
Decoding Code Quality: A Software Metric Analysis of Open-Source
JavaScript Projects

Suzad Mohammad1,∗ a, Abdullah Al Jobair2,∗ b and Iftekharul Abedeen2,∗ c

1International University of Business Agriculture and Technology, Dhaka, Bangladesh
2United International University, Dhaka, Bangladesh

Keywords: Code Quality, Open-Source Software, JavaScript, Software Metric, Cyclomatic Complexity, Cognitive
Complexity, Maintainability, Code Smell, Code Duplication, Project Size, Developer Experience, GitHub.

Abstract: The popularity of web-based solutions has seen rapid growth in the last decade, which has raised the demand
for JavaScript (JS) usage in personal projects and enterprise solutions. While the extensive demand for JS has
elevated, studies have yet to be done on how JS development follows the rules and guides for writing code to
meet quality standards. Consequently, we choose to investigate the practice of JS on different project sizes, the
developers’ experience, and their impact on code quality and development. To achieve this goal, we perform
the code quality analysis of 200 open-source JS projects from GitHub on 10 code quality metrics. We design
our research study to examine the influence of project size on issue density, find relationships among 10 code
metrics, how code quality changes with developer experience, and determine the capabilities of existing source
code evaluation tools. Our findings reveal that issue density decreases with increasing developer experience
and project size. In addition, our quantitative study suggests that with the increase in project size and line
of code (LOC), project maintainability decreases, leading to more issues such as errors, complexity, code
smell, and duplication. However, as developers become more experienced, they face fewer coding challenges,
enhance code quality, and reduce code smell per line of code (LOC). Our study also offers valuable insights
into the capabilities of the 6 tools mentioned above to advance code evaluation practices.

1 INTRODUCTION

In recent years, the popularity of web-based solutions
and web apps has grown immensely, and JavaScript
(JS) has also seen enormous growth and popularity.
As the popularity of JS is gaining more and more
foothold, it is also transcending its use within the de-
velopment of only web-based solutions (Jasim, 2017)
(Brito et al., 2018). We can find many solutions from
desktop IDE to client applications and mobile apps
in significant platforms like Android and IOS that are
developed with JS.

As per the official GitHub survey of 20231, JS
continues to hold its position as the most widely used
programming language, retaining its position as the
top-ranked language since 2014. Not only GitHub but
also StackOverflow, the most prominent Question-

a https://orcid.org/0009-0004-0161-7296
b https://orcid.org/0000-0002-1530-1733
c https://orcid.org/0009-0003-7986-5954
∗These authors contributed equally to this work.
1https://tinyurl.com/mvttxecw

Answer (Q/A) website (Al Jobair. et al., 2022),
claims JS as the top programming language for eleven
consecutive years in their developer survey 20232.
All of this gave us the zeal to investigate JavaScript-
oriented works as it is currently the most widely used
programming language. It allows us to take a look at
different development paradigms through the obser-
vation of one language. As JS is being brought into
more places, many more people are picking up this
language to develop their solutions. However, limited
studies have been conducted on how JS development
follows the principles and code guidelines to achieve
quality standards.

Therefore, our goal is to investigate how
JavaScript is practiced with projects of different sizes,
the developers’ experience, identify the relationships
among different code metrics, and how each metric
affects the development and code quality. To achieve
our goal, we structure our research study into the fol-
lowing three research questions (RQ):

2https://survey.stackoverflow.co/2023/
#technology-most-popular-technologies

Mohammad, S., Al Jobair, A. and Abedeen, I.
Decoding Code Quality: A Software Metric Analysis of Open-Source JavaScript Projects.
DOI: 10.5220/0012618800003687
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2024), pages 63-74
ISBN: 978-989-758-696-5; ISSN: 2184-4895
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

63

RQ1: How does project size influence issue density?
RQ2: What are the relations among different code
quality metrics, and how do they influence each
other?
RQ3: How does code quality change with developer
experience?

To answer the research questions, we collect and
investigate 200 open-source JS projects from GitHub
repositories based on project size. To ensure the di-
versity of projects, we define the term ”Project Size”
based on three factors - Lines of Code (LOC), num-
ber of contributors, and number of commits. These
factors collectively contribute to a comprehensive un-
derstanding of the development landscape. Moreover,
a total of 380 developers’ profiles obtained from se-
lected 200 projects are classified into 3 groups based
on developer experience. The Developer Experience
is formulated by incorporating the number of forks,
number of stars, number of followers, and activity
graph of a GitHub profile. Each factor plays a crucial
role in delineating the characteristics and dynamics
of open-source JS projects. Furthermore, a thorough
quantitative analysis is conducted to assess project
metrics.

Our analysis has studied the relationship among
10 code quality metrics: LOC, cyclomatic complex-
ity, cognitive complexity, code smell, code duplica-
tion, issue density, maintainability, lint error, code
quality, and average estimated error. Our observations
reveal that with increased experience, developers en-
counter fewer code-related challenges and improve
code quality and maintenance, resulting in decreased
code smell per LOC. As project size and LOC in-
crease, the maintainability of projects decreases while
problems like errors, complexity, code smell, and
code duplication increase.

Our findings will allow developers to make in-
formed decisions concerning the interplay between
experience levels and encountered challenges, ulti-
mately fostering improved code practices. Moreover,
by providing insights about the usage of existing ana-
lyzer tools, our study equips researchers with valuable
information for the advancement of code evaluation
practices. Through these contributions, our findings
aim to foster continuous improvement in both practi-
cal development approaches and scholarly endeavors
within the software engineering landscape.

The rest of the paper is structured as follows. We
introduce state of the art in Section 2 and the method-
ology in Section 3. Section 4 presents the results and
analysis of our study, answering RQ1, RQ2, and RQ3.
Section 5 discusses the threats to validity, followed by
the conclusion in Section 6.

2 STATE OF THE ART

Scholars and professionals have engaged in conver-
sations about the impact of code quality analysis in
open source software projects (Molnar and Motogna,
2022) (Hussain et al., 2021) (Chren et al., 2022)
(Borg et al., 2023), particularly regarding JavaScript
projects code quality (Zozas et al., 2022) (Abdurakhi-
movich, 2023). To establish the foundation for our
methodology and structure the research questions, we
begin by presenting an overview of relevant research
studies that delve into collaboration within the field of
software engineering.

The work by (Sun and Ryu, 2017) classified
client-side JavaScript research into six research top-
ics. The study aimed to help researchers and develop-
ers grasp the significant picture of JavaScript research
more efficiently and accurately. While analyzing
the evolution of a JavaScript application over time,
(Chatzimparmpas et al., 2019) found that JavaScript
applications undergo continuous evolution and ex-
pansion. However, the complexity persists consis-
tently, and there is no discernible decline in qual-
ity over time. Study of (Jensen et al., 2009) pre-
sented a static analysis infrastructure for JavaScript
programs using abstract interpretation in their work.
While this early work was done in 2009, when devel-
opers lacked proper linters, modern-day tools provide
a more accurate and precise analysis of code and its
evolution. From the interview-based qualitative anal-
ysis by (Tómasdóttir et al., 2017), it can be inferred
that developers utilize linters to prevent errors, sus-
tain code uniformity, and expedite the process of code
assessment. The study by (Ferenc et al., 2013) pro-
vides an overview of software product quality mea-
surement, focusing on maintainability. It evaluates
tools and models on numerous open-source Java ap-
plications. (Stamelos et al., 2002) stated a concern re-
garding the quality of the open-source code. Accord-
ing to the work, the open-source community should
give considerable attention to enhancing the quality
of their code. In order to ensure the industry stan-
dard, the open-source product has to be compared
with the contemporary work of the software indus-
try. Although many works related to quality analy-
sis of open-source software have been done (Jarczyk
et al., 2014) (Spinellis et al., 2009) (Adewumi et al.,
2016), little has been done to analyze the open-source
JavaScript projects and existing code evaluation tools.

In order to analyze the code quality, universally
accepted metrics need to be used. Otherwise, one
organization’s quality standard will be different from
others (Belachew et al., 2018). Several such standard
metrics are mentioned by (Barkmann et al., 2009),

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

64

such as Coupling Between Weighted Method Count
(WMC) using McCabe Cyclomatic Complexity and
Lines Of Code (LOC). An empirical study by (Rah-
mani and Khazanchi, 2010) suggests a potential cor-
relation between the number of developers and soft-
ware size, offering insights into defect density. Ac-
cording to (Saboury et al., 2017), code smells neg-
atively affect applications, and by removing code
smells and issues, the application hazardous rate gets
reduced by 65%. However, limited light has been
shed on metrics like issue density, average estimated
errors, lint errors, and cognitive complexity in open-
source JavaScript projects.

3 METHODOLOGY

The research approach is depicted in Figure 1, pre-
senting an overview of our methodology. Our study
answers RQ1, RQ2, and RQ3 through a quantita-
tive analysis using the project data we have collected.
Code quality analysis is done based on 10 code qual-
ity metrics, such as maintainability, average estimated
error, and lint error.

We investigate the 28 pre-existing tools for an-
alyzing code quality metrics. Out of these, we se-
lected six tools: Plato, JSHint, DeepSource, Deep-
Scan, SonarCloud, and Codacy, from which we ob-
tained the 10 metric values.

3.1 Project Selection

While selecting the project, diversity is maintained in
terms of project size to generalize our study. The
LOC, number of contributors, and commits in a
project help formulate the size of that project. A to-
tal of 200 open-source JS projects are chosen from
GitHub to conduct our analysis.

3.2 Developer Selection

A total of 380 developers’ profiles have been gath-
ered to analyze how code metrics vary depending on
the level of developer expertise. The 380 developers
are selected from a total of 4,056 profiles from the
aforementioned 200 GitHub projects. The selection
of 380 profiles from the overall group of developers
is carried out arbitrarily.

3.3 Tool Selection and Analysis

In this study, initially, we examine a total of 28 online
and offline tools capable of evaluating JS projects. Al-
though most of the tools provide us with significant

software metrics, not all of them are equally effective
in metric analysis. Ultimately, performing a metric-
based analysis on 26 features, we select the six most
effective tools for our study - Plato 3, JSHint 4, Deep-
Source 5, SonarCloud 6, DeepScan 7 and Codacy 8.
These six tools offer a comprehensive range of met-
ric reports, making them our choices to utilize in code
quality analysis of JavaScript Projects for our research
study.

The 26 features that formed the basis for our se-
lection of 6 most effective tools are - 1) Anti-Pattern
Issue, 2) Autofix, 3) Characteristics-based Rating,
4) Code Smell, 5) Cognitive Complexity, 6) Cyclo-
matic Complexity, 7) Dependencies, 8) Documenta-
tion Coverage, 9) Documentation Issue, 10) Dupli-
cation, 11) Estimated Error, 12) Function Analysis,
13) Function Count, 14) Graphical Report, 15) To-
tal Number of Issues, 16) Lint Error, 17) Maintain-
ability, 18) Performance Issue, 19) Project’s Overall
Rating, 20) Overall Account Overview, 21) Security
Issue, 22) Style Issue, 23) Test Coverage, 24) Total
Files, 25) Total LOC, 26) Variable Analysis.

A brief overview of the utility of these tools is pre-
sented herein.
Plato. Plato (Mousavi, 2017)3 is one of the popular
evaluation tools that analyzes projects and their files,
detecting lint error, estimated error, complexity, and
maintainability.
JSHint. This online tool4 has variable-based and
function-based analysis (Mousavi, 2017). However,
manual code copying to the console for the report can
be ineffective for big projects.
DeepSource. DeepSource5 is an online static analy-
sis tool (Higo et al., 2011) that establishes connectiv-
ity to the user’s GitHub environment and carries out
repository analysis upon activation.
DeepScan. The distinctive attribute of Deepscan (Al-
fadel et al., 2023)7 is its capacity to modify analyzer
engines. The tool can produce a report using its pro-
prietary and ESLint engines simultaneously.
SonarCloud. SonarCloud (Raducu et al., 2020)6, a
static analyzing tool designed to assist developers in
producing secure code.
Codacy. Codacy (Ardito et al., 2020)8 provides the
overall rating of the project. Furthermore, Codacy
can also generate comprehensive reports on an entire
GitHub account.

This study involves analyzing the relationship

3https://github.com/es-analysis/plato
4https://jshint.com
5https://deepsource.com
6https://www.sonarsource.com/products/sonarcloud/
7https://deepscan.io
8https://codacy.com

Decoding Code Quality: A Software Metric Analysis of Open-Source JavaScript Projects

65

200 JavaScript
Project Selection

JavaScript Code
Analysis Tools

GitHub

6 Code Evaluation
Tool Selection

Practice

Convention

Technical

RQ1: Influence of Project Size on Issue Density

Maintainability

Average Estimated
Error

RQ-2: Relationship Among Code Metrics

Cyclomatic
Complexity

Lint Error

Cognitive Complexity

Code Smell

Code Duplication

Code Quality

RQ-3: Code Quality Change with Developer Experience

Experience

Line of Code

Project Size

Project SizeDefining
Project Size

Tool Selection

380 Developer
Profile

Fork
Star

Follower
Activity Graph

Defining
ExperienceClassifying

Developers

LOC
Contributor

Commit

Metrics Based
Analysis

Figure 1: Overview of our research methodology and analysis.

among 10 code quality metrics, as detailed in the fol-
lowing sections. Table 1 presents the list of metrics
employed in our study, as provided by the six selected
tools.

Table 1: Available metrics from the used tools.

Metrics Available from
SonarCloud,

Issues DeepScan, Codacy,
DeepSource

Maintainability Plato, SonarCloud
Plato, DeepSource,

LOC DeepScan,
SonarCloud

Lint Error Plato
Average Estimated Error Plato
Cyclomatic Complexity Plato, JSHint,

SonarCloud
Cognitive Complexity SonarCloud

Code Smell SonarCloud
Code Duplication SonarCloud,

Codacy
Code Quality DeepScan

3.4 Incorporating a Panel of Industry
People

The study required the definition of project size and
developer experience for analysis. A team of 25

software industry professionals, each with more than
three years of experience in software companies, was
incorporated to mitigate the possibility of bias. Their
direct assistance in project and analyzer tool selec-
tion facilitated the creation of a neutral dataset for the
study. Apart from this, the definition of metrics such
as ”Project Size” and ”Experience” were obtained
through an open-ended questionnaire administered to
the panel of developers.

3.5 Research Questions

At the initiation of the work, we set forward three
research questions before diving into the derivation
of metrics and analysis. These questions guided us
through the methodologies and analysis of the arti-
facts. Our intended three research questions, which
are premised on section 1, are explained below.

RQ1: How Does Project Size Influence Issue
Density?

The widespread use of JS has led to the development
of many conventions among developers regarding is-
sues, code structure, and patterns. Here, we aim to
investigate the impact of project size on Issue Density
(number of issues per 1,000 lines of code)9 during the
software development process.

9http://tinyurl.com/2s4y4nza

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

66

Here, we investigate code issues in JS projects
and how they affect projects as the project size in-
creases. The issues are classified into three broad sub-
categories. 1. Practice (issues regarding one’s coding
practices or different coding patterns among the mem-
bers of a team), 2. Convention (Issues regarding the
common practices that increase the code quality and
maintainability), 3. Technical (issues in the remnant
of codes or problematic codes that might create Run-
time errors).

• Practice. For practice, problematic habits are
considered as the assignment of the same name
to different functions at different places, unused
variables, use of different coding conventions at
different parts of code, the existence of unreach-
able code, linting faults, same import statement at
different places, etc.

• Convention. Convention criteria include anti-
patterns, Null comparison, missing keys in item
list complex code, big and bulky class files, etc.

• Technical. Lastly, in terms of technical aspect
problems like remaining console logs from the de-
velopment phase that can cause security issues,
use of ‘this’ statement outside of class, use of
’await’ functions inside of loops, declaration of
variables after calling the variable, etc. has been
considered.

The code issues may differ depending on the project
size. To address the research question, we establish
the definition of Project Size. The Project Size is sub-
sequently compared to the Issue Density.

Defining ’Project Size’. To understand the distribu-
tion of issues, we measure it with respect to issue den-
sity. The issue density is compared with the change
of project size. The project size is defined based on
Line of Code ’LOC’, number of contributors ’t’ and
number of commits ’C’. LOC is the direct and most
widely used indicator of the size of a project (Bark-
mann et al., 2009). However, because of the limitation
of LOC as a metric to measure project size, we incor-
porate the number of contributors and the number of
commits along with it. Both the number of contribu-
tors and commits are reliable metrics for this purpose
(Jarczyk et al., 2014).

Combining all these three metrics, the ”project
size” is defined as below -

p = (LOC×1)+(t ×7)+(C×0.3)

Here, P = Project size
LOC = Line of Code
t = Number of contributors to the project
C = Number of commits.

The weighting factors of ‘LOC’ is 1, ‘t’ is 7 and ‘C’
is 0.3 are considered based on their importance. The
more the contributor in a project, the larger the project
size grows. The values of LOC, t, and C are accounted
for up to the time of our analysis.

In order to categorize projects according to their
size, we have defined a project size classification
scheme. The size value of each project is used to clas-
sify it into one of four distinct classes based on the
project size classification scheme. This information
is presented in Table 2.

Table 2: An overview of defining project size based on
project scale value.

Project Size Size Value (p) Project Count
Small <1000 50

Medium 1000 to 10,000 50
Large 10,000 to 30,000 50

Very Large >30,000 50

In accordance with project size, a Small project is
defined as having a size value less than 1000, while
projects with a size value between 1000 and 10,000
are classified as Medium. Similarly, projects with a
size value between 10,000 and 30,000 are classified
as Large, and those with a size value greater than
30,000 are classified as Very Large. This classification
scheme enables us to better understand and analyze
project characteristics, as well as compare and con-
trast different projects based on their size. We took
50 projects from each of the classifications, which re-
sulted in a total of 200 projects to avoid any kind of
biases.

As the definition and the associated weighting fac-
tors are formulated in consultation with a panel of
25 experienced software industry professionals, it en-
sures that the weighting factors are informed by real-
world expertise and are relevant to contemporary soft-
ware development practices.

RQ2: What Are the Relations Among Different
Code Quality Metrics, and How Do They
Influence Each Other?

The question addresses how different software met-
rics are applied on JS code bases. We specifically fo-
cused on the relationship between project size, Line
of Code (LOC), and metrics like maintainability, aver-

Decoding Code Quality: A Software Metric Analysis of Open-Source JavaScript Projects

67

age estimated error, lint error, cyclomatic complexity,
cognitive complexity, code smell, and code duplica-
tion. We break the research question into the follow-
ing seven sub-questions based on code metrics.

• RQ2.1. What is the relationship between Project
Size and Maintainability?

• RQ2.2. What is the relationship between Project
Size and Average Estimated Errors?

• RQ2.3. What is the relationship between Project
Size and Lint Errors?

• RQ2.4. What is the relationship between Total
LOC and Cyclomatic Complexity?

• RQ2.5. What is the relationship between Total
LOC and Cognitive Complexity?

• RQ2.6. What is the relationship between Total
LOC and Code Smells?

• RQ2.7. What is the relationship between Total
LOC and Duplication?

Table 3 demonstrates the tools selected for each
metric examined in our study.

Table 3: Tools utilized for metric derivation.

Tool Metrics derived from
DeepScan Code Quality

DeepSource Issues
SonarCloud Code Smell,

Cognitive Complexity
Plato Maintainability,

Lint Error,
Avg Estimated Error,

LOC
JSHint Cyclomatic Complexity
Codacy Duplication

The metrics used to answer the research question
are briefly explained below -
Maintainability. Software maintainability refers to
the degree of ease with which modifications can be
made to a software system or component, including
the correction of faults, enhancement of performance,
or adaptation to a dynamic and evolving environment
(159, 1990). The software maintainability is taken
from Plato, which is calculated based on the Halstead
Complexity Measures.
Average Estimated Error. The Standard Error of the
Estimate (SEE) serves as a measure of the precision of
predictions made regarding a particular variable. The
square root of the mean squared deviation represents
the value of SEE (Lederer and Prasad, 2000). The
Average Estimated Error is taken from Plato, where
the value is calculated using the Halstead-delivered
bug score.

Lint Error. An error or warning message generated
by a linting tool or piece of software that points out a
potential issue or a breach of best practices in the code
is known as a lint error (ans Kunst, 1988). It is cal-
culated based on the problematic code patterns com-
pared against predefined rules in ECMAScript with
the help of Plato.
Cyclomatic Complexity. Cyclomatic complexity is
a software metric that counts all potential routes
through the code to determine how difficult a software
system is (Samoladas et al., 2004). Cyclomatic com-
plexity is derived from JSHint, which evaluates both
the count of decision points and the nesting depth of
control flow structures and ternary operators.
Cognitive Complexity. A software metric called cog-
nitive complexity gauges how challenging it is to
comprehend a codebase (Campbell, 2018). Cognitive
complexity is taken from SonarCloud which consid-
ers nesting depth, specific constructs, and readability,
to provide cognitive complexity.
Code Smell. It refers to code that might not be im-
mediately evident to the developer but could lead to
issues later due to potential issues, inefficiencies, or
breaches of standard practices (Santos et al., 2018).
Code Smell is identified by SonarCloud. It doesn’t
have a single formula for calculating code smells but
leverages a combination of static code analysis, rule-
based detection, and customizable settings to identify
code smells.
Code Duplication. The act of repeatedly writing the
same or similar code inside a codebase is referred to
as code duplication (Rieger et al., 2004). Codacy de-
tects clones or sequences of duplicate code present in
at least two distinct locations within the source code
of a repository.

RQ3: How Does Code Quality Change with
Developer Experience?

It can be postulated that certain changes in the code
quality exist with the progress of the developers’ ex-
perience. In order to validate the intuition, the term
”developer experience” is introduced as a potential
quantitative measure consisting of four aspects: forks,
stars, followers, and activity graph.

Defining ‘Developer Experience’. Out of the
aforementioned 200 projects, a selection was made
of 380 developer accounts to compare their experi-
ence with code quality. The aspects considered while
defining developer experience are elaborated below -
Fork. A fork is a copy of a repository a user or orga-
nization creates on GitHub to make changes or addi-
tions to the source. The total number of forks that are

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

68

present in a developer’s entire repository base is con-
sidered. Fork count is a significant indicator (Jarczyk
et al., 2014) of how many people use the developer’s
code as a foundation for their own projects.
Stars. Stars function as a “bookmark” of some sort
in GitHub. Starring a repository is another way to
express gratitude for someone, one finds helpful or
instructive. A project is likely to have a lot of stars if
it is of good quality (Jarczyk et al., 2014).
Followers. When a user is followed on GitHub, no-
tifications about their activity on the site are sent to
the follower. The number of followers is considered a
reliable indicator of a developer’s level of renown in
the field (Blincoe et al., 2016).
Activity Graph. The graphical presentation, known as
the activity graph, on GitHub showcases a user’s con-
tributions to a particular repository over a specified
period. This particular visual representation is called
the contribution graph or the GitHub heatmap. It is
a helpful tool for assessing the activity levels of the
selected 380 developers on GitHub. We incorporated
a range from 1 to 10 score for the analysis.
Combining all these aspects, we formulate the ”de-
veloper experience” as below -

developer− experience = k+ s+(f ×2)+g

Here, k = total number of forks in all the reposi-
tories of a developer
s = total number of stars in all the repositories of
a developer
f = number of follower
g = activity graph value

The weighting factors of ‘k’ is 1, ‘s’ is 1, ‘f’ is 2,
and ‘g’ is 1 are considered based on their importance.
The number of followers (f) is considered a more vital
factor in comparison to fork count, star count, and ac-
tivity graph in a developer profile. Our analysis con-
siders the values of k, s, f and g up to the present time
of conducting this study.

Subsequently, the developer experience is com-
pared with code quality to analyze if the quality dif-
fers with the difference of the developer experiences.
A brief overview of code quality is expressed below -
Code Quality: The entire level of excellence and
maintainability of software code is referred to as code
quality. It may include a broad range of elements, like
readability, scalability, robustness, security, maintain-
ability, and many others, that support the efficiency
and dependability of code. To assess ”Code Qual-
ity,” we employed the DeepScan code evaluation tool.
DeepScan evaluates the readability, reusability, and
refactorability of project code based on 61 predefined
programming rules. Subsequently, it integrates the

Table 4: An overview of developer experience with number
of developers.

Experience
Range

Experience
Label

No. of
Developers

<100 Novice 145
100 to 1000 Intermediate 118
>1000 Expert 117

values of readability, reusability, and refactorability
to generate a code quality score.

A categorization of developer experience was es-
tablished based on developers’ experience value. Ta-
ble 4 presents an overview of the ranges of developer
experience along with the corresponding number of
developers encapsulated within each range. Develop-
ers can be classified into three distinct levels of pro-
ficiency according to their experience level. In the
realm of software development, individuals whose ac-
cumulated experience measures below 100 units are
classified as Novices, whereas those whose experi-
ence ranges between 100 and 1000 units are desig-
nated as Intermediate. Ultimately, individuals with
a developer background bearing an experience value
surpassing 1000 are deemed proficient experts. This
classification facilitates the analysis, compares the
performance of developers at different skill levels,
and identifies patterns and trends in their development
activities.

This procedure entails the consultation of a panel
comprising 25 industry experts to obtain their recom-
mendations on the weighting factors and the criteria
utilized for categorizing developers into the three de-
lineations.

4 RESULTS AND ANALYSIS

We present the results of our research study in this
section, which are organized according to each re-
search question.

4.1 Result of RQ1: Influence of Project
Size on Issue Density

We commence here by presenting the results for RQ1.
Figure 2 represents the graphical depiction of the in-
fluence of project size on issue density. A noteworthy
observation is the apparent decrease in issue density
as the project size increases.

Interpreting the results for practice related issues,
it is evident that the number increases from Small to
Medium scale projects. This is anticipated because,
for Small projects, beginners tend to depend on online
resources and strictly follow documentation and other

Decoding Code Quality: A Software Metric Analysis of Open-Source JavaScript Projects

69

artifacts. However, as they gain more experience and
transition to Medium sized projects, they start to en-
gage in more hands-on coding, incorporating a blend
of various methodologies. With increasing experi-
ence and a shift towards Large scale projects, the cod-
ing practices become more streamlined, and issues re-
garding practices are reduced. Finally, for Very Large
projects, there are generally several contributors. As
different people come from different backgrounds and
bring their practices to the mix, the issues seemingly
increase here.

Size

0.0

0.1

0.2

0.3

0.4

Small Medium Large Very Large

Practice Convention Technical

Issue Density

Figure 2: Influence of Project Size on Issue Density.

A discernible trend is evident for convention and
technical issues as the projects grow larger and devel-
opers gain experience. However, when transitioning
to Very Large projects from Large scale projects, op-
portunities for gaining additional experience become
limited, causing more issues to arise in the project.

4.2 Result of RQ2: Relationships
Among Code Metrics

4.2.1 Project Size and Maintainability

Figure 3 illustrates the influence of project size on
maintainability. At the leftmost side of Figure 3, a
noticeable incline indicates the high maintainability
of small-scale projects. The underlying reason for
this phenomenon is that Small scale projects generally
lack the necessary amount of complexity to cause a
decrease in maintainability, even with inexperienced
developers. But as the scale of the project expands,
there is a perceptible deterioration in its maintainabil-
ity till 5000. As the project surpasses this threshold, it
moves toward Medium scale projects that are mostly
managed by more experienced developers. With the
inclusion of their development experience, the code
quality elevates, causing the maintainability to resur-
gence around the 7000 mark. Beyond the threshold
of inflation, a gradual decrease in maintainability is
observed. With the progression toward larger-scale
projects, the inner complexity and failure points in-

crease, which is counterbalanced to some degree by
the developer’s expertise. Moreover, coding conven-
tions, standards, and documentation are maintained
for Large projects. As such, a gradual and limited de-
crease in the maintainability of projects is observed,
in contrast to a sudden and drastic decline.

Project Size

M
ai

nt
ai

na
bi

lit
y

0

25

50

75

100

10000 20000 30000 40000 50000 60000

Maintainability vs. Project Size

Figure 3: Project Size and Maintainability.

4.2.2 Project Size and Average Estimated Error

Figure 4 depicts a trend where the estimated error
tends to grow as the size of the project grows. Al-
though there are a couple of deviated spikes, the data
mostly lead to the polynomial increase of average es-
timated error per file with the gradual expansion of
project size. As the scope of a project grows, there is
a corresponding increase in the line of code contained
within individual classes or packages. An increase in
the LOC presents a correlating rise in the likelihood
of error. As a consequence, the mean estimated error
tends to escalate.

Project Size

A
ve

ra
ge

 E
st

im
at

ed
 E

rr
or

0

5

10

15

20

25

80 51
1

99
8

16
56

32
24

43
84

49
03

54
11

66
04

73
67

83
00

86
18

94
79

97
83

10
44

3
15

41
2

18
53

7
21

47
8

23
06

6
25

82
3

29
68

8
36

24
0

42
87

9
51

25
4

56
73

4

Average Estimated Error vs. Project Size

Figure 4: Project Size and Average Estimated Error.

4.2.3 Project Size and Lint Error

The present study illustrates the polynomial relation-
ship between Project Size and Lint Errors, as depicted
in Figure 5. Based on the analysis, there is a positive
association between the increase in project size and
the occurrence of lint errors. However, it contains a
deflection of this general tendency, which is justifi-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

70

able as the deviations are not a common scenario. So,
with the increase in project size, the chances of lint
errors in the project also escalate.

Project Size

Li
nt

 E
rr

or

0

10

20

30

80 51
1

99
8

16
56

32
24

43
84

49
03

54
11

66
04

73
67

83
00

86
18

94
79

97
83

10
44

3
15

41
2

18
53

7
21

47
8

23
06

6
25

82
3

29
68

8
36

24
0

42
87

9
51

25
4

56
73

4

Lint Error vs. Project Size

Figure 5: Project Size and Lint Error.

4.2.4 Total LOC and Cyclomatic Complexity

Figure 6 portrays the exponential relationship be-
tween Total LOC and Cyclomatic Complexity for an
entire project. The aforementioned relation denotes a
consistent plateau in the cyclomatic complexity up to
a limit of 10,000 LOCs. Beyond this margin, there is
an exponential rise of cyclomatic complexity with the
increment of total LOC. It affirms that for Large and
Very Large projects, the cyclomatic complexity dis-
plays an exponential growth pattern as the scope of
the project advances.

Line of Code

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

0

5000

10000

15000

20000

61 49
9

15
69

23
42

29
95

37
17

43
75

54
76

61
33

69
82

80
18

86
17

91
40

96
54

10
57

3
13

50
6

17
50

5
20

79
9

24
47

1
27

12
0

29
65

5
40

12
0

47
07

2
53

01
4

57
06

7

Cyclomatic Complexity vs. Line of Code

Figure 6: Total LOC and Cyclomatic Complexity.

4.2.5 Total LOC and Cognitive Complexity

The inter-relationship between Total LOC and Cogni-
tive Complexity is illustrated in Figure 7. The out-
come is a mirror of the relation between LOC and
cyclomatic complexity. This is because cyclomatic
complexity can be used as a factor while calculating
cognitive complexity and the cognitive complexity in-
creases proportionally with the cyclomatic complex-
ity (Wijendra and Hewagamage, 2021).

There is a steady state with the increase of LOC
until the LOC is 10,000. Beyond this point, the cogni-
tive complexity grows exponentially with the growth

of project size. The finding asserts a positive associ-
ation between the expansion of project size and the
augmentation of cognitive complexity, observed ex-
plicitly in large and very large-scale projects.

Line of Code

C
og

ni
tiv

e
C

om
pl

ex
ity

0

5000

10000

15000

61 49
9

15
69

23
42

29
95

37
17

43
75

54
76

61
33

69
82

80
18

86
17

91
40

96
54

10
57

3
13

50
6

17
50

5
20

79
9

24
47

1
27

12
0

29
65

5
40

12
0

47
07

2
53

01
4

57
06

7

Cognitive Complexity vs. Line of Code

Figure 7: Total LOC and Cognitive Complexity.

4.2.6 Total LOC and Code Smell

The relationship in Figure 8 indicates the steady state
of code smell until 10,000 with the increase of Line
of Code (LOC). Later, there is an exponential rise
of code smell with the expansion of total LOC. The
above-mentioned finding corroborates the climbing
nature of code smell with the enlargement of project
LOC for Large and Very Large projects.

The graph representing cyclomatic complexity
(see Figure 6) demonstrates a significant similarity,
indicating a chance of the existence of a commensu-
rate relationship between code smell and cyclomatic
complexity. Although cyclomatic complexity can
serve as a reliable indicator of potential code smells,
other factors such as code duplication, inappropriate
naming conventions, and the presence of large classes
may also be responsible for code smells. While a re-
lationship between code smells and cyclomatic com-
plexity exists, both metrics provide unique insights
into the code’s quality and to use them in conjunction
for a more comprehensive analysis opens up a future
scope of study on this.

Line of Code

C
od

e
S

m
el

l

0

5000

10000

15000

61 49
9

15
69

23
42

29
95

37
17

43
75

54
76

61
33

69
82

80
18

86
17

91
40

96
54

10
57

3
13

50
6

17
50

5
20

79
9

24
47

1
27

12
0

29
65

5
40

12
0

47
07

2
53

01
4

57
06

7

Code Smell vs. Line of Code

Figure 8: Total LOC and Code Smell.

Decoding Code Quality: A Software Metric Analysis of Open-Source JavaScript Projects

71

4.2.7 Total LOC and Duplication

Figure 9 depicts a polynomial relationship between
total LOC with code duplication. With the increase
in the total LOC of the projects, the duplication tends
to increase polynomically. The graph presented be-
low indicates a proportional relationship between a
project’s total LOC and the occurrence of code du-
plication.

Line of Code

C
od

e
D

up
lic

at
io

n
(%

)

0

1

2

3

4

61 49
9

15
69

23
42

29
95

37
17

43
75

54
76

61
33

69
82

80
18

86
17

91
40

96
54

10
57

3
13

50
6

17
50

5
20

79
9

24
47

1
27

12
0

29
65

5
40

12
8

47
07

2
53

01
4

57
06

7

Code Duplication (%) vs. Line of Code

Figure 9: Total LOC and Duplication.

4.3 RQ3: Code Quality Change with
Developer Experience

The diagram in Figure 10 depicts a clear correspon-
dence between the code quality and the experience
level. Based on our definition of developer expe-
rience, Novice developers (Experience < 100) with
limited expertise typically oversee smaller projects
characterized by lower code complexity, and as a re-
sult, their code quality remains high. As novice de-
velopers gain expertise, they often engage in larger
projects, initially leading to a decline in code quality.
Notably, with the increased experience, the code qual-
ity increases linearly, as expected for both the Inter-
mediate (100 < Experience < 1000) and Expert de-
velopers (Experience > 1000).

Experience

C
od

e
Q

ua
lit

y

0

50

100

150

200

1 13 26 32 46 56 68 76 87 97 14
5

29
4

43
3

52
6

69
8

79
3

88
6

97
1

18
09

28
48

34
38

42
50

54
81

61
43

68
70

74
96

Code Quality vs. Experience

Figure 10: Experience and Code Quality.

Novice developers typically exhibit an average
code quality ranging from 20 to 50, while interme-

diate developers tend to have quality values between
40 and 100. In contrast, experts typically demonstrate
a code quality range of 100 to 150. The data demon-
strates a positive relationship between developer ex-
perience and code quality on a general level.

5 THREATS TO VALIDITY

Regardless of our meticulous endeavors to collect and
analyze data carefully, we recognize the presence of
several limitations within our study.

5.1 Internal Validity

5.1.1 Outlier Data

Although caution was taken in selecting projects of
a diverse range to represent the whole dataset, some
outlier data still remained. However, the numbers are
negligible to have any effect on the accuracy of the
results.

5.1.2 Validation of Evaluation Tools

While the six tools employed in the study are widely
recognized and reliable, there is still a possibility of
encountering erroneous metric reports from any of
the evaluation tools. To ensure the accuracy of the
reports, we conducted a cross-matching of outcomes
among the six tools.

5.1.3 Experience of Project Developers in
JavaScript

While we analyzed the experience of 380 developer
profiles, we cannot determine their specific experi-
ence in JavaScript. GitHub contributions are primar-
ily oriented towards projects, not individual developer
language expertise. This makes it challenging to pin-
point a developer’s experience with the specific lan-
guage of JavaScript.

5.2 External Validity

5.2.1 Defining Project Size and Developer
Experience

”Project Size” and ”Developer Experience” are the
two terms defined for the analysis of this study. While
an experienced developer team has validated the def-
inition of Project Size and Developer Experience, all
the developers are from Bangladesh. Thus, the vali-
dation and suggestions may reflect some specific re-
gional perspective. The utilization of expert input dur-

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

72

ing this process enhanced the validity and reliability
of the definition, thereby increasing researchers’ trust
in the outcomes of this study.

5.2.2 Considering Public Projects

This study utilizes the public repositories sourced
from GitHub. The metrics of private repositories re-
main undisclosed because of their unavailability. This
poses a challenge in asserting the generalizability of
the study.

6 CONCLUSION

This paper presents an empirical study aiming at
open-source JavaScript code quality analysis using
code evaluation tools. We demonstrated that small
projects start with high maintainability but decline
as they grow. Beyond that, a shift to medium-scale
projects managed by experienced developers leads to
a resurgence, while larger projects experience a lim-
ited decrease. The increase in project size and expe-
rience caused issues to decrease in the project. How-
ever, while the scope of the project grows, the average
estimated error, lint error, tend to escalate. An ob-
servable increase in cyclomatic complexity, cognitive
complexity, code smell, and code duplication accom-
panies the rise in lines of code (LOC).

Our findings will help developers make better
decisions regarding the relationship between project
size, experience levels, and code metrics, promoting
improved code practices for JavaScript-oriented soft-
ware development. Additionally, by revealing the ca-
pabilities of evaluation tools, our study provides valu-
able insights for practitioners, selecting the most suit-
able tools for code evaluation practices and fostering
continuous improvement in the software industry.

REFERENCES

(1990). Ieee standard glossary of software engineering ter-
minology. IEEE Std 610.12-1990, pages 1–84.

Abdurakhimovich, U. A. (2023). The future of javascript:
Emerging trends and technologies. Formation of Psy-
chology and Pedagogy as Interdisciplinary Sciences,
2(21):12–14.

Adewumi, A., Misra, S., Omoregbe, N., Crawford, B.,
and Soto, R. (2016). A systematic literature review
of open source software quality assessment models.
SpringerPlus, 5(1):1–13.

Al Jobair., A., Mohammad., S., Maisha., Z. R., Mostafa.,
M. N., and Haque., M. J. I. (2022). An empirical study
on neophytes of stack overflow: How welcoming the

community is towards them. In Proceedings of the
17th International Conference on Evaluation of Novel
Approaches to Software Engineering - ENASE, pages
197–208. INSTICC, SciTePress.

Alfadel, M., Costa, D. E., Shihab, E., and Adams, B.
(2023). On the discoverability of npm vulnerabilities
in node. js projects. ACM Transactions on Software
Engineering and Methodology, 32(4):1–27.

ans Kunst, F. (1988). Lint, a c program checker.
Ardito, L., Coppola, R., Barbato, L., and Verga, D. (2020).

A tool-based perspective on software code maintain-
ability metrics: a systematic literature review. Scien-
tific Programming, 2020:1–26.

Barkmann, H., Lincke, R., and Löwe, W. (2009). Quanti-
tative evaluation of software quality metrics in open-
source projects. In 2009 International Conference on
Advanced Information Networking and Applications
Workshops, pages 1067–1072. IEEE.

Belachew, E. B., Gobena, F. A., and Nigatu, S. T. (2018).
Analysis of software quality using software metrics.
International Journal of Computational Science &
Application, 8.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E.,
and Damian, D. (2016). Understanding the popu-
lar users: Following, affiliation influence and leader-
ship on github. Information and Software Technology,
70:30–39.

Borg, M., Tornhill, A., and Mones, E. (2023). U owns the
code that changes and how marginal owners resolve
issues slower in low-quality source code. In Proceed-
ings of the 27th International Conference on Evalua-
tion and Assessment in Software Engineering, pages
368–377.

Brito, H., Gomes, A., Santos, Á., and Bernardino, J. (2018).
Javascript in mobile applications: React native vs
ionic vs nativescript vs native development. In 2018
13th Iberian conference on information systems and
technologies (CISTI), pages 1–6. IEEE.

Campbell, G. A. (2018). Cognitive complexity: An
overview and evaluation. In Proceedings of the 2018
international conference on technical debt, pages 57–
58.

Chatzimparmpas, A., Bibi, S., Zozas, I., and Kerren, A.
(2019). Analyzing the evolution of javascript appli-
cations. In ENASE, pages 359–366.

Chren, S., Macák, M., Rossi, B., and Buhnova, B. (2022).
Evaluating code improvements in software quality
course projects. In Proceedings of the 26th Interna-
tional Conference on Evaluation and Assessment in
Software Engineering, pages 160–169.

Ferenc, R., Hegedűs, P., and Gyimóthy, T. (2013). Software
product quality models. In Evolving software systems,
pages 65–100. Springer.

Higo, Y., Saitoh, A., Yamada, G., Miyake, T., Kusumoto,
S., and Inoue, K. (2011). A pluggable tool for mea-
suring software metrics from source code. In 2011
Joint Conference of the 21st International Workshop
on Software Measurement and the 6th International
Conference on Software Process and Product Mea-
surement, pages 3–12. IEEE.

Decoding Code Quality: A Software Metric Analysis of Open-Source JavaScript Projects

73

Hussain, S., Chicoine, K., and Norris, B. (2021). Empirical
investigation of code quality rule violations in hpc ap-
plications. In Evaluation and Assessment in Software
Engineering, pages 402–411.

Jarczyk, O., Gruszka, B., Jaroszewicz, S., Bukowski, L.,
and Wierzbicki, A. (2014). Github projects. quality
analysis of open-source software. In Social Infor-
matics: 6th International Conference, SocInfo 2014,
Barcelona, Spain, November 11-13, 2014. Proceed-
ings 6, pages 80–94. Springer.

Jasim, M. (2017). Building cross-platform desktop applica-
tions with electron. Packt Publishing.

Jensen, S. H., Møller, A., and Thiemann, P. (2009). Type
analysis for javascript. In International Static Analysis
Symposium, pages 238–255. Springer.

Lederer, A. L. and Prasad, J. (2000). Software management
and cost estimating error. Journal of Systems and Soft-
ware, 50(1):33–42.

Molnar, A.-J. and Motogna, S. (2022). An exploration of
technical debt over the lifetime of open-source soft-
ware. In International Conference on Evaluation
of Novel Approaches to Software Engineering, pages
292–314. Springer.

Mousavi, S. E. (2017). Maintainability evaluation of single
page application frameworks : Angular2 vs. react.

Raducu, R., Esteban, G., Rodriguez Lera, F. J., and
Fernández, C. (2020). Collecting vulnerable source
code from open-source repositories for dataset gener-
ation. Applied Sciences, 10(4):1270.

Rahmani, C. and Khazanchi, D. (2010). A study on defect
density of open source software. In 2010 IEEE/ACIS
9th International Conference on Computer and Infor-
mation Science, pages 679–683. IEEE.

Rieger, M., Ducasse, S., and Lanza, M. (2004). Insights
into system-wide code duplication. In 11th Working
Conference on Reverse Engineering, pages 100–109.
IEEE.

Saboury, A., Musavi, P., Khomh, F., and Antoniol, G.
(2017). An empirical study of code smells in
javascript projects. In 2017 IEEE 24th interna-
tional conference on software analysis, evolution and
reengineering (SANER), pages 294–305. IEEE.

Samoladas, I., Stamelos, I., Angelis, L., and Oikonomou,
A. (2004). Open source software development should
strive for even greater code maintainability. Commu-
nications of the ACM, 47(10):83–87.

Santos, J. A. M., Rocha-Junior, J. B., Prates, L.
C. L., Do Nascimento, R. S., Freitas, M. F., and
De Mendonça, M. G. (2018). A systematic review
on the code smell effect. Journal of Systems and Soft-
ware, 144:450–477.

Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P.,
Adams, P. J., Samoladas, I., and Stamelos, I. (2009).
Evaluating the quality of open source software. Elec-
tronic Notes in Theoretical Computer Science, 233:5–
28.

Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L.
(2002). Code quality analysis in open source software
development. Information systems journal, 12(1):43–
60.

Sun, K. and Ryu, S. (2017). Analysis of javascript pro-
grams: Challenges and research trends. ACM Com-
puting Surveys (CSUR), 50(4):1–34.

Tómasdóttir, K. F., Aniche, M., and van Deursen, A. (2017).
Why and how javascript developers use linters. In
2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 578–
589. IEEE.

Wijendra, D. R. and Hewagamage, K. (2021). Analysis
of cognitive complexity with cyclomatic complexity
metric of software. Int. J. Comput. Appl, 174:14–19.

Zozas, I., Anagnostou, I., and Bibi, S. (2022). Identify
javascript trends in crowdsourcing small tasks. In In-
ternational Conference on Evaluation of Novel Ap-
proaches to Software Engineering, pages 179–204.
Springer.

ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering

74

