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Abstract: We show that current approaches for data warehouse conceptual modelling are inadequate for capturing the 
range of analysis capabilities of the enterprise. In addressing this, our conceptual model retains the basic 
distinction between the analysis data and analysis parameters but additionally introduces intra analysis-data 
and intra analysis-parameters relationships besides relationships between analysis data and analysis 
parameter. A variety of constraints for enforcing analysis semantics are also defined. We convert the 
conceptual model to star schema and show procedures to do so. We illustrate the use of our model through an 
example. 

1 INTRODUCTION 

A data warehouse, DW conceptual schema models 
the information contents of the DW to-be and acts as 
a specification of its logical data model. There are two 
questions (a) what is the set of concepts that comprise 
the meta-model and (b) how can a conceptual schema 
be converted into the target logical model of data. 
One approach has been to adopt (Gol 1998) the Entity 
Relationship, ER model. The ER schema is converted 
into the Multi-Dimensional, MD, model using the 
semi-automatic process presented in (Gol 1998). The 
chief difficulty (Boe 1999) with this approach lies in 
deciding where to start in the conceptual schema. Due 
to this and also since there was no accepted 
conceptual model for a DW, (Boe 1999) used the 
logical data model comprising facts, dimensions, 
dimension hierarchy and integrity constraints, as 
their conceptual model. The logical model was 
subsequently treated as a conceptual model by several 
researchers. In (Cor 2012), dimensions, transactional 
facts, periodic and evolving snapshots were 
modelled. In (Gio 2008), transactional facts, 
dimensions and dimension hierarchies could be 
expressed. In (Maz 2007), transactional facts, 
dimensions, dimension hierarchies, degenerate facts, 
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and degenerate dimensions were adopted. 
MultiDimER (Mal 2006) consists of facts, 
dimensions, levels, and dimension hierarchies of 
various types. A version of this model, MultiDim is 
used in (Vai 2022). The conceptual model in (Pra 
2018) in addition to facts and dimensions, that they 
referred to as data and category objects respectively, 
allowed specification of category hierarchies, history 
of data objects, and change properties of category 
objects. 

The major difficulty with using the logical model 
is that it is (Kim 1996) specifically structured to 
support querying and not towards capturing the 
analysis to be carried out. To fill this gap, we 
propose a model for capturing the analysis capability 
to be supported by the DW. This has two aspects, (i) 
semantics of data to be analysed or analysis data, and 
(ii) semantics of parameters of analysis. Regarding (i) 
we consider five issues as follows: 
a. Handling un-structured analysis data. All 

conceptual models considered above assume 
structured, numeric, additive data, though semi-
additive data is allowed for example in (Cor 
2012, Vai 2022). However, analysis of 
unstructured data (Fac 2022, Pan 2022) has now 
attained importance and must be supported. 

Prakash, D. and Prakash, N.
A Conceptual Model for Data Warehousing.
DOI: 10.5220/0012621200003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 87-98
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

87



b. Specifying relationships among analysis data. 
As we will see, these identify the data that must 
be analysed together and which must be 
analysed separately. These two differing 
situations need explicit modelling to capture the 
correct analysis. 

c. Modelling complex analysis data that shows the 
“is-part-of” relationship with its constituent 
data. 

d. Specifying containment of analysis data, for 
example, to model that an Order_Value contains 
one or more Order_line_amount. 

e. Defining history property of analysis data, i.e, 
specifying the duration for which historical data 
is to be maintained and its frequency. 

There are three issues around (ii) as follows. 
f. Specifying specialized analysis parameters 

for specific analysis of analysis data. For 
example, the parameter, Product may be 
specialized into perishable and non-perishable 
product respectively thereby allowing separate 
analysis of sales data, by perishable and non-
perishable products respectively. 

g. Modelling complex analysis parameters to 
bring out the “is part of” relationship between 
parameters. 

h. Modelling containment in parameters to allow 
analysis by the container or its contents 
respectively. For example, a customer may hold 
multiple fixed deposits with a bank. That is, the 
customer_id is a container and the several 
FD_account_numbers are its contents. Analysis 
may be carried out by customer or by individual 
fixed deposits. 

i. Modelling change properties of parameters 
The layout of the paper is as follows. In section 2, we 
present the conceptual model including the features 
(a) to (i) above. In section 3, we show the conversion 
of our model to the star schema. In section 4, we 
illustrate its use with a real-life example of a 
conceptual schema. Section 5 contains a discussion 
and related work. We conclude the paper in section 6. 

2 THE CONCEPTUAL MODEL 

Our model assumes a separation between analysable 
data and parameters of analysis. This separation raises 
three questions 

• What concepts are needed to capture 
analysable data? 

• How should parameters of analysis be 
modelled? 

• What are the relationships between the two? 

We consider these in turn. 

2.1 Modelling Analysable Data 

We propose to introduce the notion of an Analysable 
Data Type, ADAT in our conceptual model. The 
typology of an ADAT is shown in Fig. 1 in UML 
notation. The object type ADAT has a property 
Nature that specifies whether the ADAT holds 
structured or unstructured data. Further, ADAT has 
attributes that contain analysable data. This is 
modelled in the figure by the relationship, Has 
attribute, between ADAT and Attribute object type. 
Attributes are described by Data_kind that defines 
whether the data is numeric or non-numeric. With 
Nature and Data_kind, it is possible for an ADAT to 
hold the following kinds of data:  
• Nature = structured and Data_Kind = numeric 
(integer, float) or non-numeric (char, varchar);  
• Nature = unstructured data and Data_Kind = 
non-numeric (such data may be free text, document 
etc.);  
Notice that the combination Nature = unstructured 
and Data_Kind = numeric is NOT PERMISSIBLE. 

There are six types of ADATs in Fig. 1, and each 
models a specific kind of analysis capability. We 
consider each in turn. 
1 An atomic ADAT cannot be decomposed into 
simpler ones. It has no components and cannot be 
decomposed any further. An example of an atomic 
ADAT is Sales with attribute, Amount that we 
represent as Sales(Amount). Sales is an atomic 
ADAT and has no component ADATs. Further, it is 
structured and numeric (Amount is a float). As an 
example of an unstructured atomic ADAT, consider 
Hotel_Feedback(Room_state) that has a non-numeric 
attribute, Room_state with a free text value like “the 
room was not well ventilated and had a musty smell”. 
2 An ADAT may be specialized into its sub types 
and participate in an IS-A hierarchy. These sub types 
are mutually disjoint. Specialized ADAT inherit 
from the generalized ADAT and may have their own 
attributes. For example, the ADAT, Sales having 
attribute, Amount, may be specialized into Credit 
Sales and Cash Sales respectively. Thus, Amount is 
inherited by both Credit Sales and Cash Sales. Due to 
the specialization being disjoint, Sales is either by 
credit or cash and is thus, a way of specifying the 
allowed analysis. Specialization can be extended to 
unstructured data as well. Consider obtaining 
feedback on hotel rooms from two different kinds of 
customers, business people and tourists. Feedback 
about business centre facilities is obtained from the 
former whereas the latter provide feedback on holiday 
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activities. Thus, the generalized ADAT, Feedback is 
specialized into two ADATs, Business_facilities and 
Holiday_activities, respectively. Again, either one 
may be used when analyzing the feedback. 
3 A complex ADAT “is composed of” two or 
more simpler ADATs and an ADAT may participate 
in zero or more than one complex ADAT.  The reason 
for “two or more” is that defining a complex ADAT 
with a single simpler ADAT gives no additional 
analysis capability. The simpler ADATs are called 
constituent ADATs. Each constituent ADAT has 
its own PAN for analysis. An example of a complex 
ADAT is Account_statement that consists of ADATs 
Credit(Amount) and Debit(Amount). An account 
holder can generate, for example, a daily account-
statement showing credit and debits of the day. The 
complex ADAT may have its own PANs. 

The difference between complex and 
generalized ADATs is that when analysing complex 
ADATs, we may use, one or more, possibly all 
component ADATs, but when analysing a 
generalized ADAT, we use only one of its specialized 
types.  
4 A derived ADAT “is computed from” its base 
ADATs. Each base goes into computing the derived 
ADAT and must be considered during analysis. An 
example with structured, numeric data is the ADAT, 
Purchase(Amount).Assume that part payment in 
Indian rupees and US dollars is allowed. Amount is 
in Indian rupees and is calculated by converting dollar 
payment into rupee payment and adding to it the part 
payment made in Indian rupees. That it, 
Purchase(Amount) is a derived ADAT consisting of 
two atomic ADATs, Indian_amount(Ramount) and 
US_dollar_amount(Damount). Since part payments 
can be made in both currencies, both bases must be 
considered during analysis. An example with 
unstructured data is the ADAT, Hotel_Feedback with 
bases, Room_state and Room_amenities respectively. 
The former has the value, “The size of the room is 
good. It is carpeted but the carpet needs repair.” The 
latter has the value, “Amenities were in good shape. 
We asked housekeeping for a hair dryer and it was 
delivered to us promptly.” Again, when analyzing, 
both bases must be considered to produce the derived 
result, for example, “good” if both are good otherwise 
“maybe”. 

Consider the difference between a derived and 
atomic ADAT. If we treat Indian_amount and 
US_dollar_amount as attributes of an atomic ADAT, 
then (a) it is not specified that both must be used in 
deriving the purchase amount and (b) the computed 
value is virtual; it is not materialized and is computed 
each time it is needed. Derived ADATs are different 

from complex ADATs as well. Let us model 
Purchase(Amount) as a complex ADAT consisting of 
ADATs Indian_rupee and US_dollar_amount. Now, 
we can materialize the purchase amount but there is 
still no constraint that both must be considered in the 
computation. The difference between derived and 
generalized ADATs is that when analysing the 
former, all base ADATs must be used whereas when 
analysing the latter only one of the specialized 
ADATs is relevant.  
5 A container ADAT is obtained through the 
relationship, ‘Has contents’ between ADATs. The 
cardinality of the relationship in Fig. 1  shows that 
there is only one ADAT object type in a container, 
but an ADAT may participate in zero or more 
Container ADATs. For example, ADAT Order 
contains only one ADAT, Order_line. We impose the 
constraint that a container instance must contain one 
or more (possibly duplicate) instances of the content 
ADAT. Consider an example each of containment in 
structured and unstructured analyzable data: 
a. The container ADAT, Order is defined for 
structured data and keeps a measure of the total value 
of the Order whereas the content ADAT, Order_line 
keeps the value of the line. Order is a container of 
Order_line; there should be at least one instance of 
Order_line in an Order. Order value is the sum of the 
values in order lines. Order has PANs, Date and 
Supplier and in addition, Order_line can be analyzed 
by Product_code. 
b. For unstructured analysable data, consider the 
document, Minutes of Meeting that contains a record 
of decisions taken by a committee on various agenda 
items as well as the date, place, and list of attendees of 
the meeting. The record of decisions is unstructured 
text and tells us the decision taken. We express the 
foregoing as a container ADAT, Minutes_of_Meeting 
with content ADAT, Agenda_record. Each instance of 
the former must contain at least one instance of the 
latter. 

The difference between a container and 
complex ADAT is that whereas the former contains 
only one ADAT as its contents and a container 
instance contains is at least one instance of the content 
ADAT, the latter has several ADATs as its 
constituents and an instance of the complex ADAT 
contains zero or one instance of each constituent 
ADAT.  
6 An aggregate ADAT is built by performing a 
roll-up OLAP operation on an ADAT and a subset of 
parameters of analysis associated with it. As an 
example, consider the ADAT Sales analysed by Shop, 
Day, Product. We can perform detailed analysis by 
determining sales for each day, shop and product. 
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However, we do a roll-up by computing All Sales taken 
over the parameter, Product. The result is an aggregate 
ADAT, ALL_Product_Sales that tells us the sales of 
all products on all days and all shops.  

Fig. 1 shows a recursive relationship among 
ADATs called, “is dependent on”. This says that 
analysis of a dependent ADAT can only be done if its 
dependee ADAT exists. As an example, consider 
Order and Delivery. Analysis of delivery requires that 
there be an order i.e., Delivery is dependent on Order. 
One can ask questions like, “which orders have been 
delivered beyond their delivery date?” As shown in 
Fig. 1, a dependee ADAT has one or more dependent 
ADATs and an ADAT may have zero or more 
dependee ADATs. The roles, dependee and 
dependent are marked in Fig. 1. 

Now we can consider how Nature of an ADAT 
and Data_Kind of Attribute varies with the different 
types of ADATs. Recall that if the Nature of an 
ADAT is structured then the data kind of tis attributes 
can be numeric or non-numeric. However, if its 
Nature is unstructured then the data kind of its 
attributes must be unstructured. Consider Derived 
ADATs. Since base ADATs are used for computing 
a derived ADAT, all base ADATs as well as the 
derived ADAT must be of the same Nature. Similarly, 
specialized-generalized ADATs have the same 
Nature. Again, a container ADAT has the same 
Nature as its content. However, a complex ADAT 
may have constituents that are of varying Nature.  

If any constituent is unstructured then the 
complex ADAT is unstructured else if any constituent 
is structured, non-numeric then complex ADAT is 
structured, non-numeric else it is structured numeric. 

Fig. 1 shows that the type, History has two 
attributes, period and frequency. This allows the 

modeler to specify the number of years and frequency 
of history of an ADAT needed for analysis. The 
“History of” relationship allows history to be 
optionally maintained for an ADAT as shown by the 
0..* cardinality but, in the reverse direction, History 
must be associated with at least one ADAT. As an 
example of the use of history, let there be an ADAT, 
Purchase. We may want to keep a history of monthly 
purchases for a period of five years as well as quarterly 
history for five years. Thus, we have the ADAT, 
Purchase in a “history of” relationship with H1 and H2; 
H1 has the attribute Period=5 years and Frequency = 
Month whereas H2 has Period = 5 years and Frequency 
= Quarter.  In the reverse direction, an instance of 
History may be associated with one or more ADATs. 
Thus, we may want to keep history of both monthly 
purchases and monthly sales for 5 years. Clearly, H1 
has two ADATs associated with it. 

2.2 Modelling Analysis Parameters 

A PAN, Parameter of ANalysis, of Fig. 2 refers to a 
type of parameter. The object type PAN has attributes 
as seen by the “is property of” relationship between 
PAN and PAN_Attribute types. The cardinality 
shows that each PAN should have at least one 
PAN_Attribute type that is described by Change 
Type. This identifies the action to be taken when the 
value of the attribute changes. Change Type takes on 
values from {update, no_update}. The first value, 
update, says that a change in the value of the 
PAN_attribute is treated as an update and the original 
value is over-written. The second value, no-update, 
says that update is not allowed. Instead, the change is 
treated as the creation of a new instance of PAN such 
that its PAN_attribute has the new value. The 
previous PAN instance is not deleted. 

 
Figure 1: Analyzable Data Type, ADAT. 
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Now, Fig. 2 shows that there are the following 
four types of PANs: 
1. An atomic PAN cannot be decomposed into 
simpler ones. For example, Product is an atomic PAN 
having Attribute, colour whose Change Type = 
update. 
2. A complex PAN shows a “is composed of” 
relationship between PANs. Fig. 2 shows that a PAN 
may participate in zero or more complex PANs and 
that a complex PAN is built over two or more simpler 
PANs. For example, the complex PAN, Product is 
built over simpler PANs, Product_specification and 
Product_description. 
3. Fig. 2 shows that a container PAN is built over 
exactly one content type of PAN. We impose the 
constraint that an instance of the container PAN 
must have one or more distinct instances of its 
content PAN; distinct because replication does not 
enhance analysis. A container PAN is like a container 
ADAT except that it contains only distinct instances 
of its content PAN whereas duplicate instances are 
allowed for ADATs. Consider a group of companies 
that consists of subsidiary companies. There are two 
ways in which any purchase can be analysed, by 
individual subsidiaries or by the group.  If a 
subsidiary makes a purchase then the purchase is 
analysed by the subsidiary but possibly also by the 
group company. Similarly, the group may make 
purchases for allocation to its subsidiaries.  Again, 
analysis may be made by the group company and 
perhaps, by the subsidiary. The specification of  
whether analysis is by the group company or 
subsidiary or both is considered in section 2.3. 
4. A specialized PAN inherits from the generalized 
PAN and has its own attributes. Specialization splits 
the generalized PAN into disjoint partitions. This 
allows analysis by any of the specialized PANs. For 
example, the PAN, Product is specialized into disjoint 
partitions, Perishable Product and Non-perishable 
Product. 

2.3 The “Is-Analysed-by Relationship 

The “is analyzed by” relationship of Fig. 3 associates 
attributes of ADATs with PANs. In effect, this 
relationship says that ADATs can be analysed by 
PANs. The cardinality of this relationship shows that 
(a) an ADAT may be analyzed by one or more PANs 
and (b) a PAN may have one or more ADATs which 
it analyzes. Whereas, the relationship makes it 
possible to identify the PANs of an atomic ADAT, 
this determination requires careful consideration for 
the other five kinds of ADAT.  This is because of 
“interfering” PANs that arise due to the structures of 
these ADATs. Determination of PANs for ADATs is 
done by rules as follows: 
• An atomic ADAT has its own PANs as 
parameters. 
• The derived ADAT and its bases have the 
same PANs. For example, the derived ADAT, 
Purchase as well as its bases, Indian_rupee_purchase 
and US-dollar_purchase have the same PANs, 
namely, Product, and Vendor.  
• A complex ADAT and its constituent ADATs 
may have PANs that are common but, additionally, 
both may have their own specific PANs.  
• Generalized ADATs have their own PANs. 
Specialized ADATs inherit the PANs of their 
generalized ADAT and, additionally, have their own 
PANs. Consider Sales_amount specialized into 
Cash_sales and Credit_sales. Let Sales_amount have 
PANs, Product, Customer, and Date. These are 
inherited by both, Cash_sales and Credit_sales. 
Additionally, Cash_sales has its own PAN, Currency 
and Denomination in which sales were made whereas 
Credit_sales has the PANs, Credit_card type, 
Cardholder’s_name. Thus, applying our rule, 
Cash_sales has parameters Product, Customer,  
Date, Currency, and  Denomination whereas 
 

 
Figure 2: Parameter of Analysis, PAN. 
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Credit_sales has Product, Customer, Date, 
Credit_card_type, and Cardholder’s_name. 
• Container and content ADATs have their own 

PANs. Consider the Container ADAT, Order and 
its Content, Order_line. Order is associated with 
PANs, Supplier, Order_date, Delivery_terms. 
Order_line has PAN, Product. 

• An aggregate ADAT has PANs that are a subset 
of the PANs of the ADAT from which they have 
been aggregated. The PANs that did not participate 
in the aggregation are the PANs of the aggregate. 

The attributes of “Is analyzed by” makes precise the 
semantics of analysis. As shown in Fig 3, there are 
three analysis properties, Additivity, Cardinality and 
Applicability. Applicability specifies whether 
constituents of a complex PAN or content PANs of a 
container PAN can be used to analyse the ADAT 
associated with the complex or container PAN 
respectively. Applicability is specified in the 
complex/container PAN, and it is possible for analysis 
to be done by constituent/content PAN when 
 

 
Figure 3: Relating ADATs and PAN. 

Applicability=True. Consider the container PAN, 
Group of Companies and its content, Subsidiary 
Companies. Let material be purchased for the entire 
group. Therefore, analysis of purchases is for Group 
Companies. However, subsidiary companies are 
permitted to analyse the purchases made as well. Thus 
Applicability = True. Now, consider that the group, 
GC makes purchases for the group. All analysis is 
done by Group Companies and purchases are not 
analysable by Subsidiary Companies. Now, 
Applicability=False. 

The attribute, Additivity is Boolean valued. 
Consequently, it is possible to specify that an attribute 
of an ADAT is additive/non-additive along a PAN or 
not. Evidently, when an attribute is non-numeric then 
analysis is non-additive along all PANs and, by 
default, Additivity = False for all. On the other hand, 
when it is numeric then additivity must be specified. 
For example, consider the attribute, 
Available_balance of ADAT, Account. Let Account 

have two PANs, Customer and Month as its 
parameters. We can compute the total 
Available_balance in all accounts of a Customer. 
Thus, Additivity=True for the Available_balance – 
Customer relationship. However, when analysis is 
done on Month then Additivity=False because we 
cannot sum the previous end-of-month balances to 
obtain the available balance in the current month.  

The remaining analysis property of Fig. 3 is 
Cardinality. It is used for specifying the cardinality 
of an instance of the “is analyzed by” relationship. 
We adopt the conventions of UML notation here. 
Consider that Sales_amount of ADAT Sales is 
analyzed by Salesperson. It is possible that a sale is 
done directly, without involvement of any 
salesperson, it is done by a single salesperson, or it is 
done jointly by several salespersons. In the reverse 
direction it is possible that a salesperson does zero or 
more sales. Thus, the cardinality of the relationship is 
0..* :  0..*.  

Analysis by container and content PANs is 
constrained by two rules, 
a. An attribute of an ADAT analysable by a content 
PAN can be rolled up using the container PAN and 
then drilled down to the content PAN. For example, 
let there be an attribute, Amount of ADAT, Sales, Let 
its PAN be Day. The container PAN, Week contains 
Day. We can roll-up Amount to get Monthly_sales. 
Vice versa, the latter can be drilled down to get 
Amount of sales on a day. 
b. An attribute of an ADAT can be associated with a 

container/complex PAN.  Analysis by these is 
allowed if Applicability=True. 

2.4 Is Obtained from 

This relationship, see Fig. 3, says that a PAN can be 
obtained from zero or one ADAT whereas an ADAT 
may contribute to zero or more PANs. As an example, 
consider determining the discounts price offered to 
customers whose annual purchase is more than 
100,000 Indian rupees. Sale amount and discount 
information is available in the ADAT, Sales. We 
define an atomic PAN, Annual_sales and obtain its 
value by deriving it from Sales, (a) create an 
aggregate ADAT, Yearly_sales and (b) introduce it as 
the attribute of Annual_sales. Similarly, one can use 
Containers, e.g., to analyze the behaviour of 
customers holding combined balance in all accounts 
above a certain threshold. Again, 
Total_customer_balance is obtained from the ADAT 
and introduced in a PAN. 

NOTATION: The notation used for representing 
the schema is UML based, i.e., UML object notation 
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for ADATs, PANs as well as their attributes; UML 
aggregate notation for complex ADAT/PAN; (c) 
UML arrow for specialized ADAT/PAN. However, 
for derived ADAT, we introduce UML arrow head 
containing the letter D at the derived ADAT end, and 
arrow head containing the letter C at the container end 
for containment of ADAT/PAN. This notation is used 
in the example schema of Fig. 4 in section 4. 

3 GETTING THE STAR SCHEMA 

The logical data model of a data warehouse can either 
be a star or snowflake schema. However, the star 
schema is the preferred one except in certain specific 
situations (Ada 2010, Kim 1999). Therefore, we 
present our approach for converting our conceptual 
schema to the star schema. Our tool takes an 
expression of the conceptual schema as a CSV file 
and produces the DDL script for the star schema in 
the relational model.  

In this section, we show the procedures for 
handling the different types of PANs and ADATs and 
inter-relationships between then during conversion.  

3.1 Converting Atomic PANs to 
Relations 

Consider an Atomic PAN. The procedure is given in 
Table 3.1, which inputs one Atomic PAN, P and 
outputs one relation, R. Step 1 of the procedure thus, 
creates a relation R for atomic PAN P. Now, from the 
PAN meta-model, each PAN can have 1..* Attributes. 
When moving to the relational model, every Attribute 
of P is added as a column to R (step 1.a.i). The domain 
of the column can be appropriately chosen. Next is 
Change Type for each Attribute which is either 
{update, no_update}. In the case of the latter, we add 
another column, Ai_Timestamp, a timestamp 
column, to mark the time of update of Ai(step 1.a.ii). 
In the case of the former, no schema change has to be 
made since an update on the data is desired.  

The ‘is composed of’ between attributes, attribute 
Ai is composed of Aj, is mapped in step 1.b  by the 
function PANAttribute_Attribute.  A new relation, 
PANAttribute, is created to store this hierarchy and 
each ‘is composed of’ instance is stored as a tuple in 
this relation. 

Lastly, for every relation R, we add one surrogate 
key (step 1.d).  

 
 
 
 

Table 3.1: Procedure to convert Atomic PAN. 

Input: Atomic PAN, P
Output: Relation, R
step 1:  create a relation R for P 
a. for every Attribute, Ai, of P 

i. addColumn (Ai)
ii. if (change_type == no_update)  

                 addColumn (Ai_Timestamp) 
            end if
       end for
b. create a relation PANAttribute_Attribute 
c. fn: PANAttribute_Attribute (Ai) 

for every Ai “is composed of” Aj 
i. insert_tuple_PANAttribute_Attribute(Ai, 

Aj) 
ii. if Aj ‘is composed of’ Ak 

   PANAttribute_Attribute(Aj) 
        end for
d. createAddSurrogateKey (R) as Primary Key

3.2 Converting Specialized PANs to 
Relations 

A specialization gives rise to a tree and it is therefore 
important to examine which node of the tree is in a 
“is analyzed by” relationship with the ADAT. Based 
on this, three cases arise: 
Case 1. The root node of the PAN specialization 
tree is connected to the ADAT.  
Case 2. Any intermediate PAN node is in a 
relationship with the ADAT.  
Case 3. ALL the PAN nodes in the tree are in their 
own separate relationship “is analyzed by” with the 
ADAT. 
 

We will consider each in turn.  
Case 1: Not only the root PAN, but all PANs in the 
hierarchy are analysis parameters for the ADAT “Is 
analysed by” the root. This implies that there is a 
single relation in which each node is represented, or, 
in other words, the tree is flattened. Table 3.2 (a) 
shows the procedure for the conversion. 

The root PAN is converted to a relation, R (step 
1). For every child, ci of a parent PAN, the attributes 
are added as columns of R (step 2.b.i.1). Change type 
of every attribute is processed as before (step 2.b.i.2). 
Also, if a child PAN does not have any specialized 
attribute, then a Boolean attribute is added to record 
the presence of the PAN in the tree (step 2.a). Finally 
for every child PAN, a surrogate key is created and 
added to R (step 2.c). 

Notice, a denormalized table is created. Notice 
also that in the PAN model, it may often be the case 
that only one subtree may have nodes. Therefore, 
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when translated, we may end up with NULLs in our 
relation R. Another design choice would be to keep 
the specialization tree as it is and create a separate 
relation for each PAN giving us R1,R2,,,Rn. In other 
words, create a denormalized schema but we reject 
this because it leads to a snowflake and not a star 
schema. 

Table 3.2 (a): Procedure to convert Specialized PAN.  

Input: Specialized PAN tree, T 
Output: Case1 & 2: Single Relation; Case3: Set 
of Relations 
Case 1 
fn: createSpecializedLevelCase1 (node) 
step 1:  if (node == root) 
follow step 1 of Atomic PAN and create a relation, 
R, for root PAN 
step 2:  for every child PAN, ci, of node
a. if (ci does not have any specialized attributes)

           alter R to add a Boolean column for ci
b. else 

i. for every attribute, ai, of ci 
1. alter R to add text column, ai, for ci
2. if (change_type == no_update) 

                        addColumn (Ai_Timestamp)
                     end if 
c. alter R to add surrogate key of ci   
d. if (the sub tree of ci is not empty) 

             createSpecializedLevelCase1 (ci)
 end for 

 

Case 2: Since an intermediate PAN node analyses the 
ADAT, all PANs in the sub-tree rooted in it as well 
its parent, grandparent etc. till the root of the tree, are 
analysis parameters as well. The pseudocode for 
conversion to star schema is shown in Table 3.2(b).  

The intermediate PAN, input, is converted to a 
relation, R (step 1). Again, for this, step 1 of the 
procedure of Atomic PAN is used. The attributes of 
the parent node are added to R (step 2). Change type 
for each attribute is captured (step 2.a.ii). A surrogate 
key is created for each node in the parent hierarchy 
and added to R (step 2.b). The process of adding the 
subtree attributes to R is the same as Case1. Notice, 
as before, change_type for each attribute as well as 
the surrogate key for each child is added to R as well 
(step 3.c). 
Case 3: Here every PAN analyses an ADAT 
separately, it can be treated as an atomic one, entering 
into its own ‘is-analysed-by’ relationship. Therefore, 
we create a new relation for every PAN in the tree 
following the procedure of Table 3.1. PAN attributes 
are the UNION of inherited as well as its own 

attributes. After conversion, we get as many star-
schemas as the number of nodes in the specialization 
tree. 

Table 3.2(b): Specialized PAN conversion Case 2. 

Case 2: ADAT - is analysed by intermediate PANs 
fn: createSpecializedLevelCase2 (input) 
step 1:  follow step 1 of Atomic PAN and create a 

relation R for input PAN 
step 2: for every parent PAN, pi, of input PAN
a. for every attribute, ai, of pi 

i. alter R to add ai as a text column for ci 
ii. if (change_type == no_update) then 

                addColumn (ai_Timestamp, R) 
              end if 
         end for 
end for  

b. alter R to add surrogate key of pi   
c. createForChild(input)

fn: createForChild (input) 
step 3: for every child PAN, ci, of input PAN
a. if (ci does not have any specialized attributes)

alter R to add a Boolean column for ci 
b. else 

i. for every attribute, ai, of ci  
      alter R to add text column, ai, for ci 
      if (change_type == no_update) then 
         addColumn (ai_Timestamp. R) 

c. alter R to add surrogate key of ci   
d. if (the sub tree of ci is not empty) 
            createForChild (ci)

end for 

3.3 Converting Other Kinds of  
Multi-Level PANs 

Container and complex PANs also result in PAN 
hierarchies. Consider container PANs. The surrogate 
key is created for the container/content PAN 
connected to an ADAT via the “is analysed by” 
relationship. The procedure of Table 3.2(b) needs 
only to be altered. The procedure is called with the 
container/content PAN connected to an ADAT. Steps 
1 and 2 remain the same for creating the relation R. 
The word ‘parent’, in step 2, is changed to 
‘container’. However, we modify the createForChild 
function to accommodate setApplicability property, 
see Table 3.3. 

Now, consider a complex PAN. We create a 
relation, R, for the complex PAN using the procedure 
in Table 3.1. Its constituent PAN/s is/are included in 
R as attributes.   

PAN hierarchies can be a mix of various types of 
PANs as well. For a structure with a mixed set of 
PANs, we follow the procedures as given in the 
Tables 3.1 to 3.3. If a relation with the same name 
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Table 3.3: Modified createForChild. 

fn: createForChild (input) 
step 3:  for every content PAN, ci, of input 
a. for every attribute, ai, of ci 

alter R to add text column, ai, for ci 
      if (change_type == no_update) then 
          addColumn (ai_Timestamp. R)

b. setApplicability(value) 
c. alter R to add surrogate key of ci   
d. if (the sub tree of ci is not empty) 

             createForChild (ci) 
end for 

 

already exists then, (a) merge the relations, (b) the 
columns of the merged relation are the union of the 
merged relations. 

3.4 Converting Atomic ADAT to 
Relations 

Having finished with PANs, we consider procedures 
for converting atomic ADATs into relations. The 
procedure shown in Table 3.4 takes an ADAT D as 
input, creates a relation R for it and includes attributes 
of D as attributes of R. The function detDataType 
takes Data Kind and Nature as arguments and gives 
data types of relational attributes (step 1.a). The 
function, addAdatKey() creates a unique key for R 
(step 1.b). This is equivalent to the FACT key. The 
surrogate key for every PAN in an ‘is-Analyzed-by’ 
to the ADAT, D is added in R as a column (step 1.c.i). 
The Additivity property is recorded using the function 
determineAdditive (step 1.c.ii). If the cardinality is 
zero, then a special surrogate key is created (step 
1.c.iii). This key is inserted into R with other columns 
having NULLs or default values. Lastly, the ‘is-
obtained-by’ relationship is converted as shown in 
step 1.d. Completion of the Entire Procedure Gives 
us a Complete Star Schema. 

3.5 Converting Specialized ADATs to 
Relations 

Since ADATs may be analysed by different PANs in 
a tree, we create a relation for each ADAT node using 
the procedure in Table 3.5. The attributes of the child 
node are the UNION of the inherited attributes as well 
as its own specialized attributes. Notice, we get as 
many star scheme as the number of nodes in the tree. 
However, in order not to lose the semantics of the tree 
structure, we modify the procedure of Table 3.5 to 
add step 2, as given below: 
Step2: create table if not exists specializedADAT 
(ParentADAT text, childADAT text) 

Step 2.1: insert tuple into specializedADAT 

Table 3.4: Procedure to convert Atomic ADAT. 

Input: Atomic ADAT, D 
Output: Single Relation R 

step 1: create a relation R 
a. for every Attribute, Ai 
     addColumn(Ai,detDataType(DataKind,Nature) 

        end for 
b. addAdatKey() as primary key 
c. for every is-Analyzed-by relationship 

i. addColumnSurrogateKey(PAN_SK)
ii. determineAdditive (ADAT, 

ADAT_Attribute, PAN, additive) 
iii. if (cardinality.Contains(0))  

                     createAndInsert 
newPANSurrogateKey = Default value into the PAN 
      end for 
d. for every is-Obtained-by relationship 
        addColumnAdatKey() 

     end for 
fn: determineAdditive (ADAT, ADAT_Attribute, 
PAN, additive) 
step i:  create a relation if not exists is_Additive 
with columns ADAT_name, ADAT_Attribute, 
PAN, is_Additive)
step ii:  if (Data_Kind = = non-numeric) then 
       insert into is_Additive the values with 
is_Additive = “false” 
else 
         insert into is_Additive the values with 
is_Additive = “true”

3.6 Converting Other Multi-Level 
ADATs 

For a containment, the container and content have 
their own separate PANs or may have exactly the 
same PANs. In either case, we create separate 
relations for every ADAT. To capture the relationship 
between container and content, for the former case, a 
separate relation is created while for the latter case, 
the container surrogate key is added to the content 
PAN.  
Let us consider the case of Derived ADATs. All the 
PANs associated are the same through-out the 
hierarchy. We create separate relations, one for the 
root derived ADAT, and one for each “Derived” 
symbol, which is point of merge of several base 
ADATs.  The latter is done because the base nodes 
are used in the calculation of the derived node. The 
procedure is shown in Table 3.5. 
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Table 3.5: Procedure to convert Derived ADAT. 

Input: Derived multi-level ADAT 
Output: Set of Relations 
step 1:  follow step 1 of Atomic ADAT and 

create a relation R for root ADAT 
step 2:  for every symbol   D 
a. create a relation name derived-base i-(n)
b. for every base ADAT, bi 

       for every attribute, ai, of bi 
      add column to derived-base i-(n)

              end for 
              addAdatKey() as composite primary key 
c. alter R: add composite AdatKey as foreign 

key   
      end for  

For complex ADAT, the complex and the constituent 
have at-least the same PANs and in addition may have 
other PANs. Therefore,  

• if no additional PANs are associated, then the 
same procedure as Table 3.5 is used. The only 
change is in step 2 where the symbol changes to 
the complex symbol of the letter c contained in a 
triangle.  

• if additional PANs are associated at any level, 
then separate relations are created and the 
semantics of the relationship is captured in a 
separate relation as in the case of specialization.  

Finally in the case of a mixed structure, we apply a 
priority to every type of ADAT, which is:  
1. Containment, Specialization, Derivation type are 

at the same priority. 
2. Complex type is given a higher priority.   
The lowest priority is zero. We start at the bottom and 
scan the mixed structure for Containment, 
Specialization, Derivation type of ADATs and assign 
them a priority of 0. The first set of Complex type 
from the bottom is given priority of 1. The next set of 
Containment, Specialization, Derivation type of 
ADATs, going up in the hierarchy, is assigned a 
priority of 2. The complex type thereafter gets a 
priority of 3. This continues till the root of the mixed 
structure.  

After assigning priorities, we convert the specific 
ADAT types into relations using their specific 
procedures. We start the iteration with priority of 
zero. ADAT types at the same priority can be picked 
at random for conversion based on domain 
knowledge. If any two relations with the same name 
exists, then we rename one of them. We avoid 
merging as the associated PANs may be different.  

4 EXAMPLE 

A film company releases movies internationally, 
across different countries. It produces, distributes, and 
markets its films. The company is also interested in 
the revenue generated from cinema-goers on sale of 
tickets. The contract may also be signed with a chain 
of cinema halls for screening the film in all its halls. 
If cinema halls are independent, then the contract is 
signed with these independent entities. A data 
warehouse for analysing these is to be conceptualized. 
The full schema consists of four parts, Production, 
Distribution, Marketing, and Revenue. For reasons of 
space, we show Production and Distribution only, see 
Fig. 4. We represent expenditure of crew member as 
the ADAT, crewCost. crewCost is a derived ADAT of 
two ADATs, namely, transportCost and 
professionalFees; crewCost “is analyzed by” atomic 
PANs movie, and date. The PAN, crew is specialized 
into atomic PANs, actor, director, technicalStaff. In 
Fig. 4, additivity and cardinality are not shown to 
avoid graphical clutter.The cardinality for movie : 
crewCost ::  1..1 : 1..*; for date: crewCost::  1..1 : 0..*; 
for crew:crewCost :: 1..1: 1..*.  
Fig. 4 also shows the schema for distribution. Contract 
is represented as a complex ADAT with three 
component ADATs, paymentTerms, 
paymentSchedule, and termsAndConditions. ADAT 
paymentTerms is a container of the atomic ADAT, 
paymentTermLine. Similarly, paymentSchedule is a 
container of the atomic ADAT, 
paymentScheduleLine. ADAT termsAndConditions is 
a container of terms and condition clauses, i.e., of the 
atomic ADAT, TandCClauses. As shown, these are 
unstructured. Contract is analyzed by the atomic 
PANs movie, and cinemaHall. PAN cinemaHall is 
contained in the container PAN, cinemaChain. For 
uniformity, we have assumed hotel chains, each with 
a single cinema hall for individual cinema halls also. 
cinemaChain has Applicability=True and contracts 
can be analyzed by cinemaHall. For both movie-
contract and cinemaHall-contract, Additivity = False 
and cardinality for movie:contract::1..1:1..*; for 
cinemaHall: contract::  1..1 : 1..1. As before, these are 
not shown in the figure. We show the conversion of 
crewCost in Fig. 5. Procedures discussed in section 3 
were applied. Movie and Date are Atomic PANs. 
Since there was no ‘is-composed-of’ between PAN 
attributes, no tuple is inserted into the 
PANAttribute_Attribute relation. Crew is a 
specialized Case I type of PAN and therefore, all the 
attributes of director, actor and technicalStaff are 
added to the relation crew.  
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Figure 4: Instantiation of the model showing crewCost and Contract. 

 
Figure 5: (a) DDL script for PANs movie, date and crew. 

crewCost is the root derived ADAT and so a relation 
is created with ‘cost’ and surrogate keys of movie, 
date and crew. For Additivity, a tuple is inserted for 
each ‘cost’-PAN-true/false pair in the relation is-
Additive. A relation TC PF CC is created for the 
“Derived Symbol”, with the attributes of transport 
cost, professional fees and a composite key.  

 
Figure 5: (b) DDL script for crewCost schema. 

Contract is a ‘mixed’ multi-level ADAT structure.  
The three container ADATs get a priority of 0 and 

Contract a priority of 1. Out of 0s, paymentTerms is 
selected first and the container/content procedure is 
applied. Notice, that there is no specific ‘is-analyzed-
by’ associated with this ADAT and so no PAN 
surrogate keys are added to the relation. At the next 
level, Contract is converted as shown in Fig 6. 

 
 

 
Figure 6: DDL script for Contract schema. 

5 DISCUSSON 

Whereas traditional conceptual modelling is used to 
represent system functionality of information and 
software systems, its use in DW is to represent the 
analysis capability to be supported. There are two 
distinct concepts, ADATs and PANs for the latter, 
whereas in information/software systems there is only 
one concept, object type. In both types of conceptual 
modelling, we have some common features like 
association, dependency, and specialisation but in the 
DW context their interpretation is done to specify 
how data can be analysed. It is not merely for 
capturing data and its inter-relationships as in 
information/software. 
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Much attention was given in DW on BI tool 
operability and meta-models. like the Common 
Warehouse Model, CWM (OMG 2003), that abstract 
out common features of logical models of BI tools 
were developed. These meta-models only considered 
structured data. Several proposals that use object 
modelling concepts for their meta-models (Li 2005, 
Tru 2000) were also made. The basic idea was to 
represent facts and dimension as object classes. In 
(Tru 2000), the fact/dimension relationship is treated 
as a UML aggregation.  Li and An (Li 2005) do XML 
Schema conversion into UML and propose an 
integration tool for formulating OLAP queries.  
While allowing tool interoperability the attempt, in 
the foregoing, was not to model the required analysis 
capability. Consequently, the use of concepts like is-
part-of, containment, and ISA relationships for 
analysis are not available there. While CWM allowed 
time stamping of data, specifying periodicity and 
duration is not possible. However, change properties 
can be specified in CWM. 

In (Ban 2021), we have an abstract model for 
NoSQL databases to facilitate representing data 
warehouse logical model in such data stores. Again, 
this is a common meta-model for converting to 
specific NoSQL data stores and the model does not 
express analysis needs. 

In recent years we have seen emergence of multi 
model data warehouses (Bim 2022). Since we 
conceptualize different kinds of data, our model 
provides an abstraction using which multi model data 
warehouses can be built. 

6 CONCLUSIONS 

We have developed a conceptual model for analysis 
tasks for analysing structured and unstructured 
ADATs. Inter-ADAT relationships specify related 
analysis data; inter-PAN relationships specify the 
structure of analysis parameters, and ADAT-PAN 
relationships model what can be analysed by what 
parameter.  We have presented rules for conversion to 
the star schema. In future, we shall develop rules for 
converting to column-oriented relational databases. 
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