
A Conceptual Model for Data Warehousing

Deepika Prakash1 a and Naveen Prakash2 b
1Institute of Engineering and Technology, Department of Computer Engineering,

JK Lakshmipat University, Jaipur 302026, India
2ICLC, 21/3 S, Bhagat Singh Marg, New Delhi 110001, India

Keywords: Analysable Data Type, Type of Analysis Parameter, Historical Analysis Data, Change Type, Conversion,
Star Schema.

Abstract: We show that current approaches for data warehouse conceptual modelling are inadequate for capturing the
range of analysis capabilities of the enterprise. In addressing this, our conceptual model retains the basic
distinction between the analysis data and analysis parameters but additionally introduces intra analysis-data
and intra analysis-parameters relationships besides relationships between analysis data and analysis
parameter. A variety of constraints for enforcing analysis semantics are also defined. We convert the
conceptual model to star schema and show procedures to do so. We illustrate the use of our model through an
example.

1 INTRODUCTION

A data warehouse, DW conceptual schema models
the information contents of the DW to-be and acts as
a specification of its logical data model. There are two
questions (a) what is the set of concepts that comprise
the meta-model and (b) how can a conceptual schema
be converted into the target logical model of data.
One approach has been to adopt (Gol 1998) the Entity
Relationship, ER model. The ER schema is converted
into the Multi-Dimensional, MD, model using the
semi-automatic process presented in (Gol 1998). The
chief difficulty (Boe 1999) with this approach lies in
deciding where to start in the conceptual schema. Due
to this and also since there was no accepted
conceptual model for a DW, (Boe 1999) used the
logical data model comprising facts, dimensions,
dimension hierarchy and integrity constraints, as
their conceptual model. The logical model was
subsequently treated as a conceptual model by several
researchers. In (Cor 2012), dimensions, transactional
facts, periodic and evolving snapshots were
modelled. In (Gio 2008), transactional facts,
dimensions and dimension hierarchies could be
expressed. In (Maz 2007), transactional facts,
dimensions, dimension hierarchies, degenerate facts,

a https://orcid.org/0000-0001-8404-3128
b https://orcid.org/0000-0003-1644-5613

and degenerate dimensions were adopted.
MultiDimER (Mal 2006) consists of facts,
dimensions, levels, and dimension hierarchies of
various types. A version of this model, MultiDim is
used in (Vai 2022). The conceptual model in (Pra
2018) in addition to facts and dimensions, that they
referred to as data and category objects respectively,
allowed specification of category hierarchies, history
of data objects, and change properties of category
objects.

The major difficulty with using the logical model
is that it is (Kim 1996) specifically structured to
support querying and not towards capturing the
analysis to be carried out. To fill this gap, we
propose a model for capturing the analysis capability
to be supported by the DW. This has two aspects, (i)
semantics of data to be analysed or analysis data, and
(ii) semantics of parameters of analysis. Regarding (i)
we consider five issues as follows:
a. Handling un-structured analysis data. All

conceptual models considered above assume
structured, numeric, additive data, though semi-
additive data is allowed for example in (Cor
2012, Vai 2022). However, analysis of
unstructured data (Fac 2022, Pan 2022) has now
attained importance and must be supported.

Prakash, D. and Prakash, N.
A Conceptual Model for Data Warehousing.
DOI: 10.5220/0012621200003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 87-98
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

87

b. Specifying relationships among analysis data.
As we will see, these identify the data that must
be analysed together and which must be
analysed separately. These two differing
situations need explicit modelling to capture the
correct analysis.

c. Modelling complex analysis data that shows the
“is-part-of” relationship with its constituent
data.

d. Specifying containment of analysis data, for
example, to model that an Order_Value contains
one or more Order_line_amount.

e. Defining history property of analysis data, i.e,
specifying the duration for which historical data
is to be maintained and its frequency.

There are three issues around (ii) as follows.
f. Specifying specialized analysis parameters

for specific analysis of analysis data. For
example, the parameter, Product may be
specialized into perishable and non-perishable
product respectively thereby allowing separate
analysis of sales data, by perishable and non-
perishable products respectively.

g. Modelling complex analysis parameters to
bring out the “is part of” relationship between
parameters.

h. Modelling containment in parameters to allow
analysis by the container or its contents
respectively. For example, a customer may hold
multiple fixed deposits with a bank. That is, the
customer_id is a container and the several
FD_account_numbers are its contents. Analysis
may be carried out by customer or by individual
fixed deposits.

i. Modelling change properties of parameters
The layout of the paper is as follows. In section 2, we
present the conceptual model including the features
(a) to (i) above. In section 3, we show the conversion
of our model to the star schema. In section 4, we
illustrate its use with a real-life example of a
conceptual schema. Section 5 contains a discussion
and related work. We conclude the paper in section 6.

2 THE CONCEPTUAL MODEL

Our model assumes a separation between analysable
data and parameters of analysis. This separation raises
three questions

• What concepts are needed to capture
analysable data?

• How should parameters of analysis be
modelled?

• What are the relationships between the two?

We consider these in turn.

2.1 Modelling Analysable Data

We propose to introduce the notion of an Analysable
Data Type, ADAT in our conceptual model. The
typology of an ADAT is shown in Fig. 1 in UML
notation. The object type ADAT has a property
Nature that specifies whether the ADAT holds
structured or unstructured data. Further, ADAT has
attributes that contain analysable data. This is
modelled in the figure by the relationship, Has
attribute, between ADAT and Attribute object type.
Attributes are described by Data_kind that defines
whether the data is numeric or non-numeric. With
Nature and Data_kind, it is possible for an ADAT to
hold the following kinds of data:
• Nature = structured and Data_Kind = numeric
(integer, float) or non-numeric (char, varchar);
• Nature = unstructured data and Data_Kind =
non-numeric (such data may be free text, document
etc.);
Notice that the combination Nature = unstructured
and Data_Kind = numeric is NOT PERMISSIBLE.

There are six types of ADATs in Fig. 1, and each
models a specific kind of analysis capability. We
consider each in turn.
1 An atomic ADAT cannot be decomposed into
simpler ones. It has no components and cannot be
decomposed any further. An example of an atomic
ADAT is Sales with attribute, Amount that we
represent as Sales(Amount). Sales is an atomic
ADAT and has no component ADATs. Further, it is
structured and numeric (Amount is a float). As an
example of an unstructured atomic ADAT, consider
Hotel_Feedback(Room_state) that has a non-numeric
attribute, Room_state with a free text value like “the
room was not well ventilated and had a musty smell”.
2 An ADAT may be specialized into its sub types
and participate in an IS-A hierarchy. These sub types
are mutually disjoint. Specialized ADAT inherit
from the generalized ADAT and may have their own
attributes. For example, the ADAT, Sales having
attribute, Amount, may be specialized into Credit
Sales and Cash Sales respectively. Thus, Amount is
inherited by both Credit Sales and Cash Sales. Due to
the specialization being disjoint, Sales is either by
credit or cash and is thus, a way of specifying the
allowed analysis. Specialization can be extended to
unstructured data as well. Consider obtaining
feedback on hotel rooms from two different kinds of
customers, business people and tourists. Feedback
about business centre facilities is obtained from the
former whereas the latter provide feedback on holiday

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

88

activities. Thus, the generalized ADAT, Feedback is
specialized into two ADATs, Business_facilities and
Holiday_activities, respectively. Again, either one
may be used when analyzing the feedback.
3 A complex ADAT “is composed of” two or
more simpler ADATs and an ADAT may participate
in zero or more than one complex ADAT. The reason
for “two or more” is that defining a complex ADAT
with a single simpler ADAT gives no additional
analysis capability. The simpler ADATs are called
constituent ADATs. Each constituent ADAT has
its own PAN for analysis. An example of a complex
ADAT is Account_statement that consists of ADATs
Credit(Amount) and Debit(Amount). An account
holder can generate, for example, a daily account-
statement showing credit and debits of the day. The
complex ADAT may have its own PANs.

The difference between complex and
generalized ADATs is that when analysing complex
ADATs, we may use, one or more, possibly all
component ADATs, but when analysing a
generalized ADAT, we use only one of its specialized
types.
4 A derived ADAT “is computed from” its base
ADATs. Each base goes into computing the derived
ADAT and must be considered during analysis. An
example with structured, numeric data is the ADAT,
Purchase(Amount).Assume that part payment in
Indian rupees and US dollars is allowed. Amount is
in Indian rupees and is calculated by converting dollar
payment into rupee payment and adding to it the part
payment made in Indian rupees. That it,
Purchase(Amount) is a derived ADAT consisting of
two atomic ADATs, Indian_amount(Ramount) and
US_dollar_amount(Damount). Since part payments
can be made in both currencies, both bases must be
considered during analysis. An example with
unstructured data is the ADAT, Hotel_Feedback with
bases, Room_state and Room_amenities respectively.
The former has the value, “The size of the room is
good. It is carpeted but the carpet needs repair.” The
latter has the value, “Amenities were in good shape.
We asked housekeeping for a hair dryer and it was
delivered to us promptly.” Again, when analyzing,
both bases must be considered to produce the derived
result, for example, “good” if both are good otherwise
“maybe”.

Consider the difference between a derived and
atomic ADAT. If we treat Indian_amount and
US_dollar_amount as attributes of an atomic ADAT,
then (a) it is not specified that both must be used in
deriving the purchase amount and (b) the computed
value is virtual; it is not materialized and is computed
each time it is needed. Derived ADATs are different

from complex ADATs as well. Let us model
Purchase(Amount) as a complex ADAT consisting of
ADATs Indian_rupee and US_dollar_amount. Now,
we can materialize the purchase amount but there is
still no constraint that both must be considered in the
computation. The difference between derived and
generalized ADATs is that when analysing the
former, all base ADATs must be used whereas when
analysing the latter only one of the specialized
ADATs is relevant.
5 A container ADAT is obtained through the
relationship, ‘Has contents’ between ADATs. The
cardinality of the relationship in Fig. 1 shows that
there is only one ADAT object type in a container,
but an ADAT may participate in zero or more
Container ADATs. For example, ADAT Order
contains only one ADAT, Order_line. We impose the
constraint that a container instance must contain one
or more (possibly duplicate) instances of the content
ADAT. Consider an example each of containment in
structured and unstructured analyzable data:
a. The container ADAT, Order is defined for
structured data and keeps a measure of the total value
of the Order whereas the content ADAT, Order_line
keeps the value of the line. Order is a container of
Order_line; there should be at least one instance of
Order_line in an Order. Order value is the sum of the
values in order lines. Order has PANs, Date and
Supplier and in addition, Order_line can be analyzed
by Product_code.
b. For unstructured analysable data, consider the
document, Minutes of Meeting that contains a record
of decisions taken by a committee on various agenda
items as well as the date, place, and list of attendees of
the meeting. The record of decisions is unstructured
text and tells us the decision taken. We express the
foregoing as a container ADAT, Minutes_of_Meeting
with content ADAT, Agenda_record. Each instance of
the former must contain at least one instance of the
latter.

The difference between a container and
complex ADAT is that whereas the former contains
only one ADAT as its contents and a container
instance contains is at least one instance of the content
ADAT, the latter has several ADATs as its
constituents and an instance of the complex ADAT
contains zero or one instance of each constituent
ADAT.
6 An aggregate ADAT is built by performing a
roll-up OLAP operation on an ADAT and a subset of
parameters of analysis associated with it. As an
example, consider the ADAT Sales analysed by Shop,
Day, Product. We can perform detailed analysis by
determining sales for each day, shop and product.

A Conceptual Model for Data Warehousing

89

However, we do a roll-up by computing All Sales taken
over the parameter, Product. The result is an aggregate
ADAT, ALL_Product_Sales that tells us the sales of
all products on all days and all shops.

Fig. 1 shows a recursive relationship among
ADATs called, “is dependent on”. This says that
analysis of a dependent ADAT can only be done if its
dependee ADAT exists. As an example, consider
Order and Delivery. Analysis of delivery requires that
there be an order i.e., Delivery is dependent on Order.
One can ask questions like, “which orders have been
delivered beyond their delivery date?” As shown in
Fig. 1, a dependee ADAT has one or more dependent
ADATs and an ADAT may have zero or more
dependee ADATs. The roles, dependee and
dependent are marked in Fig. 1.

Now we can consider how Nature of an ADAT
and Data_Kind of Attribute varies with the different
types of ADATs. Recall that if the Nature of an
ADAT is structured then the data kind of tis attributes
can be numeric or non-numeric. However, if its
Nature is unstructured then the data kind of its
attributes must be unstructured. Consider Derived
ADATs. Since base ADATs are used for computing
a derived ADAT, all base ADATs as well as the
derived ADAT must be of the same Nature. Similarly,
specialized-generalized ADATs have the same
Nature. Again, a container ADAT has the same
Nature as its content. However, a complex ADAT
may have constituents that are of varying Nature.

If any constituent is unstructured then the
complex ADAT is unstructured else if any constituent
is structured, non-numeric then complex ADAT is
structured, non-numeric else it is structured numeric.

Fig. 1 shows that the type, History has two
attributes, period and frequency. This allows the

modeler to specify the number of years and frequency
of history of an ADAT needed for analysis. The
“History of” relationship allows history to be
optionally maintained for an ADAT as shown by the
0..* cardinality but, in the reverse direction, History
must be associated with at least one ADAT. As an
example of the use of history, let there be an ADAT,
Purchase. We may want to keep a history of monthly
purchases for a period of five years as well as quarterly
history for five years. Thus, we have the ADAT,
Purchase in a “history of” relationship with H1 and H2;
H1 has the attribute Period=5 years and Frequency =
Month whereas H2 has Period = 5 years and Frequency
= Quarter. In the reverse direction, an instance of
History may be associated with one or more ADATs.
Thus, we may want to keep history of both monthly
purchases and monthly sales for 5 years. Clearly, H1
has two ADATs associated with it.

2.2 Modelling Analysis Parameters

A PAN, Parameter of ANalysis, of Fig. 2 refers to a
type of parameter. The object type PAN has attributes
as seen by the “is property of” relationship between
PAN and PAN_Attribute types. The cardinality
shows that each PAN should have at least one
PAN_Attribute type that is described by Change
Type. This identifies the action to be taken when the
value of the attribute changes. Change Type takes on
values from {update, no_update}. The first value,
update, says that a change in the value of the
PAN_attribute is treated as an update and the original
value is over-written. The second value, no-update,
says that update is not allowed. Instead, the change is
treated as the creation of a new instance of PAN such
that its PAN_attribute has the new value. The
previous PAN instance is not deleted.

Figure 1: Analyzable Data Type, ADAT.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

90

Now, Fig. 2 shows that there are the following
four types of PANs:
1. An atomic PAN cannot be decomposed into
simpler ones. For example, Product is an atomic PAN
having Attribute, colour whose Change Type =
update.
2. A complex PAN shows a “is composed of”
relationship between PANs. Fig. 2 shows that a PAN
may participate in zero or more complex PANs and
that a complex PAN is built over two or more simpler
PANs. For example, the complex PAN, Product is
built over simpler PANs, Product_specification and
Product_description.
3. Fig. 2 shows that a container PAN is built over
exactly one content type of PAN. We impose the
constraint that an instance of the container PAN
must have one or more distinct instances of its
content PAN; distinct because replication does not
enhance analysis. A container PAN is like a container
ADAT except that it contains only distinct instances
of its content PAN whereas duplicate instances are
allowed for ADATs. Consider a group of companies
that consists of subsidiary companies. There are two
ways in which any purchase can be analysed, by
individual subsidiaries or by the group. If a
subsidiary makes a purchase then the purchase is
analysed by the subsidiary but possibly also by the
group company. Similarly, the group may make
purchases for allocation to its subsidiaries. Again,
analysis may be made by the group company and
perhaps, by the subsidiary. The specification of
whether analysis is by the group company or
subsidiary or both is considered in section 2.3.
4. A specialized PAN inherits from the generalized
PAN and has its own attributes. Specialization splits
the generalized PAN into disjoint partitions. This
allows analysis by any of the specialized PANs. For
example, the PAN, Product is specialized into disjoint
partitions, Perishable Product and Non-perishable
Product.

2.3 The “Is-Analysed-by Relationship

The “is analyzed by” relationship of Fig. 3 associates
attributes of ADATs with PANs. In effect, this
relationship says that ADATs can be analysed by
PANs. The cardinality of this relationship shows that
(a) an ADAT may be analyzed by one or more PANs
and (b) a PAN may have one or more ADATs which
it analyzes. Whereas, the relationship makes it
possible to identify the PANs of an atomic ADAT,
this determination requires careful consideration for
the other five kinds of ADAT. This is because of
“interfering” PANs that arise due to the structures of
these ADATs. Determination of PANs for ADATs is
done by rules as follows:
• An atomic ADAT has its own PANs as
parameters.
• The derived ADAT and its bases have the
same PANs. For example, the derived ADAT,
Purchase as well as its bases, Indian_rupee_purchase
and US-dollar_purchase have the same PANs,
namely, Product, and Vendor.
• A complex ADAT and its constituent ADATs
may have PANs that are common but, additionally,
both may have their own specific PANs.
• Generalized ADATs have their own PANs.
Specialized ADATs inherit the PANs of their
generalized ADAT and, additionally, have their own
PANs. Consider Sales_amount specialized into
Cash_sales and Credit_sales. Let Sales_amount have
PANs, Product, Customer, and Date. These are
inherited by both, Cash_sales and Credit_sales.
Additionally, Cash_sales has its own PAN, Currency
and Denomination in which sales were made whereas
Credit_sales has the PANs, Credit_card type,
Cardholder’s_name. Thus, applying our rule,
Cash_sales has parameters Product, Customer,
Date, Currency, and Denomination whereas

Figure 2: Parameter of Analysis, PAN.

A Conceptual Model for Data Warehousing

91

Credit_sales has Product, Customer, Date,
Credit_card_type, and Cardholder’s_name.
• Container and content ADATs have their own

PANs. Consider the Container ADAT, Order and
its Content, Order_line. Order is associated with
PANs, Supplier, Order_date, Delivery_terms.
Order_line has PAN, Product.

• An aggregate ADAT has PANs that are a subset
of the PANs of the ADAT from which they have
been aggregated. The PANs that did not participate
in the aggregation are the PANs of the aggregate.

The attributes of “Is analyzed by” makes precise the
semantics of analysis. As shown in Fig 3, there are
three analysis properties, Additivity, Cardinality and
Applicability. Applicability specifies whether
constituents of a complex PAN or content PANs of a
container PAN can be used to analyse the ADAT
associated with the complex or container PAN
respectively. Applicability is specified in the
complex/container PAN, and it is possible for analysis
to be done by constituent/content PAN when

Figure 3: Relating ADATs and PAN.

Applicability=True. Consider the container PAN,
Group of Companies and its content, Subsidiary
Companies. Let material be purchased for the entire
group. Therefore, analysis of purchases is for Group
Companies. However, subsidiary companies are
permitted to analyse the purchases made as well. Thus
Applicability = True. Now, consider that the group,
GC makes purchases for the group. All analysis is
done by Group Companies and purchases are not
analysable by Subsidiary Companies. Now,
Applicability=False.

The attribute, Additivity is Boolean valued.
Consequently, it is possible to specify that an attribute
of an ADAT is additive/non-additive along a PAN or
not. Evidently, when an attribute is non-numeric then
analysis is non-additive along all PANs and, by
default, Additivity = False for all. On the other hand,
when it is numeric then additivity must be specified.
For example, consider the attribute,
Available_balance of ADAT, Account. Let Account

have two PANs, Customer and Month as its
parameters. We can compute the total
Available_balance in all accounts of a Customer.
Thus, Additivity=True for the Available_balance –
Customer relationship. However, when analysis is
done on Month then Additivity=False because we
cannot sum the previous end-of-month balances to
obtain the available balance in the current month.

The remaining analysis property of Fig. 3 is
Cardinality. It is used for specifying the cardinality
of an instance of the “is analyzed by” relationship.
We adopt the conventions of UML notation here.
Consider that Sales_amount of ADAT Sales is
analyzed by Salesperson. It is possible that a sale is
done directly, without involvement of any
salesperson, it is done by a single salesperson, or it is
done jointly by several salespersons. In the reverse
direction it is possible that a salesperson does zero or
more sales. Thus, the cardinality of the relationship is
0..* : 0..*.

Analysis by container and content PANs is
constrained by two rules,
a. An attribute of an ADAT analysable by a content
PAN can be rolled up using the container PAN and
then drilled down to the content PAN. For example,
let there be an attribute, Amount of ADAT, Sales, Let
its PAN be Day. The container PAN, Week contains
Day. We can roll-up Amount to get Monthly_sales.
Vice versa, the latter can be drilled down to get
Amount of sales on a day.
b. An attribute of an ADAT can be associated with a

container/complex PAN. Analysis by these is
allowed if Applicability=True.

2.4 Is Obtained from

This relationship, see Fig. 3, says that a PAN can be
obtained from zero or one ADAT whereas an ADAT
may contribute to zero or more PANs. As an example,
consider determining the discounts price offered to
customers whose annual purchase is more than
100,000 Indian rupees. Sale amount and discount
information is available in the ADAT, Sales. We
define an atomic PAN, Annual_sales and obtain its
value by deriving it from Sales, (a) create an
aggregate ADAT, Yearly_sales and (b) introduce it as
the attribute of Annual_sales. Similarly, one can use
Containers, e.g., to analyze the behaviour of
customers holding combined balance in all accounts
above a certain threshold. Again,
Total_customer_balance is obtained from the ADAT
and introduced in a PAN.

NOTATION: The notation used for representing
the schema is UML based, i.e., UML object notation

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

92

for ADATs, PANs as well as their attributes; UML
aggregate notation for complex ADAT/PAN; (c)
UML arrow for specialized ADAT/PAN. However,
for derived ADAT, we introduce UML arrow head
containing the letter D at the derived ADAT end, and
arrow head containing the letter C at the container end
for containment of ADAT/PAN. This notation is used
in the example schema of Fig. 4 in section 4.

3 GETTING THE STAR SCHEMA

The logical data model of a data warehouse can either
be a star or snowflake schema. However, the star
schema is the preferred one except in certain specific
situations (Ada 2010, Kim 1999). Therefore, we
present our approach for converting our conceptual
schema to the star schema. Our tool takes an
expression of the conceptual schema as a CSV file
and produces the DDL script for the star schema in
the relational model.

In this section, we show the procedures for
handling the different types of PANs and ADATs and
inter-relationships between then during conversion.

3.1 Converting Atomic PANs to
Relations

Consider an Atomic PAN. The procedure is given in
Table 3.1, which inputs one Atomic PAN, P and
outputs one relation, R. Step 1 of the procedure thus,
creates a relation R for atomic PAN P. Now, from the
PAN meta-model, each PAN can have 1..* Attributes.
When moving to the relational model, every Attribute
of P is added as a column to R (step 1.a.i). The domain
of the column can be appropriately chosen. Next is
Change Type for each Attribute which is either
{update, no_update}. In the case of the latter, we add
another column, Ai_Timestamp, a timestamp
column, to mark the time of update of Ai(step 1.a.ii).
In the case of the former, no schema change has to be
made since an update on the data is desired.

The ‘is composed of’ between attributes, attribute
Ai is composed of Aj, is mapped in step 1.b by the
function PANAttribute_Attribute. A new relation,
PANAttribute, is created to store this hierarchy and
each ‘is composed of’ instance is stored as a tuple in
this relation.

Lastly, for every relation R, we add one surrogate
key (step 1.d).

Table 3.1: Procedure to convert Atomic PAN.

Input: Atomic PAN, P
Output: Relation, R
step 1: create a relation R for P
a. for every Attribute, Ai, of P

i. addColumn (Ai)
ii. if (change_type == no_update)

 addColumn (Ai_Timestamp)
 end if
 end for
b. create a relation PANAttribute_Attribute
c. fn: PANAttribute_Attribute (Ai)

for every Ai “is composed of” Aj
i. insert_tuple_PANAttribute_Attribute(Ai,

Aj)
ii. if Aj ‘is composed of’ Ak

 PANAttribute_Attribute(Aj)
 end for
d. createAddSurrogateKey (R) as Primary Key

3.2 Converting Specialized PANs to
Relations

A specialization gives rise to a tree and it is therefore
important to examine which node of the tree is in a
“is analyzed by” relationship with the ADAT. Based
on this, three cases arise:
Case 1. The root node of the PAN specialization
tree is connected to the ADAT.
Case 2. Any intermediate PAN node is in a
relationship with the ADAT.
Case 3. ALL the PAN nodes in the tree are in their
own separate relationship “is analyzed by” with the
ADAT.

We will consider each in turn.
Case 1: Not only the root PAN, but all PANs in the
hierarchy are analysis parameters for the ADAT “Is
analysed by” the root. This implies that there is a
single relation in which each node is represented, or,
in other words, the tree is flattened. Table 3.2 (a)
shows the procedure for the conversion.

The root PAN is converted to a relation, R (step
1). For every child, ci of a parent PAN, the attributes
are added as columns of R (step 2.b.i.1). Change type
of every attribute is processed as before (step 2.b.i.2).
Also, if a child PAN does not have any specialized
attribute, then a Boolean attribute is added to record
the presence of the PAN in the tree (step 2.a). Finally
for every child PAN, a surrogate key is created and
added to R (step 2.c).

Notice, a denormalized table is created. Notice
also that in the PAN model, it may often be the case
that only one subtree may have nodes. Therefore,

A Conceptual Model for Data Warehousing

93

when translated, we may end up with NULLs in our
relation R. Another design choice would be to keep
the specialization tree as it is and create a separate
relation for each PAN giving us R1,R2,,,Rn. In other
words, create a denormalized schema but we reject
this because it leads to a snowflake and not a star
schema.

Table 3.2 (a): Procedure to convert Specialized PAN.

Input: Specialized PAN tree, T
Output: Case1 & 2: Single Relation; Case3: Set
of Relations
Case 1
fn: createSpecializedLevelCase1 (node)
step 1: if (node == root)
follow step 1 of Atomic PAN and create a relation,
R, for root PAN
step 2: for every child PAN, ci, of node
a. if (ci does not have any specialized attributes)

 alter R to add a Boolean column for ci
b. else

i. for every attribute, ai, of ci
1. alter R to add text column, ai, for ci
2. if (change_type == no_update)

 addColumn (Ai_Timestamp)
 end if
c. alter R to add surrogate key of ci
d. if (the sub tree of ci is not empty)

 createSpecializedLevelCase1 (ci)
 end for

Case 2: Since an intermediate PAN node analyses the
ADAT, all PANs in the sub-tree rooted in it as well
its parent, grandparent etc. till the root of the tree, are
analysis parameters as well. The pseudocode for
conversion to star schema is shown in Table 3.2(b).

The intermediate PAN, input, is converted to a
relation, R (step 1). Again, for this, step 1 of the
procedure of Atomic PAN is used. The attributes of
the parent node are added to R (step 2). Change type
for each attribute is captured (step 2.a.ii). A surrogate
key is created for each node in the parent hierarchy
and added to R (step 2.b). The process of adding the
subtree attributes to R is the same as Case1. Notice,
as before, change_type for each attribute as well as
the surrogate key for each child is added to R as well
(step 3.c).
Case 3: Here every PAN analyses an ADAT
separately, it can be treated as an atomic one, entering
into its own ‘is-analysed-by’ relationship. Therefore,
we create a new relation for every PAN in the tree
following the procedure of Table 3.1. PAN attributes
are the UNION of inherited as well as its own

attributes. After conversion, we get as many star-
schemas as the number of nodes in the specialization
tree.

Table 3.2(b): Specialized PAN conversion Case 2.

Case 2: ADAT - is analysed by intermediate PANs
fn: createSpecializedLevelCase2 (input)
step 1: follow step 1 of Atomic PAN and create a

relation R for input PAN
step 2: for every parent PAN, pi, of input PAN
a. for every attribute, ai, of pi

i. alter R to add ai as a text column for ci
ii. if (change_type == no_update) then

 addColumn (ai_Timestamp, R)
 end if
 end for
end for

b. alter R to add surrogate key of pi
c. createForChild(input)

fn: createForChild (input)
step 3: for every child PAN, ci, of input PAN
a. if (ci does not have any specialized attributes)

alter R to add a Boolean column for ci
b. else

i. for every attribute, ai, of ci
 alter R to add text column, ai, for ci
 if (change_type == no_update) then
 addColumn (ai_Timestamp. R)

c. alter R to add surrogate key of ci
d. if (the sub tree of ci is not empty)
 createForChild (ci)

end for

3.3 Converting Other Kinds of
Multi-Level PANs

Container and complex PANs also result in PAN
hierarchies. Consider container PANs. The surrogate
key is created for the container/content PAN
connected to an ADAT via the “is analysed by”
relationship. The procedure of Table 3.2(b) needs
only to be altered. The procedure is called with the
container/content PAN connected to an ADAT. Steps
1 and 2 remain the same for creating the relation R.
The word ‘parent’, in step 2, is changed to
‘container’. However, we modify the createForChild
function to accommodate setApplicability property,
see Table 3.3.

Now, consider a complex PAN. We create a
relation, R, for the complex PAN using the procedure
in Table 3.1. Its constituent PAN/s is/are included in
R as attributes.

PAN hierarchies can be a mix of various types of
PANs as well. For a structure with a mixed set of
PANs, we follow the procedures as given in the
Tables 3.1 to 3.3. If a relation with the same name

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

94

Table 3.3: Modified createForChild.

fn: createForChild (input)
step 3: for every content PAN, ci, of input
a. for every attribute, ai, of ci

alter R to add text column, ai, for ci
 if (change_type == no_update) then
 addColumn (ai_Timestamp. R)

b. setApplicability(value)
c. alter R to add surrogate key of ci
d. if (the sub tree of ci is not empty)

 createForChild (ci)
end for

already exists then, (a) merge the relations, (b) the
columns of the merged relation are the union of the
merged relations.

3.4 Converting Atomic ADAT to
Relations

Having finished with PANs, we consider procedures
for converting atomic ADATs into relations. The
procedure shown in Table 3.4 takes an ADAT D as
input, creates a relation R for it and includes attributes
of D as attributes of R. The function detDataType
takes Data Kind and Nature as arguments and gives
data types of relational attributes (step 1.a). The
function, addAdatKey() creates a unique key for R
(step 1.b). This is equivalent to the FACT key. The
surrogate key for every PAN in an ‘is-Analyzed-by’
to the ADAT, D is added in R as a column (step 1.c.i).
The Additivity property is recorded using the function
determineAdditive (step 1.c.ii). If the cardinality is
zero, then a special surrogate key is created (step
1.c.iii). This key is inserted into R with other columns
having NULLs or default values. Lastly, the ‘is-
obtained-by’ relationship is converted as shown in
step 1.d. Completion of the Entire Procedure Gives
us a Complete Star Schema.

3.5 Converting Specialized ADATs to
Relations

Since ADATs may be analysed by different PANs in
a tree, we create a relation for each ADAT node using
the procedure in Table 3.5. The attributes of the child
node are the UNION of the inherited attributes as well
as its own specialized attributes. Notice, we get as
many star scheme as the number of nodes in the tree.
However, in order not to lose the semantics of the tree
structure, we modify the procedure of Table 3.5 to
add step 2, as given below:
Step2: create table if not exists specializedADAT
(ParentADAT text, childADAT text)

Step 2.1: insert tuple into specializedADAT

Table 3.4: Procedure to convert Atomic ADAT.

Input: Atomic ADAT, D
Output: Single Relation R

step 1: create a relation R
a. for every Attribute, Ai
 addColumn(Ai,detDataType(DataKind,Nature)

 end for
b. addAdatKey() as primary key
c. for every is-Analyzed-by relationship

i. addColumnSurrogateKey(PAN_SK)
ii. determineAdditive (ADAT,

ADAT_Attribute, PAN, additive)
iii. if (cardinality.Contains(0))

 createAndInsert
newPANSurrogateKey = Default value into the PAN
 end for
d. for every is-Obtained-by relationship
 addColumnAdatKey()

 end for
fn: determineAdditive (ADAT, ADAT_Attribute,
PAN, additive)
step i: create a relation if not exists is_Additive
with columns ADAT_name, ADAT_Attribute,
PAN, is_Additive)
step ii: if (Data_Kind = = non-numeric) then
 insert into is_Additive the values with
is_Additive = “false”
else
 insert into is_Additive the values with
is_Additive = “true”

3.6 Converting Other Multi-Level
ADATs

For a containment, the container and content have
their own separate PANs or may have exactly the
same PANs. In either case, we create separate
relations for every ADAT. To capture the relationship
between container and content, for the former case, a
separate relation is created while for the latter case,
the container surrogate key is added to the content
PAN.
Let us consider the case of Derived ADATs. All the
PANs associated are the same through-out the
hierarchy. We create separate relations, one for the
root derived ADAT, and one for each “Derived”
symbol, which is point of merge of several base
ADATs. The latter is done because the base nodes
are used in the calculation of the derived node. The
procedure is shown in Table 3.5.

A Conceptual Model for Data Warehousing

95

Table 3.5: Procedure to convert Derived ADAT.

Input: Derived multi-level ADAT
Output: Set of Relations
step 1: follow step 1 of Atomic ADAT and

create a relation R for root ADAT
step 2: for every symbol D
a. create a relation name derived-base i-(n)
b. for every base ADAT, bi

 for every attribute, ai, of bi
 add column to derived-base i-(n)

 end for
 addAdatKey() as composite primary key
c. alter R: add composite AdatKey as foreign

key
 end for

For complex ADAT, the complex and the constituent
have at-least the same PANs and in addition may have
other PANs. Therefore,

• if no additional PANs are associated, then the
same procedure as Table 3.5 is used. The only
change is in step 2 where the symbol changes to
the complex symbol of the letter c contained in a
triangle.

• if additional PANs are associated at any level,
then separate relations are created and the
semantics of the relationship is captured in a
separate relation as in the case of specialization.

Finally in the case of a mixed structure, we apply a
priority to every type of ADAT, which is:
1. Containment, Specialization, Derivation type are

at the same priority.
2. Complex type is given a higher priority.
The lowest priority is zero. We start at the bottom and
scan the mixed structure for Containment,
Specialization, Derivation type of ADATs and assign
them a priority of 0. The first set of Complex type
from the bottom is given priority of 1. The next set of
Containment, Specialization, Derivation type of
ADATs, going up in the hierarchy, is assigned a
priority of 2. The complex type thereafter gets a
priority of 3. This continues till the root of the mixed
structure.

After assigning priorities, we convert the specific
ADAT types into relations using their specific
procedures. We start the iteration with priority of
zero. ADAT types at the same priority can be picked
at random for conversion based on domain
knowledge. If any two relations with the same name
exists, then we rename one of them. We avoid
merging as the associated PANs may be different.

4 EXAMPLE

A film company releases movies internationally,
across different countries. It produces, distributes, and
markets its films. The company is also interested in
the revenue generated from cinema-goers on sale of
tickets. The contract may also be signed with a chain
of cinema halls for screening the film in all its halls.
If cinema halls are independent, then the contract is
signed with these independent entities. A data
warehouse for analysing these is to be conceptualized.
The full schema consists of four parts, Production,
Distribution, Marketing, and Revenue. For reasons of
space, we show Production and Distribution only, see
Fig. 4. We represent expenditure of crew member as
the ADAT, crewCost. crewCost is a derived ADAT of
two ADATs, namely, transportCost and
professionalFees; crewCost “is analyzed by” atomic
PANs movie, and date. The PAN, crew is specialized
into atomic PANs, actor, director, technicalStaff. In
Fig. 4, additivity and cardinality are not shown to
avoid graphical clutter.The cardinality for movie :
crewCost :: 1..1 : 1..*; for date: crewCost:: 1..1 : 0..*;
for crew:crewCost :: 1..1: 1..*.
Fig. 4 also shows the schema for distribution. Contract
is represented as a complex ADAT with three
component ADATs, paymentTerms,
paymentSchedule, and termsAndConditions. ADAT
paymentTerms is a container of the atomic ADAT,
paymentTermLine. Similarly, paymentSchedule is a
container of the atomic ADAT,
paymentScheduleLine. ADAT termsAndConditions is
a container of terms and condition clauses, i.e., of the
atomic ADAT, TandCClauses. As shown, these are
unstructured. Contract is analyzed by the atomic
PANs movie, and cinemaHall. PAN cinemaHall is
contained in the container PAN, cinemaChain. For
uniformity, we have assumed hotel chains, each with
a single cinema hall for individual cinema halls also.
cinemaChain has Applicability=True and contracts
can be analyzed by cinemaHall. For both movie-
contract and cinemaHall-contract, Additivity = False
and cardinality for movie:contract::1..1:1..*; for
cinemaHall: contract:: 1..1 : 1..1. As before, these are
not shown in the figure. We show the conversion of
crewCost in Fig. 5. Procedures discussed in section 3
were applied. Movie and Date are Atomic PANs.
Since there was no ‘is-composed-of’ between PAN
attributes, no tuple is inserted into the
PANAttribute_Attribute relation. Crew is a
specialized Case I type of PAN and therefore, all the
attributes of director, actor and technicalStaff are
added to the relation crew.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

96

Figure 4: Instantiation of the model showing crewCost and Contract.

Figure 5: (a) DDL script for PANs movie, date and crew.

crewCost is the root derived ADAT and so a relation
is created with ‘cost’ and surrogate keys of movie,
date and crew. For Additivity, a tuple is inserted for
each ‘cost’-PAN-true/false pair in the relation is-
Additive. A relation TC PF CC is created for the
“Derived Symbol”, with the attributes of transport
cost, professional fees and a composite key.

Figure 5: (b) DDL script for crewCost schema.

Contract is a ‘mixed’ multi-level ADAT structure.
The three container ADATs get a priority of 0 and

Contract a priority of 1. Out of 0s, paymentTerms is
selected first and the container/content procedure is
applied. Notice, that there is no specific ‘is-analyzed-
by’ associated with this ADAT and so no PAN
surrogate keys are added to the relation. At the next
level, Contract is converted as shown in Fig 6.

Figure 6: DDL script for Contract schema.

5 DISCUSSON

Whereas traditional conceptual modelling is used to
represent system functionality of information and
software systems, its use in DW is to represent the
analysis capability to be supported. There are two
distinct concepts, ADATs and PANs for the latter,
whereas in information/software systems there is only
one concept, object type. In both types of conceptual
modelling, we have some common features like
association, dependency, and specialisation but in the
DW context their interpretation is done to specify
how data can be analysed. It is not merely for
capturing data and its inter-relationships as in
information/software.

A Conceptual Model for Data Warehousing

97

Much attention was given in DW on BI tool
operability and meta-models. like the Common
Warehouse Model, CWM (OMG 2003), that abstract
out common features of logical models of BI tools
were developed. These meta-models only considered
structured data. Several proposals that use object
modelling concepts for their meta-models (Li 2005,
Tru 2000) were also made. The basic idea was to
represent facts and dimension as object classes. In
(Tru 2000), the fact/dimension relationship is treated
as a UML aggregation. Li and An (Li 2005) do XML
Schema conversion into UML and propose an
integration tool for formulating OLAP queries.
While allowing tool interoperability the attempt, in
the foregoing, was not to model the required analysis
capability. Consequently, the use of concepts like is-
part-of, containment, and ISA relationships for
analysis are not available there. While CWM allowed
time stamping of data, specifying periodicity and
duration is not possible. However, change properties
can be specified in CWM.

In (Ban 2021), we have an abstract model for
NoSQL databases to facilitate representing data
warehouse logical model in such data stores. Again,
this is a common meta-model for converting to
specific NoSQL data stores and the model does not
express analysis needs.

In recent years we have seen emergence of multi
model data warehouses (Bim 2022). Since we
conceptualize different kinds of data, our model
provides an abstraction using which multi model data
warehouses can be built.

6 CONCLUSIONS

We have developed a conceptual model for analysis
tasks for analysing structured and unstructured
ADATs. Inter-ADAT relationships specify related
analysis data; inter-PAN relationships specify the
structure of analysis parameters, and ADAT-PAN
relationships model what can be analysed by what
parameter. We have presented rules for conversion to
the star schema. In future, we shall develop rules for
converting to column-oriented relational databases.

REFERENCES

Adamson C., Star Schema: The Complete Reference, Tata
McGraw Hill, 2010

Banerjee S., Bhaskar S., Sarkar A., Debnath N.C., A
Unified Conceptual Model for Data Warehouses,

Annals of Emerging Technologies in Computing,162-
169, 2021

Bimonte S, Gallinucci E., Marcel P, Rizzi S., Logical
design of Multi-Model Data Warehouses, Knowledge
and Informaiton Systems, Knowledge and Information
Systems https://doi.org/10.1007/s10115-022-01788-0,
2022

Boehnlein, M., and Ulbrich vom Ende, A. Deriving initial
Data Warehouse Structures from the Conceptual Data
Models of the Underlying Operational Information
Systems, in Proc. Of Workshop on Data Warehousing
and OLAP, 15-21, 1999

Corr L., Stagnitto J., Agile Data Warehouse Design,
Decision One Press, UK, 2012

Faccia, A., Cavaliere L.P.L., Petratos P., Mosteanu N.R.,
Unstructured Over Structured, Big Data Analytics and
Applications In Accounting and Management.
In Proceedings of the 2022 6th International Conference
on Cloud and Big Data Computing, 37-41. 2022.

Giorgini P., Rizzi S., Garzetti M., GRAnD: A goal-
oriented approach to requirement analysis in data
warehouses. Decision Support Systems, 45(1), 4-21,
2008

Golfarelli, M., Rizzi, S.: A methodological Framework for
Data Warehouse Design. In: Proc. of the ACM 1st Intl.
Workshop on Data warehousing and OLAP
(DOLAP’98), Washington D.C., USA, 3–9, 1998

Kimball R., The Data Warehouse Toolkit, Wiley, 1996
Li, Y., An, A., Representing UML Snowflake Diagram

from Integrating XML Data Using XML Schema,
Proceedings of the 2005 International Workshop on
Data Engineering Issues in E-Commerce, 103 – 111,
2005.

Malinowski E., Zima´nyi E., Hierarchies in a
multidimensional model: from conceptual modeling to
logical representation, Data & Knowledge Engineering
59 (2) 348–377, 2006

Mazón, J. N., Pardillo, J., & Trujillo, J. A model-driven
goal-oriented requirement engineering approach for
data warehouses, in Advances in Conceptual
Modeling–Foundations and Applications, 255-264,
Springer, 2007

Object Management Group, Common Warehouse
Metamodel Specification, Version 1.1, Vol 1, 2003

Pantano, E., Dennis, C., & Alamanos, E., Retail managers’
preparedness to capture customers’ emotions: A new
synergistic framework to exploit unstructured data with
new analytics. British Journal of Management, 33(3),
1179-1199. 2022

Prakash D., Direct Conversion of Early Information to
Multi-dimensional Model, DEXA, 19-126, 2018

Trujill J., Palomar M., Gómez J., Applying Object-
Oriented Conceptual Modeling Techniques to the
Design of Multidimensional Databases and OLAP
Applications, Web-Age Information Management, 83-
94, 2000

Vaisman, A., Zimányi, E., Conceptual Data Warehouse
Design. In: Data Warehouse Systems. Data-Centric
Systems and Applications. Springer, https://doi.
org/10.1007/978-3-662-65167-4_4, 2022.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

98

