tool that integrates the neural network model and significantly
enhances the regression testing experience from the software developer perspective. MixTCP is implemented
in the Elixir programming language and employs the NEUTRON model, a state-of-the-art approach that uses
neural networks to intelligently prioritize test cases, effectively improving fault detection and reducing testing
time. The tool is composed of loosely coupled components (Mix TCP task, TCP Server, and NEUTRON
model), thus enabling the integration of other Test Case Prioritization solutions too. The results show that
MixTCP has the potential to be a valuable asset to modern software development methods, offering software
engineers a more efficient, a more user-friendly, and an overall easier to integrate TCP approach.

1 INTRODUCTION

The efficiency and effectiveness of testing processes
(Ammann and Offutt, 2016) are highly important in
the continually evolving landscape of software de-
velopment. The adoption of continuous integration
(CD and deployment processes has highlighted the
crucial importance of optimizing Test Case Prioriti-
zation (TCP). For maintaining software quality it is
essential to use TCP which determines the order of
test case execution to maximize early fault detection.
However, traditional TCP approaches, which are fre-
quently based on heuristics, are becoming impractical
when faced with the complexity and dynamic nature
of current software projects, especially in Continuous
Integration (CI) settings (Spieker et al., 2017; Elbaum
et al., 2014; Lima and Vergilio, 2022).
Therefore, the aim of the paper is twofold:

1. to validate a neural network-based model for TCP
in CI by applying it in real-world industrial set-
tings, and

2. to integrate the neural network-based model in a

https://orcid.org/0000-0002-1106-526X
@ https://orcid.org/0000-0002-0977-4104
¢ https://orcid.org/0000-0002-9049-5726

110

Szederjesi-Dragomir, A., Gaceanu, R. and Vescan, A.

Industrial Validation of a Neural Network Model Using the Novel MixTCP Tool.
DOI: 10.5220/0012631100003687

Paper published under CC license (CC BY-NC-ND 4.0)

test case prioritization tool in order to facilitate its
use by software developers.

In order to address the first aim of this paper,
we employ the NEUTRON (Vescan et al., 2023)
model, which is a state-of-the-art neural network-
based method to prioritize test cases. Experiments
on benchmark datasets have shown its effectiveness
across various budget constraints, obtaining competi-
tive or superior results compared to other state-of-the-
art approaches. Specifically designed for CI settings,
NEUTRON effectively reorders test cases to detect
faults earlier, thereby optimizing the testing process.
With the aim of validating NEUTRON, we applied it
in a private industrial project containing 59 test files
with 297 test cases throughout the test files.

The second aim of this paper is to introduce
the MixTCP tool that embeds the NEUTRON model
(Vescan et al., 2023), including its functionality, prac-
tical use, and evaluation results. We show how
MixTCP seamlessly interacts with existing develop-
ment workflows while providing a user-friendly in-
terface for TCP management. The architecture of
MixTCP is composed of three main components: the
Mix TCP task, the TCP Server, and the NEUTRON
model. The Mix TCP task serves as the user inter-
face, allowing developers to easily interact with the

In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 110-119

ISBN: 978-989-758-696-5; ISSN: 2184-4895

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Industrial Validation of a Neural Network Model Using the Novel MixTCP Tool

tool using a CLI (Command Line Interface). The TCP
Server is the core of the system, responsible for pro-
cessing test data and orchestrating the overall work-
flow of the tool. It acts as a bridge between the user in-
terface and NEUTRON. Furthermore, the paper high-
lights the potential of the tool to significantly improve
the TCP process, ultimately contributing to more effi-
cient and successful CI workflows.

MixTCP represents an important step forward in
software engineering by bridging the gap between re-
search and real-world software testing needs. It pro-
vides a more efficient and effective approach to TCP,
particularly in CI environments, and contributes to the
ongoing integration of artificial intelligence into soft-
ware development practices.

The remainder of this paper is structured as fol-
lows. Section 2 motivates the need for TCP investi-
gations, presenting the theory and definition of TCP,
and finalizing with the other theoretical elements that
will be used in our investigation. Section 3 high-
lights the current existing approaches in TCP. Section
4 describes the design and implementation of the pro-
posed tool along with the tool architecture, while Sec-
tion 5 presents experiments and results. The threats to
validity are presented in Section 6 and Section 7 con-
cludes our paper and presents possibilities for future
research directions.

2 THEORETICAL BACKGROUND

This section presents relevant theoretical and techni-
cal background elements, starting with the motivation
behind this research and continuing with the TCP per-
spectives, TCP related work, and concepts on Elixir
and Mix.

2.1 Motivation

In the current rapid software development market, the
ability to produce high-quality software quickly and
consistently is not only an advantage, but it is also a
requirement. Continuous Integration (CI) procedures
have become an essential component of modern soft-
ware development, allowing teams to integrate code
changes in a timely and efficient manner. However,
this high speed brings with it its own set of obsta-
cles, particularly in the field of software testing. Test
Case Prioritization (TCP) becomes a necessity in this
context, but it raises its own challenges. With the in-
creasing complexity of software systems and the fre-
quency of code changes, classic TCP approaches are
no longer appropriate. These methods, which fre-
quently rely on heuristic or manual procedures, are

time-consuming, error-prone, and incapable of scal-
ing to meet the growing size of testing needs. This in-
efficiency can result in delayed detection of important
flaws, higher testing expenses, and, ultimately, slower
deployment of the project in production.

2.2 TCP and NAPFD

According to (Graves et al., 1998), the Test Case Pri-
oritization problem can be defined as in Definition 1.

Definition 1. Test Case Prioritization (Graves et al.,
1998): a test suite, T, the set of permutations of T, PT;
a function from PT to real numbers, f. The goal is to
find T € PT such that:

(YT")(T" € PT)(T" £ T)[f(T") = f(T")]. (D)

In order to evaluate the effectiveness of a TCP
approach, several metrics are proposed. For exam-
ple, APFD (Average Percentage of Faults Detected)
(Pradeepa and VimalDevi, 2013) measures the effec-
tiveness of a test suite in detecting faults as early as
possible during the testing process and is defined as
follows:

m
LiiTh 1)

APFD=1— .
nxm 2n

where: TF; is the position of the first test case that
detects the i-th fault, m is the total number of faults
detected by the test suite, and 7 is the total number of
test cases. This metric is especially useful for compar-
ing different prioritization algorithms, where the goal
is to reorganize the test cases so that those most likely
to find flaws run first.

An extension of APFD to incorporate the fact that
not all test cases are executed and failures can be
undetected is the Normalized APFD (NAPFD) (Qu
et al., 2007):

gnleFiJr p

NAPFD = p— o
n

3

nxm
where p is the number of faults detected by the pri-
oritized test suite divided by the number of faults
detected throughout the test suite. Variations of the
aforementioned metrics include, for example, the
incorporation of weights associated with the faults
based on their severity.

2.3 Elixir and Mix

Elixir (Elixir, nd) is a functional programming lan-
guage, known for its concurrency and fault tolerance
capabilities. It runs on the Erlang VM, thus giv-
ing developers complete access to Erlang’s ecosys-
tem (Erlang, nd). Besides all the features that make

111

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

Elixir stand out from other programming languages,
we have also chosen it to implement the MixTCP tool
because the real work project on which we validate
the NEUTRON approach is also written in Elixir.

Mix (Mix, nd) is a build automation tool for work-
ing with applications written in the Elixir. Besides
many other operations, it lets programmers create
projects, format, build, test or run the code, and fi-
nally to package and deploy. As Mix is widely used
for all kinds of tasks in a project (many times even
the single tool used), we ought to implement our tool
as a Mix archive. These archives can usually be in-
stalled directly from Github to a central repository
(typically /.mix/archives), thus any project can make
use of them without needing any additional setup or
dependency management. One thing to note is that
mix test operates on files, so we choose to implement
the test case prioritization process per test file and not
per test case.

3 RELATED WORK

Extensive research has been conducted in the field of
test case selection and prioritization, with numerous
approaches that address various optimization objec-
tives and employ a wide range of techniques (Pan
et al., 2022; Bertolino et al., 2020; Khalid and Qa-
mar, 2019; Kandil et al., 2017; Almaghairbe and
Roper, 2017; Medhat et al., 2020). Depending on
the machine learning methods applied, studies on test
case selection and prioritization can be categorized
into four main groups: supervised learning, unsuper-
vised learning, reinforcement learning, and natural
language processing (Pan R., 2022).

Recent studies have applied reinforcement learn-
ing (RL) to Test Case Prioritization (TCP) in Contin-
uous Integration (CI) due to the adaptability of RL to
the dynamic nature of CI without the need for full re-
training. Once trained, the RL agent can evaluate a
test case, assign it a score, and use that score to or-
der or prioritize the test cases. While most RL stud-
ies focus solely on the execution history of training,
one study, (Bertolino et al., 2020), incorporates code
complexity metrics. In this comprehensive paper, the
authors compare 10 machine learning algorithms, em-
phasizing the differences between supervised learning
and RL for TCP. They conducted experiments on six
public datasets, providing guidelines for applying ma-
chine learning in CI regression testing. In (Bertolino
et al., 2020), the authors also introduce new metrics
(Rank Percentile Average (RPA) and Normalized-
Rank-Percentile-Average (NRPA)) to evaluate how
close a prediction ranking is to the optimal one. How-

112

ever, (Pan R., 2022) shows that NRPA may not always
be suitable. Nonetheless, (Bertolino et al., 2020) is a
thorough and reproducible study and is recognized by
(Pan R., 2022) as a significant contribution.

Clustering in the context of Test Case Prioritiza-
tion (TCP) operates on the assumption that test cases
with similar attributes, such as coverage, exhibit sim-
ilar fault detection capabilities. Numerous studies,
including (Khalid and Qamar, 2019), employ the K-
means algorithm or its variations for this purpose. Al-
though the Euclidean distance is the commonly used
similarity measure in clustering, some explore alter-
natives such as the Hamming distance, as seen in
(Kandil et al., 2017). An interesting approach can be
found in (Almaghairbe and Roper, 2017), where clus-
tering is used for anomaly detection of passing and
failing executions.

Supervised learning is a widely used ML tech-
nique for addressing TCP as a ranking problem, typ-
ically employing one of three ranking models: point-
wise, pairwise, or listwise. In (Bertolino et al., 2020),
the authors evaluated various models such as Ran-
dom Forest (RF), Multiple Additive Regression Tree
(MART), L-MART, RankBoost, RankNet, and Coor-
dinate ASCENT (CA) for TCP using a state-of-the-art
ranking library (Dang and Zarozinski, 2020). MART
emerged as the most accurate model. However, a key
drawback of supervised learning is the requirement of
a complete dataset before training.

The use of NLP in TCP is relatively limited, but it
aims to extract and use information from textual soft-
ware development artifacts (e.g., bug descriptions) or
treat source code as textual data. In general, this in-
volves converting test cases into vectors and calculat-
ing the distances between them, followed by different
prioritization strategies. An interesting approach, as
presented in (Medhat et al., 2020), utilizes NLP to
preprocess the specification of the components of the
system. Recurrent neural networks are then used to
classify specifications into components such as user
devices, protocols, gateways, sensors, actuators, and
data processing. On the basis of this classification,
test cases related to these components are selected,
and search-based techniques, such as genetic algo-
rithms and simulated annealing, are used for priori-
tization.

In the following, some studies are presented that
specifically target the CI context.

In the approach from (Elbaum et al., 2014), the
authors use the sliding time window to choose the
test suits to be applied in a pre-submit phase of test-
ing by tracking their history. In a subsequent post-
submit phase, a similar approach is employed to pri-
oritize tests. Experiments with the Google Shared

Industrial Validation of a Neural Network Model Using the Novel MixTCP Tool

Dataset of Test Suite Results (GSDTSR) indicate that
the testing load is reduced and delays in fault detec-
tion are reduced. In (Spieker et al., 2017), an innova-
tive method is introduced to prioritize and select test
cases in Continuous Integration (CI) environments.
This approach uses reinforcement learning to priori-
tize test cases based on their duration, previous execu-
tion, and failure history. The study evaluates the pro-
posed method using industrial datasets and compares
it with deterministic test case prioritization methods.
The results indicate that this approach can effectively
learn to prioritize test cases in 60 cycles, even without
prior information on the test cases. This suggests its
promise for CI test case prioritization. In (Lima and
Vergilio, 2022), a Multi-Armed Bandit (MAB) ap-
proach is introduced for the prioritization of test cases
in CI environments. MAB problems are a simplified
form of Reinforcement Learning (RL), as they do not
require context information, do not change environ-
ment states, and do not involve state spaces or func-
tion approximators. Extensive experiments were con-
ducted, showing that, with certain parameter configu-
rations, the MAB approach outperformed the method
proposed in (Spieker et al., 2017). In (Omri and Sinz,
2022), an approach based on the Dueling Bandit Gra-
dient Descent (DBGD) algorithm is introduced. Eval-
uation of several industrial datasets indicates that after
150 cycles, the proposed method outperforms other
state-of-the-art approaches.

Most approaches from related work in CI use on-
line models for prioritization and advocate that this
choice is an advantage for the continuous integration
context because the training phase is eliminated. Nev-
ertheless, to obtain comparable results with determin-
istic methods, rather significant volumes of data are
still needed (e.g. at least 60 cycles, that is, about two
months of data, for one of the state-of-the-art methods
(Spieker et al., 2017)). The approach of (Omri and
Sinz, 2022), which is to our knowledge the best in the
literature, needs 150 cycles (that is, about 5 months of
data) to achieve this result. Considering the vast vol-
umes of data (and time span) needed by these meth-
ods to become efficient, we argue that eliminating the
training phase is not necessarily a great advantage as
it may seem. Our approach, which uses a neural net-
work, needs, of course, a training phase, but our ex-
periments show that it outperforms related approaches
in some of the studied use cases. In our experiments,
we investigate several scenarios, some of which in-
volve transformations of the original datasets, enrich-
ing them with additional features, to improve the per-
formance of our model.

The NEUTRON approach from (Vescan et al.,
2023) uses a neural network to prioritize test cases

in continuous integration environments. Experiments
are carried out on benchmark datasets (Spieker et al.,
2017) obtaining better results in terms of NAPFD
for some budgets compared to the following state-
of-the-art methods: Elbaum (Elbaum et al., 2014),
RETECTS (Spieker et al., 2017), COLEMAN (Lima
and Vergilio, 2022), LearnTec (Omri and Sinz, 2022).
This is why we have chosen our NEUTRON approach
for validation in a real-world industrial context.

TCP Tools. Despite decades of research on test
case prioritization techniques, there is a noticeable ab-
sence of practical and user-friendly tools in this do-
main. The MOTCP tool by (Islam et al., 2012) uses a
multi-objective test prioritization technique that uses
information related to the code and requirements cov-
erage, along with test case cost execution. Two case
studies were performed with MOTCP using 4 Java
programs with various numbers of requirements and
available test cases. The tool proposed by (Sam-
path et al., 2011) allows testers to prioritize and re-
duce user-session-based test cases. The investigation
using tertiary studies by (Singhal et al., 2021) pro-
vided a comprehensive list of tools used in the TCP
area, some used for analysis purposes, some provid-
ing code coverage information ((EMMA, nd), (Cober-
tura, nd), (JaCoCo, nd)), and some to specify the mu-
tation adequacy score ((MutGen, nd), (muJava, nd)).
The tool developed by (Cleanscape, nd) also provides
the Regress tool from the toolkit for effective regres-
sion testing to identify a representative subset of tests
to revalidate modified software. The tool proposed by
(ATAC, nd) investigates how thoroughly a program
is tested by a set of tests using data flow coverage
techniques, identifies areas that are not well tested
and identifies overlap among tests. The authors ad-
vocate for the development of practical tool support
in the near future to demonstrate the real-world value
of test-case prioritization.

4 PROPOSED MixTCP TOOL

An overview of the MixTCP tool is provided below,
along with the architecture and prerequisites for run-
ning the tool with example commands.

4.1 Overview

This section explains the main functionalities of the
MixTCP tool. The main components of the tool are:
Mix TCP task, TCP Server, and NEUTRON model,
as provided in Figure 1.

Communication between the task and the server is
done using RPC (Remote Procedure Call) via Erlang

113

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

execute mix TCP

Any Mix Project

Mix TCP task

do RPC using

Erlang Distribution Protocol

apply TCP

NEUTRON

TCP Server

Figure 1: Overview of the approach.

Distribution Protocol (EPD, nd), while the commu-
nication between the server and NEUTRON is just a
function call as we have integrated our neural network
model in the server itself.

In what follows, we outline the architecture of the
MixTCP tool, provide the prerequisites needed to run
it and offer some examples on how to use it.

4.2 Architecture

As observed in Figure 1 our tool consists of 3 compo-
nents: Mix TCP task, TCP Server and NEUTRON.
Firstly, the Mix task, which is installed as a Mix
archive globally for multiple Mix projects, is the CLI
(Command Line Interface) tool that the user uses to
interact with MixTCP. The tool requires that the des-
ignated execution folder be a Mix project. Without
this, it will be unable to execute the selected tests and
will signal this. The console tool has four parameters:

1. number of test files to run (-n): this will specify
how many test files to run

2. server (-s): address of the TCP Server to commu-
nicate with

3. cookie (-¢): cookie used to be able to connect with
the server (this always needs to be the same both
on the client and the server)

4. test_runs_folder (-f): folder where previous test
runs are stored (this is used by NEUTRON to ef-
ficiently prioritize the tests for the current run).

Communication between the task and the server
occurs via Remote Procedure Calls (RPCs), using the
Erlang Distribution Protocol (EPD, nd). Basically, ev-
ery time an Elixir/Erlang system is started, the Erlang
Port Mapper Daemon (EPMD) is also started. This
OS-level process/service keeps track of the ports on

114

which Erlang nodes are running. These nodes use it
to locate each other. Hence, when the task seeks to es-
tablish a connection with the server, it approaches the
EPMD, requests the port number of the server, and
subsequently attempts to connect to the server. Con-
nections are initiated through a TCP/IP handshake
process during which cookies and versions are com-
pared. If all criteria are successfully met, the connec-
tion is then established, and exchanging of messages,
remote functions calls, or even spawning of new pro-
cesses remotely will be possible. For our use case,
we will call a function, passing the test runs folder,
which will then carry out the test case prioritization
on behalf of the Mix task.

Secondly, the TCP server, as mentioned above,
exposes a function that opens and processes the
folder, parses the cycles, and builds the data needed
for the NEUTRON neural network. The server re-
quires direct access to the folder, as it will navigate to
the filesystem, enumerate all files within that folder,
and ultimately read and parse them. Each file will
contain the logs for multiple test files and multiple
test cases per test file. During their processing the test
cases are aggregated, and only test files are considered
as an input for NEUTRON.

Communication between the server and NEU-
TRON is straightforward, occurring via a local func-
tion call. The third component refers to the NEU-
TRON model that we have proposed in (Vescan et al.,
2023). We have trained and built the NEUTRON neu-
ral network model in a separate environment and then
just integrated it (together with its parameters) into
the server system.

As shown in the paper of (Vescan et al., 2023), by
training NEUTRON solely on the IOF/ROL dataset, it
is still able to produce decent prioritizations on other,
considerably different datasets. It uses the following

Industrial Validation of a Neural Network Model Using the Novel MixTCP Tool

data organized per test file as input:

* cycles: number of cycles the test file was executed
in;

* duration: first we compute the sum of the testcase
durations, and then we compute the average over
all cycles;

* total runs: number of runs over all cycles (as usu-
ally each test file is run only once per cycle this
will be equal to cycles, but to have a more general
solution we have also included this; also cycles
can be defined or built differently);

 fault rate: if one of the testcases in a test file fails,
the whole test file fails and then we compute the
number of fails throughout all cycles divided by
the number of total runs.

4.3 Prerequisites

As prerequisites to run the tool, we need to install
Erlang OTP and Elixir, but if one intends to use the
tool, it is likely that these are already installed, as we
are going to use it in an already existing Mix Project.
Steps needed to run:

1. install the Mix task as an archive in our local
archives directory, so it can be called using Mix
from any existing project without any additional
setup;

2. start the TCP server, that will be used by the task
to apply TCP on the tests from the given project;

3. run the Mix task with the desired parameters, that
will connect to the server to obtain the prioritized
tests and then take only the first ones and run them
in the current project.

The server needs access to the folder with previ-
ous test runs. If there is no data from previous cycles
all tests will be executed, regardless of how many we
specified to the tool. This cycle will serve as data for
the subsequent usages of the tool.

4.4 Commands to Execute the Tool

To start the server the following command can be
used in the tool’s Git repository (as seen in Figure 2):
iex --sname tcp@localhost --cookie 1234 -S mix

d X iex --sname tcpdlocalhes
Erlang/0TP 25 [erts-13.1.3] [source] [64-|

] [async-threads:1]

Interactive Elixir (1.15.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(tcp@localhost)1>

Figure 2: Running the TCP Server.

This will start a terminal with all the code from the
project. The server’s name or address and the cookie

to use (as presented before these will be needed for the
communication with the Mix task) are also specified.

After the server is started, the Mix task can be run
in any other Mix project with this command (as seen
in Figure 3 too):

MIX_ENV=test mix tcp\
-n 10 \
-s tcp@localhost \
-c 1234 \
-f $(pwd) /test_runs\
> 2023_11_17_10_31

[sh-3.2§ MIX_ENV=test mix tcp -n 10 -s tcpalocalhost -c 1234 ~f $(pwd)/test_runs > 2023_11_17_19 31

Running 10 tests using server tcpdlocalhost with test runs folder

Figure 3: Running the Mix task.

4.5 Advantage of the MixTCP Tool

The proposed tool, MixTCP is a solution that ad-
dresses these difficulties by utilizing the power of ar-
tificial intelligence. MixTCP augments TCP by em-
ploying the NEUTRON model, a state-of-the-art neu-
ral network approach, to prioritize test cases. Unlike
prior approaches, MixTCP can analyze large volumes
of historical test data providing an intelligent and ef-
fective prioritization, ensuring that the most critical
tests are executed first. By automating and improv-
ing the TCP process, MixTCP enhances testing accu-
racy and speed while significantly decreasing manual
work. As a result, bugs are identified more quickly,
testing resources are used more efficiently, and new
products or updates to already existing products are
released more quickly.

The contributions and advantages of MixTCP are
as follows:

¢ Integration with NEUTRON, a state-of-the-art ap-
proach for TCP in CI environments. Machine
learning has been explored in previous research
and there are indeed some recent and notable con-
tributions to TCP in CI contexts (Spieker et al.,
2017; Bertolino et al., 2020; Pan R., 2022; Lima
and Vergilio, 2022; Elbaum et al., 2014). Nev-
ertheless, to our knowledge, none of the related
works is integrated in a tool like MixTCP, making
it rather difficult for these approaches to be rapidly
adopted by the industry.

* Development in Elixir, which is a language known
for its capabilities in handling concurrent pro-
cesses and distributed systems. This could make
MixTCP particularly effective in large-scale, com-
plex testing environments.

* Empirical validation in industrial settings. The
tool has been rigorously tested and validated in
real-world industrial settings.

» User experience and integration. MixTCP is user-
friendly and easy to integrate in existing projects.

115

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

S EVALUATION

In this section, we first describe our evaluation setup
and then present our experiments and results.

5.1 Evaluation Setup

To empirically validate our tool, we employed it in a
private industrial project characterized by the follow-
ing attributes: (also seen in Table 1): 59 test files, 297
test cases throughout the test files, failing rate was not
measured, but is moderate throughout development
cycles. For this evaluation, we have selected the top N
test cases to run with a random N (that is not too big
or too small), but in a real-world scenario one would
select the top test cases based on the budget/time al-
located for running the tests.

Table 1: Dataset properties.

Property Name | Property Value
of test files 59
of test cases 297
failing rate moderate

5.2 Experiments and Results

We have designed an experiment that considers vari-
ous execution cycles as specified in the following and
as see in Figure 4).

next cycle

next cycle, for NAPFD: use
verdict from next cycle

Run all tests Run Mix TCP
Cycle 1 % Cycled —= Cycleb
| —— —
Cycle 2 Cycle6 — Cycle7
| —
Cycle 3 Cycle 8

Figure 4: Experiment Cycles.

The experiment design steps are:
* the tests were executed multiple times, throughout
8 cycles;

* each cycle is a single execution of a subset of
tests;

* for the first 3 cycles we have executed all tests,
without using the tool;

116

* starting with the fourth cycle, we have started us-
ing MixTCP, that prioritized the tests by analyzing
data from all previous cycles, thus, we conducted
only a select subset of these tests, choosing them
based on their assigned priority order;

* in order to compute NAPFD we take the next cy-
cle’s test runs to decide each test file’s verdict;

* NAPFD is computed for cycles between 3 and 7,
the 3rd cycle’s NAPFD will tell how well the tests
were predicted in the 4th cycle;

* as there are only 8 cycles, no score can be com-
puted for the 8th cycle yet;

* there were 8 faults exposed throughout the exper-
iment.

In order to measure the results, we used the same
metric as in the NEUTRON (Vescan et al., 2023) ap-
proach, namely NAPFD. This metric provides a suf-
ficient overview of the general performance of a TCP
approach. The results are shown in Table 2. As one
can observe, the performance of the tool is consider-
ably better than running the tests in a Random way
(which is the default behavior in Elixir).

Table 2: Random and NEUTRON NAPEFD per cycle.

Cycle | Random NAPFD | NEUTRON NAPFD
3 5.82% 12.18%
4 13.15% 22.25%
5 18.81% 35.06%
6 32.16% 48.20%
7 45.86% 81.46%

Figure 5 graphically illustrates the outcomes for
Random and NEUTRON across the cycles, clearly
showing a notable enhancement in performance for
both.

Method

@ NEUTRON
Random

0.8

0.6

0.4 -
N I I
® - @ ® ~

Cycle

Figure 5: NAPFD per cycle.

NAPFD

This improvement can be attributed to two pri-
mary factors:

1. as we run more and more cycles, it becomes more
and more likely to find failing tests; this is why
both performances grow;

Industrial Validation of a Neural Network Model Using the Novel MixTCP Tool

2. NEUTRON has another reason and that is the size
of the data; as we are trying to predict tests that
fail, having more data makes this prediction more
accurate as the tool will choose tests that are more
likely to fail.

In conclusion, MixTCP, by using NEUTRON,
helps faulty tests to be found earlier, its performances
increase as there are more and more historical data,
and because it prioritizes tests, it is even possible not
to run the whole test suite every time. In this way, it
also demonstrates the application and integration of
NEUTRON in real-world projects.

6 THREATS TO VALIDITY

Experiments may be sensitive to particular threats to
validity, and the outcome of this research may be in-
fluenced by a variety of factors. Next, several points
are indicated that may have influenced the results ob-
tained, stating the action taken to mitigate them.
Internal. One potential threat to validity is the
presence of bugs in our implementation. However,
through comprehensive testing and code review, we
hope to have significantly reduced the likelihood of
such issues. Moreover, the tool is validated in real-
world industrial settings, thus further minimizing this
risk.

Construct. The metrics used to evaluate performance
may not fully describe how effective the tool is in real-
world scenarios because such measurements do not
capture the user friendliness of the tool and its ease of
integration in an existing project. However, we hope
that the explanations accompanied by some screen-
shots provide sufficient details in this sense.
External. The initial results of the NEUTRON ap-
proach were based on three industrial datasets. In-
deed, we should have used more datasets, but to our
knowledge, there were no other datasets that have
the required data, especially historical information re-
garding the execution of the test cases. To mitigate
this situation, the MixTCP tool was applied in real
world industrial contexts. Nevertheless, applications
of the tool in more projects perhaps from diverse do-
mains would help in ensuring that it generalizes prop-
erly.

7 CONCLUSIONS AND FUTURE
WORK

Regression testing, a subset of software testing, in-
volves re-running functional and non-functional tests

to ensure that the previously developed and tested
software still performs after a change. Test Case Pri-
oritization (TCP) becomes particularly challenging in
Continuous Integration (CI) contexts because as the
number of test cases grows, running the entire test
suite for every change becomes time-consuming and
resource-intensive. TCP aims to address this by de-
termining the most critical tests to run first to detect
faults earlier. However, traditional TCP methods, of-
ten based on heuristics, may not be able to effectively
adapt to the frequent changes and evolving require-
ments, leading to inefficiencies and delays in the test-
ing process. This makes the development of more
intelligent and adaptive TCP methods essential for
modern CI practices. This paper focuses on the in-
tegration of the NEUTRON model, a state-of-the-art
neural network-based approach for Test Case Priori-
tization in Continuous Integration environments. The
NEUTRON model has been validated using an indus-
trial dataset and incorporated into the MixTCP tool for
practical use by software developers.

The aim of this paper is twofold: firstly, to validate
the NEUTRON model by applying it in real-world in-
dustrial settings; and secondly, to integrate this neural
network-based model into the MixTCP tool, thereby
facilitating its practical application by software devel-
opers in the field.

Developed using Elixir, a functional programming
language well known for its concurrency and fault tol-
erance, MixTCP stands out for its practical usefulness
and proven effectiveness in real-world industrial set-
tings. It is composed of three main loose coupled
components (Mix TCP task, TCP Server, NEUTRON
model), making it a versatile tool for various software
development environments.

The evaluation of MixTCP in real-world industrial
settings validates its benefits in improving the TCP
process. The tool has shown a clear improvement in
the prioritization of the test cases, which ultimately
leads to earlier fault detection and also more efficient
use of testing resources. This has significant impli-
cations for the speed and quality of software devel-
opment, as it enables quicker releases and more reli-
able software products. The empirical validation of
MixTCP outlines its practical applicability and effec-
tiveness, confirming its potential as a valuable tool in
modern software development practices.

Our future efforts will be directed towards ensur-
ing that MixTCP successfully integrates in any devel-
opment environment. We also plan to integrate other
state-of-the-art TCP approaches into our tool, facili-
tating faster adoption by the software industry. An-
other idea for future work is to validate the efficacy of
the tool with practitioners by conducting an empirical

117

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

study in which the results and overall experience with
and without using the tool are compared.

ACKNOWLEDGMENT

This work was funded by the Ministry of Research,
Innovation, and Digitization, CNCS/CCCDI - UE-
FISCDI, project number PN-III-P1-1.1-TE2021-0892
within PNCDI III.

REFERENCES

Almaghairbe, R. and Roper, M. (2017). Separating pass-
ing and failing test executions by clustering anoma-
lies. Software Quality Journal, 25(3):803-840.

Ammann, P. and Offutt, J. (2016). Introduction to Software
Testing. Cambridge University Press, 2 edition.

ATAC (n.d.). Atac: a test coverage analysis tool. https:
/finvisible-island.net/atac/atac.html. Accessed: 2023-
11-19.

Bertolino, A., Guerriero, A., Miranda, B., Pietrantuono, R.,
and Russo, S. (2020). Learning-to-rank vs ranking-
to-learn: Strategies for regression testing in contin-
uous integration. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, ICSE *20, page 1-12, New York, NY, USA. As-
sociation for Computing Machinery.

Cleanscape (n.d.). Suds software visualization and
test toolkit. https://stellar.cleanscape.net/products/
testwise/help/introduction.html. Accessed: 2023-11-
19.

Cobertura (n.d.). Cobertura: A code coverage utility for
java. https://cobertura.github.io/cobertura/. Accessed:
2023-11-19.

Dang, V. and Zarozinski, M. (2020). Ranklib. https:
/Isourceforge.net/p/lemur/wiki/RankLib/. Accessed:
2023-11-19.

Elbaum, S., Rothermel, G., and Penix, J. (2014). Tech-
niques for improving regression testing in continuous
integration development environments. In Proceed-
ings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE
2014, page 235-245, New York, NY, USA. Associa-
tion for Computing Machinery.

Elixir (n.d.). Elixir programming language.
elixir-lang.org. Accessed: 2023-11-19.
EMMA (n.d.). Emma: a free java code coverage tool. http:
/lemma.sourceforge.net/. Accessed: 2023-11-19.
EPD (n.d.). Erlang distribution protocol. https:/www.
erlang.org/doc/apps/erts/erl_dist_protocol.html. ~ Ac-

cessed: 2023-11-19.

Erlang (n.d.). Erlang programming language. https://www.
erlang.org/. Accessed: 2023-11-19.

Graves, T. L., Harrold, M. J., Kim, J., Porters, A., and
Rothermel, G. (1998). An empirical study of regres-
sion test selection techniques. In Proceedings of the

https://

118

20th International Conference on Software Engineer-
ing, pages 188-197.

Islam, M. M., Marchetto, A., Susi, A., Kessler, F. B., and
Scanniello, G. (2012). Motcp: A tool for the prior-
itization of test cases based on a sorting genetic al-
gorithm and latent semantic indexing. In 2012 28th
IEEE International Conference on Software Mainte-
nance (ICSM), pages 654—657.

JaCoCo (n.d.). Jacoco java code coverage library. https:
/Iwww.eclemma.org/jacoco/. Accessed: 2023-11-19.

Kandil, P., Moussa, S., and Badr, N. (2017). Cluster-based
test cases prioritization and selection technique for ag-
ile regression testing. Journal of Software: Evolution
and Process, 29(6):e1794. 1794 JISME-15-0111.R1.

Khalid, Z. and Qamar, U. (2019). Weight and cluster based
test case prioritization technique. 2019 IEEE 10th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pages 1013—
1022.

Lima, J. A. P. and Vergilio, S. R. (2022). A multi-armed
bandit approach for test case prioritization in continu-
ous integration environments. IEEE Transactions on
Software Engineering, 48(2):453-465.

Medhat, N., Moussa, S. M., Badr, N. L., and Tolba,
M. F. (2020). A framework for continuous regression
and integration testing in iot systems based on deep
learning and search-based techniques. IEEE Access,
8:215716-215726.

Mix (n.d.). Mix. https://hexdocs.pm/mix/Mix.html. Ac-
cessed: 2023-11-19.

muJava (n.d.). mujava: a mutation system for java pro-
grams. https://cs.gmu.edu/~offutt/mujava/. Accessed:
2023-11-19.

MutGen (n.d.). Mutgen - motif based mutation simulation
library. https://github.com/thcre/mutgen. Accessed:
2023-11-19.

Omri, S. and Sinz, C. (2022). Learning to rank for test case
prioritization. In 2022 IEEE/ACM 15th International
Workshop on Search-Based Software Testing (SBST),
pages 16-24.

Pan, R., Ghaleb, T. A., and Briand, L. (2022). Atm:
Black-box test case minimization based on test code
similarity and evolutionary search. arXiv preprint
arXiv:2210.16269.

Pan R., Bagherzadeh M., G. T. e. a. (2022). Test case selec-
tion and prioritization using machine learning: a sys-
tematic literature review. Empir Software Eng, 29:1 —
43.

Pradeepa, R. and VimalDevi, K. (2013). Effectiveness
of test case prioritization using apfd metric: Survey.
In International Conference on Research Trends in
Computer Technologies (ICRTCT—2013). Proceed-
ings published in International Journal of Computer
Applications®(IJCA), pages 0975-8887.

Qu, X., Cohen, M., and Woolf, K. (2007). Combinatorial in-
teraction regression testing: A study of test case gen-
eration and prioritization. In 2007 IEEE International
Conference on Software Maintenance, pages 255—
264, Los Alamitos, CA, USA. IEEE Computer Soci-
ety.

Industrial Validation of a Neural Network Model Using the Novel MixTCP Tool

Sampath, S., Bryce, R. C., Jain, S., and Manchester, S.
(2011). A tool for combination-based prioritization
and reduction of user-session-based test suites. In
2011 27th IEEE International Conference on Software
Maintenance (ICSM), pages 574-577.

Singhal, S., Jatana, N., Suri, B., Misra, S., and Fernandez-
Sanz, L. (2021). Systematic literature review on test
case selection and prioritization: A tertiary study. Ap-
plied Sciences, 11(24).

Spieker, H., Gotlieb, A., Marijan, D., and Mossige, M.
(2017). Reinforcement learning for automatic test
case prioritization and selection in continuous integra-
tion. In Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analy-
sis, ISSTA 2017, page 12-22, New York, NY, USA.
Association for Computing Machinery.

Vescan, A., Gaceanu, R., and Szederjesi-Dragomir, A.
(2023). Neural network-based test case prioritization
in continuous integration. In 2023 38th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering Workshops (ASEW), pages 68-77, Los Alami-
tos, CA, USA. IEEE Computer Society.

119

