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Abstract: The use of personal transportation devices such as e-bikes and e-scooters (micromobility) necessitates the
development of improved safety support systems using highly-accurate, real-time lane recognition. How-
ever, the constrained operating environment, both computationally and physically, on such devices restricts
the applicability of existing sensor-based solutions. One option is to leverage vision-based systems and AI
models. However, these are typically built using high-spec processors and high-memory platforms and the
models need to be adapted to low-spec platforms such as microcontrollers. A significant barrier to the de-
velopment and evaluation of these potential solutions is the lack of lane recognition datasets that focus on the
first-person (rider) perspective. We contribute a lane recognition dataset of micromobility first-person perspec-
tive images from e-mobility rides. This dataset is utilized to assess the impact of channel and spatial attention
on compact CNN models, driven by the aim to maximize utilization through the addition of cost-effective
operations like these attention mechanisms, which introduce only a modest increase in the number of param-
eters. We find that adding channel and spatial attention can improve the performance of the standard compact
CNN classification models and specifically that adding the spatial branch improves the performance of the
model with channel attention. The MobileNetV3 model with the fewest parameters among those with channel
plus spatial attention maintained high overall performance. Our code and dataset are publicly accessible at:
https://github.com/Luna-Scooters/Compact-Attention-based-CNNs-on-MLRD.

1 INTRODUCTION

Micromobility is a radical and innovative approach
to minimise the usage of private transportation for
short distances by using personal mobility devices
such as e-bikes and e-scooters. It is a sustainable
alternative to conventional carbon-powered vehicles
while also being flexible and cost-effective. As a re-
sult, it has started gaining traction as a transportation
method worldwide, making it crucial to establish ef-
fective rules and regulations for the use of e-scooters
and e-bikes.
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According to a recent report from the Insurance
Institute for Highway Safety (IIHS) (Cicchino et al.,
2021), 60% of e-scooter accidents occur on side-
walks, hence cities are now demanding robust mi-
cromobility safety technology as a minimum licens-
ing requirement. The safe, wide-spread use of these
micromobility solutions requires both regulation and
technological supports such as highly accurate, real-
time, lane detection and localisation. Current GPS
and sensor technologies are unable to provide high
precision or to adapt to variable road structures en-
countered by micromobility vehicles (Fox et al.,
2017). LASER and LiDAR sensors offer potentially
more accurate solutions however are computationally
expensive and difficult to deploy in the highly con-
strained operating environments (Xing et al., 2018).
Artificial intelligence (AI) based options using im-
age inputs are very promising but still perform best
in controlled environments (i.e., lighting, perspective)
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and with high-spec computation and memory require-
ments.

Bridging the gap between these challenges and
the needs of micromobility, we turn our focus to
the current state of deep-learning-based lane recog-
nition technologies. The majority of existing deep-
learning-based lane recognition techniques in au-
tonomous vehicles use semantic segmentation (Za-
karia et al., 2023), which does not align well with the
requirements of constrained micromobility environ-
ments. Primarily because segmentation models are
typically large in size, necessitating high memory and
computational power for rapid inference. However,
micromobility vehicles, being more affordable and
having limited physical space and power, offer signif-
icantly less computational capacity, rendering these
models unsuitable.

Given the constraints on resources and to tackle
the specific challenges of micromobility safety, we
propose a lane recognition strategy that leverages
channel and spatial attention mechanisms for Convo-
lutional Neural Networks (CNN). This lane recogni-
tion approach is aimed at accurately identifying the
lane in which the micromobility rider is traveling in
real-time and subsequently sending necessary alerts.

Attention mechanisms for Convolutional Neural
Networks allow a neural network to focus on rele-
vant input elements and are a vital tool for enhancing
CNN model performance and efficiency (Zhu et al.,
2019; Fu et al., 2020). The two primary attention
mechanisms, spatial and channel attention, capture
pixel-level pairwise relationships and channel depen-
dencies respectively (Zhang and Yang, 2021). The
purpose of introducing channel and spatial attention
algorithms is to maximize the performance of com-
pact CNN models, particularly due to the resource-
constrained environment, by utilizing a few additional
trainable parameters with relatively cheap operations.

A major challenge in developing and evaluating
solutions for lane recognition for micromobility sce-
narios is the lack of specific, labeled datasets with
images from the first-person or rider’s perspective.
Previous research focused on urban footpaths utilized
crowd-sourcing to compile a dataset tailored for urban
mobility analysis. This work highlighted the limita-
tions of existing large datasets, which predominantly
feature images of footpaths and bike lanes captured
from vehicle-mounted cameras (GM et al., 2021).

To address these challenges, we have devel-
oped the Micromobility Lane Recognition Dataset
(MLRD), a novel multi-label image classification
dataset specifically designed for the micromobility
safety applications with the first person perspective of
the rider. The dataset encodes an information about

the road lane on which rider is riding on and also what
type of road surface, time and weather of the day. The
details of our proposed dataset can be found in sec-
tion 4.

This research is preliminary work exploring the
question: does adding relatively cheap operations
such as channel and spatial attention enable us to im-
prove the performance of compact CNN image clas-
sification models in constrained environments using
low-resolution input images? Considering these con-
straints, lane classification for micromobility is heav-
ily dependent upon learning not only the channel-
wise dependencies but also the spatial relationships
in the feature maps. This rationale led us to specifi-
cally select Squeeze-and-Excitation (Hu et al., 2018)
for channel attention and Coordinate Attention (Hou
et al., 2021) for a more comprehensive mechanism
that encompasses both channel and spatial attention.

In our research, we conducted a series of exper-
iments to assess the impact of integrating attention
mechanisms into compact CNN models for image
classification. Notably, the MobileNetV3 (Howard
et al., 2019) model, augmented with channel and spa-
tial attention, demonstrated impressively stable per-
formance metrics. It achieved overall performance
nearly comparable to the baseline model, despite hav-
ing fewer parameters. The MobileNetV2 (Sandler
et al., 2018) channel attention variant showed a slight
improvement in overall precision, while the variant
with both channel and spatial attention exhibited a
significant improvement in overall precision and a
slight enhancement in overall performance.

However, there was a noticeable decline in the
recall metric for the “road” class in MobileNetV2
model with channel and spatial attention, and a dete-
rioration in overall performance in the standard Mo-
bileNetV3 model with channel attention. This pat-
tern suggests that while additional parameters from
attention mechanisms can reduce false positives, they
may also lead to potential overfitting, impacting the
models’ overall performance. These findings lead us
to conclude that integrating channel and spatial atten-
tion mechanisms with compact base models does not
straightforwardly enhance their performance. This
highlights the need for more comprehensive research,
especially considering diverse use-cases, to fully un-
derstand and optimize the integration of attention
mechanisms in compact CNN architectures.

The contributions of this paper are as follows:

1. Proposing a real-time lane recognition approach
for micromobility safety applications utilizing a
compact multi-label classification model capable
of real-time identification of road lane types when
deployed on low-spec microcontrollers.
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2. To address the limitations of existing lane recog-
nition datasets, a new multi-label image classifi-
cation dataset with a first-person micromobility
rider perspective.

3. Evaluating compact MobileNet models, both with
and without channel and spatial attention.

The remainder of this paper is structured as fol-
lows: Section 2 contains are review of lane recog-
nition approaches using attention mechanisms. The
technical specifications of the models and algorithms
used are described in Section 3. We describe the de-
tails about the new dataset in Section 4. The exper-
imental methodology and implementation details are
explained in Section 5. The experimental results are
discussed in Section 6. Finally, we draw our conclu-
sions and discuss future work in Section 7.

2 RELATED WORK ON LANE
RECOGNITION

Existing lane recognition efforts have started to utilise
attention mechanisms to improve the detection, seg-
mentation and classification of lanes. However they
mostly focus on footage from cars and on detecting
the type and location (relative or absolute) of lanes in
standard road driving scenarios. Here we review the
impact of using attention mechanisms for lane recog-
nition.

Zhang et al. (2021) have developed a real-time
lane recognition system utilizing the Convolutional
Block Attention Module (CBAM) (Woo et al., 2018),
a channel and spatial-based attention mechanism.
Their Convolutional Neural Network architecture is
composed of an encoder designed for lane specific
feature extraction, one binary decoder and another
decoder to predict the feature maps comprising lane
instances. By integrating CBAM, the encoder ef-
fectively captures intricate details about the targeted
area. This method creates a synergy between the fea-
tures derived from convolution layers and those ac-
quired via attention mechanism, thereby enhancing
the acquisition of contextual information. The gath-
ered contextual knowledge is then combined with up-
sampled features in the decoders to recover any lost
details. Finally, the binary decoder categorizes pixels
as either lane or non-lane, and the other decoder dis-
tinguishes between individual lane instances. The au-
thors experimented their lane recognition system on
TuSimple (Chang et al., 2019) and Caltech lanes (Aly,
2008) datasets.

Li et al. (2021) developed the Lane-DeepLab
model, enhancing high-definition map creation for

autonomous driving. Their model architecture incor-
porates a novel attention module added to the Atrous
Spatial Pyramid Pooling (ASPP) module in the en-
coder, enhancing feature extraction, and a Semantic
Embedding Branch (SEB) to merge high and low-
level semantic information for richer feature acquisi-
tion. By leveraging attention mechanisms combined
with contextual semantics, their system adeptly fuses
relevant information to ascertain lane lines with en-
hanced precision. This comprehensive approach en-
ables the model to adapt to and accurately interpret
diverse road situations in complex and dynamically
changing environments. The authors also used the
TuSimple dataset (Chang et al., 2019) and the CU-
Lane (Pan et al., 2018) dataset to demonstrate the ef-
fectiveness of their Lane-DeepLab model.

Lee et al. (2022) proposed a robust lane detection
method using a novel self-attention module called Ex-
panded Self Attention (ESA), optimized for lane de-
tection, that enhances segmentation-based lane detec-
tion by extracting global contextual information. This
ESA module is split into Horizontal (HESA) and Ver-
tical (VESA) components, predicting occluded lane
locations by evaluating lane confidence in both direc-
tions. Their approach, focused on addressing occlu-
sion and challenging lighting conditions, was tested
on three popular datasets: TuSimple (Chang et al.,
2019), CULane (Pan et al., 2018), and BDD100K (Yu
et al., 2020).

Yao et al. (2022) proposed an efficient lane de-
tection approach using a lightweight attention-based
deep neural network, tailored for low memory scenar-
ios. Their architecture comprises two branches: the
Global Context Embedding (GCE) branch for captur-
ing overall lane information, and the Explicit Bound-
ary Regression (EBR) branch, incorporating a Spa-
tial Attention Mechanism (SAM) for precise bound-
ary delineation. The network also employs a Channel
Attention Mechanism (CAM) to prioritize channels
containing target objects. Remarkably, their model
achieved a high performance of 259 frames per sec-
ond (FPS) on an NVIDIA GTX 2070 GPU, with an
input image resolution of 640 x 360. This efficiency
was demonstrated on the CULane dataset (Pan et al.,
2018), with the model requiring only 1.57M parame-
ters. The approach was rigorously evaluated on both
the TuSimple (Chang et al., 2019) and CULane (Pan
et al., 2018) datasets

Although these attention mechanisms enhance the
performance of standard models with a minimal in-
crease in parameters, contributing to a slight addi-
tional memory footprint, existing research does not
extensively address their impact on compact CNN
models under stringent memory and inference speed
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constraints typical of low-spec edge platforms. This
gap is particularly crucial when aiming to maximize
the efficiency of standard compact CNN models with
the addition of only a negligible amount of parame-
ters.

3 MODELS FOR LANE
RECOGNITION

3.1 MobileNets

MobileNets, a class of efficient models primarily for
mobile and embedded vision applications, have revo-
lutionized image classification by offering a balance
between computational efficiency and model accu-
racy (Hanhirova et al., 2018). The architecture lever-
ages depth-wise separable convolutions, significantly
reducing the computational burden while maintaining
a competitive edge in performance metrics. Transi-
tioning to MobileNetV2 (Sandler et al., 2018), the in-
troduction of inverted residuals and linear bottlenecks
further optimized the network, enhancing the flow
of information and gradients during training. This
version demonstrates the potential of lightweight yet
powerful models capable of operating in resource-
constrained environments.

Moving to MobileNetV3 (Howard et al., 2019),
the architecture was fine-tuned through automated
Neural architecture search algorithms (Elsken et al.,
2019), embodying a more hardware-aware approach.
This version, known for its improved speed and
efficiency, establishes itself as a strong option for
real-time image classification tasks. It encourages
progress in incorporating AI into mobile devices
and embedded systems. A notable attribute of Mo-
bileNets is its architectural flexibility, allowing for
seamless integration of individual algorithms such
as attention mechanisms, which can be plugged into
the base architecture, thereby enhancing its func-
tionality and adaptability for diverse computational
paradigms (Sanchez-Iborra and Skarmeta, 2020).

3.2 Channel and Spatial Attention
Mechanisms

The main objective of attention in vision is to emu-
late the human vision cognition process, concentrat-
ing on the crucial patterns present in the input image.
In this work, we decided to evaluate the impact of
attention mechanisms in case of multi-label classifi-
cation applications by selecting two widely-used soft
visual attention techniques: Squeeze-and-Excitation

(SE) (Hu et al., 2018) network and Coordinate Atten-
tion (CA) (Hou et al., 2021). While there are sev-
eral other visual attention techniques available, such
as Spatial Group-wise Enhanced Network(SGE)-
Net (Li et al., 2019), Shuffle-Attention Network (SA-
Net) (Zhang and Yang, 2021), and Efficient Channel
Attention (ECA-Net) (Wang et al., 2020), we specif-
ically selected SE and CA as they serve as a base-
line and state-of-the-art, showcasing unique charac-
teristics and have demonstrated effectiveness in con-
volutional neural networks (Guo et al., 2022).

3.2.1 Squeeze-and-Excitation (Channel-Based
Attention)

In the SE (Hu et al., 2018) network, the “squeeze”
phase computes global descriptors for each channel
by aggregating spatial information, which are then
used in the “excitation” phase to learn channel-wise
dependencies and recalibrate channel-wise features,
enhancing the representational capacity of the net-
work (Hu et al., 2018; Guo et al., 2022). The differ-
entiating component in the Squeeze-and-Excitation
equation is the global average pooling which aggre-
gates spatial information across channels.

Sc = σ

(
W2δ

(
W1

(
1

H ×W

H

∑
i=1

W

∑
j=1

Xi j

)))
(1)

Where:
• σ represents the sigmoid activation function
• δ is the ReLU activation function
• W1 and W2 are the weights of two fully connected

layers.
• Xi j denotes the input feature map
• H ×W are the spatial dimensions of the input fea-

ture map

3.2.2 Coordinate Attention

The Squeeze-and-Excitation (SE) (Hu et al., 2018)
block initially captures global spatial information via
global pooling and then models the relationships
across channels. However, it overlooks the crucial
aspect of positional information. Coordinate Atten-
tion (CA) (Hou et al., 2021) addresses this limitation
by incorporating positional information into channel
attention, allowing the network to efficiently focus on
significant large areas with minimal computational re-
sources.

The process within the Coordinate Attention
mechanism involves two distinct phases: coordinate
information embedding and coordinate attention gen-
eration. Initially, two distinct sizes of pooling ker-
nels are employed to process each channel, encoding
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Figure 1: A schematic representation of the workflow for developing and deploying a neural network model, illustrating the
stages of data collection, model training, optimization, and final deployment on a target platform.

along both the horizontal and vertical axes. Following
this, the outputs from these pooling layers are con-
catenated and processed through a shared 1 X 1 con-
volutional transformation function. Subsequently, the
CA mechanism divides the resultant tensor into two
separate tensors. These tensors are then transformed
into attention vectors that align with the horizontal
and vertical dimensions of the input X , each main-
taining the same number of channels.

Unlike traditional channel attention that primarily
focuses on recalibrating channel significance, the CA
block extends its functionality by integrating spatial
information encoding. By applying attention simulta-
neously across both the horizontal and vertical planes,
the CA block is adept at spotting the precise locations
of target objects. The differentiating component in the
Coordinate Attention equation is the dual-axis atten-
tion mechanism – horizontal gh

c(i) and vertical gw
c ( j)

attention weights – that encodes spatial information
along both axes (Eq. 2).

yc(i, j) = xc(i, j)×gh
c(i)×gw

c ( j). (2)

where:

• yc(i, j) is the output of the Coordinate Attention
block for the cth channel at position (i, j).

• xc(i, j) represents the input feature map for the cth

channel at position (i, j).

• gh
c(i) and gw

c ( j) are the attention weights for the
horizontal and vertical directions, respectively, at
position (i, j).

4 MICROMOBILITY LANE
RECOGNITION DATASET
(MLRD)

The Micromobility Lane Recognition Dataset
(MLRD) is a novel multi-label classification dataset

specifically designed for lane recognition in mi-
cromobility applications considering the challenges
discussed in the previous section. This section
describes the aspects of our proposed dataset and
explain our approach towards the lane recognition
problem as a multi-label classification problem.

The dataset comprises colour images with a pri-
mary focus on three distinct classes: road, sidewalk,
and bike lane, as depicted in Figure 2. These classes
have been carefully chosen to cater to the unique
requirements of micromobility vehicles, such as e-
scooters, for efficient and safe navigation in urban en-
vironments.

A key motivation behind the creation of this
custom dataset is the insufficiency of existing
open-source autonomous vehicle datasets, such as
KITTI (Geiger et al., 2013), Cityscapes (Cordts
et al., 2016), DET (Cheng et al., 2019), TuSim-
ple (Chang et al., 2019), LLAMAS (Behrendt and
Soussan, 2019), CurveLanes (Xu et al., 2020), and
nuScenes (Caesar et al., 2020) in addressing the spe-
cific needs of micromobility applications. Although
these datasets have been instrumental in advancing
computer vision and autonomous vehicle research,
they lack samples of sidewalk and bike lane sections.
The images in such datasets, primarily captured as a
first-person view from the car, hinder their applica-
bility in the context of micromobility with the differ-
ent perspective and variable position of e-bikes or e-
scooters.

The images in the MLRD dataset are captured
using a proprietary camera module installed on e-
scooters showcasing streets and their surroundings.
These images are captured from multiple major cities
across Europe and the United States at a resolution of
640x480. The overall dataset consists of 30,244 im-
ages. By combining images from both online sources
and the proprietary camera module, our dataset aims
to provide a comprehensive and diverse collection of
street scenes, with an emphasis on the road, sidewalk,
and bike lane areas. This focus on the most relevant
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(a) Road Segment (b) Bike lane Segment (c) Sidewalk Segment

Figure 2: Example images from MLRD captured with the e-scooter camera.

areas for micromobility applications will enable the
development of more accurate and efficient models
for lane detection and classification, paving the way
for safer and smarter urban mobility solutions. The
MLRD dataset has been made publicly available.

Due to the variety of road and sidewalk structures
and the position (adjacent or separated) of such seg-
ments, annotating frames precisely was a complex
task. Hence, priority when labelling was given to the
road and bike lane classes. The images clearly show-
ing the road or bike lane annotated as 1 for that class
and 0 for the other. Where the bike lane is a part of
the road segment, the image is annotated as both road
and bike lane. Conversely, in cases where the image
clearly consist of a sidewalk or where there is no clar-
ity of a road or bike lane area, it is multi-label anno-
tated as 0 for both the road and bike lane labels. The
MLRD comprises a total of 16,759 samples classified
as “road”, 5,218 samples as “bike lane”, and 12,510
samples for the indirect class “sidewalk”, where the
labels for both the “road” and “bike lane” classes are
set to zero. The dataset is slightly imbalanced; how-
ever, this issue was addressed by employing an appro-
priate loss function, as explained in the Section 5

The proposed dataset not only focuses on the pri-
mary classes of road, sidewalk, and bike lane but also
incorporates additional labels indicating road mate-
rial such as “asphalt”, “concrete”, and “cobblestone”,
along with labels indicating the time of the day in
the image as “day” and “night”, and weather condi-
tions represented by labels like “sunny”, “cloudy”,
and “rainy”. For the work presented in this paper,
only the the “road” and the “bike lane” classes have
been utilized.

5 EXPERIMENTAL
METHODOLOGY

This section explains the methodology, model de-
ployment and the implementation details of the com-
parative analysis we performed. The experiments

evaluate the impact of channel and spatial atten-
tion with the compact MobileNets (with the width
multiplier α = 0.1) for classification by comparing
the performance of five different variants-Standard
MobileNetV2 (Sandler et al., 2018), MobileNetV2
with channel attention, MobileNetV2 with channel
and spatial attention, standard MobileNetV3 (Howard
et al., 2019) with channel attention and MobileNetV3
with channel and spatial attention on MLRD.

5.1 Experimental Setup and
Hyper-Parameter Details

We used the TensorFlow framework to perform all our
experiments and Weights and Biases MLOps tool to
keep track of all the metrics during the training. For
the training, we used an NVIDIA GEFORCE RTX
4090 GPU with the input image resolution of 224 x
224 and batch size of 32. The initial learning rate
(LR) for Adam optimizer was set to 0.001. The “Re-
duceLROnPlateau” learning rate scheduler was con-
figured to monitor the validation loss and the “Mod-
elCheckpoint” was adopted to save the best model
with the least validation loss. It had a minimum learn-
ing rate set to a threshold of 1e-6, a reduction factor
of 0.1 and a patience parameter of 10 epochs. We
trained all the models used for the experiments from
scratch on the MLRD without using any pre-trained
weights. We used minimal image augmentations dur-
ing training such as horizontal flips and brightness ad-
justments within the range of 0.2-0.5, while avoid-
ing the augmentation like vertical flips or rotations
to maintain the integrity of the first-person micromo-
bility rider perspective in the images. Considering
the class imbalance in MLRD and the objective of
multi-label classification, Binary Focal Crossentropy
(BFCE) loss function (Lin et al., 2017) with the com-
monly used weight balancing factor (α) as 0.25 and
the focusing parameter used to compute the focal fac-
tor (γ) as 2.0 were used. All models were trained for
80 epochs.
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Figure 3: An illustration of the integration of channel and channel plus spatial attention blocks in the inverted residual block
(a) present in MobileNetV2 (Sandler et al., 2018) and MobileNetV3 (Howard et al., 2019) architectures, as utilized in our
experiments.

5.2 Network Architecture

In our study, we empirically determined that approxi-
mately 100K total trainable parameters, coupled with
an input image resolution of 224x224, allowed for the
successful deployment of our model on the target plat-
form. The detailed description of technical specifica-
tion of the target deployment platform can be found
in section 5.3.

The MobileNetV2 (Sandler et al., 2018) and Mo-
bileNetV3 (Howard et al., 2019) based model archi-
tectures, including the baseline utilized in this re-
search, are derived from the official Keras imple-
mentation. Adhering to the official implementation
guidelines for Squeeze-and-Excitation (SE) (Hu et al.,
2018) and Coordinate Attention (CA) (Hou et al.,
2021), we strategically positioned the SE blocks im-
mediately following the depthwise convolution lay-
ers within the bottleneck modules of the MobileNet
architectures as shown in figure 3. This placement
enables the SE blocks to recalibrate the features ex-
tracted by depthwise separable convolutions, prior to
their projection through pointwise convolutions (1x1
convolutions) into a higher-dimensional space.

For all model variants in this study, the width mul-
tiplier hyperparameter, which regulates the number of
channels in the bottleneck layers, was fixed at 0.1.
This adjustment did not alter the network’s depth. The
channel reduction ratio for the squeeze operation in
the SE block was set to 16, and for the channel atten-
tion phase in CA, it was established at 32.

To comply with the memory constraints of our tar-
get hardware platform, particularly for MobileNetV3,
we modified the channels in the bottleneck blocks,

maintaining the original ratio and preserving the in-
tegrity of the original model architecture. Specifi-
cally, we halved the number of output channels and
quartered the expansion factor in each bottleneck
block compared to their original values. The expan-
sion factor is used to expand the number of channels
in the input feature map before applying a depthwise
separable convolution. This expansion allows the net-
work to capture more complex features in a higher-
dimensional space, while maintaining overall compu-
tational efficiency.

Furthermore, the neuron count in the final Fully
Connected layer was decreased from 1280 to 320,
aligning the model with the computational limitations
of the deployment environment.

5.3 Deployment on the Target Platform

The designated platform for our project is a
STM32H743VI low-spec microcontroller unit, mea-
suring just 1.40in x 1.75in. This unit is equipped
with a 32-bit Arm Cortex-M7 processor that oper-
ates at 480 MHz, supported by 1 MB of Static RAM
and 2 MB of FLASH memory. Despite its diminu-
tive size, it maintains a low power consumption be-
low 150mA, rendering this platform perfectly adapt-
able to the restricted environment of e-mobilities. As
shown in Figure 1, the final step in the pipeline in-
volves converting these models to TFLite format to
deploy on the target platform. However, all the float32
models mentioned earlier exceeded the required size,
preventing successful deployment. To rectify this,
we compressed the model parameters by transitioning
them from float32 to a more microcontroller-friendly
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Figure 4: A comparative Grad-CAM visualizations illustrating distinct behavioral patterns of different MobileNet model
variants on the MLRD dataset.

int8 precision, utilizing integer quantization using the
Post-Training Quantization technique (Zhang et al.,
2023).

Due to these limitations only the MobileNetV2
model is deployable, as the platform’s firmware does
not at present accommodate certain tensor operations
present in the MobileNetV3 architecture. Hence,
we formulated our conclusions by conducting exper-
iments in a simulated environment. Slightly differ-
ent behavior is anticipated on the actual platform due
to the quantization process required to compress the
model for deployment.

6 RESULTS AND DISCUSSIONS

Table 1 shows the performance metrics of stan-
dard large MobileNetV2 (MNV2) and MobileNetV3
(MNV3) base models on the MLRD dataset. Due
to the considerably higher number of parameters in
these models compared to their compact counterparts
in Table 2, there remains a significant gap in model
performance. The primary purpose of adding atten-
tion mechanisms to the compact models is to mini-
mize this gap as much as possible, aiming to enhance
model efficiency without substantially increasing the
computational overhead.

In the comparative analysis of MobileNetV2 and
MobileNetV3 architectures, augmented respectively
with Squeeze-and-Excitation (SE) and Coordinate At-
tention (CA) mechanisms, the experimental outcomes
highlight the utility of channel and spatial information
in micromobility safety application of lane recogni-

tion. These results were particularly noteworthy con-
sidering the challenges of working with fairly low-
resolution images and in a resource-constrained envi-
ronment where learning maximum features with very
minimal computational overhead is essential. The
MNV2 model, integrated with the Coordinate Atten-
tion, demonstrated superior precision scores in classi-
fying both the road and the bike lane classes, with a
significant increase in precision ( 8%) and a slight in-
crease (1%) in the average F1 score compared to the
baseline. This precision metric is instrumental in min-
imizing false positives, a crucial aspect for the robust-
ness and reliability of micromobility safety systems.

However, this configuration also manifested in the
highest parameter count, approximately 29K addi-
tional parameters, equivalent to about 100KB of in-
creased memory requirement, marking a 29.55% in-
crease from the baseline. While this configuration
offers potentially the most optimal performance, its
feasibility in low-resource settings is constrained by
the slightly increased computational overhead. The
observed decline in recall metric especially for the
“road” class in this model variant suggests potential
overfitting. This overfitting implies a slight over-
specialization of the model in recognizing specific
features, possibly predominant in the bike lane class,
to the detriment of its ability to generalize effectively.
This highlights the critical balance needed between
model complexity and its capacity to perform accu-
rately across diverse real-world scenarios.

In contrast, the MNV2 model integrated with the
Squeeze-and-Excitation attention (channel attention),
with an addition of approximately 11K parameters,
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Table 1: Classification results between standard (Large) of MobileNets on MLRD.

Models
(Large) Precision Recall F1 Score Weighted

Avg F1 Param.

Road Bike lane Road Bike lane Road Bike lane
MobileNetV2 0.96 0.97 0.90 0.86 0.93 0.92 0.93 2.26M

MobileNetV3Large 0.95 0.94 0.92 0.87 0.94 0.91 0.93 2.99M

Table 2: Classification results between Attention-Based and Non-Attention-Based compact versions (compact) of MobileNets
on MLRD.

Models
(compact) Precision Recall F1 Score Weighted

Avg F1 Param.

Road Bike lane Road Bike lane Road Bike lane
MobileNetV2 (Baseline) 0.86 0.86 0.89 0.80 0.88 0.83 0.86 95.87K

MobileNetV2 + SE 0.87 ↑1% 0.88 ↑2% 0.89 0.79 ↓1% 0.88 0.83 0.87 ↑1% 106.79K
MobileNetV2 + CA 0.94 ↑8% 0.93 ↑7% 0.83 ↓6% 0.79 ↓1% 0.88 0.85 ↑2% 0.87 ↑1% 124.21K
MobileNetV3 (SE) 0.83 ↓3% 0.77 ↓9% 0.74 ↓15% 0.84 ↑4% 0.78 ↓10% 0.80 ↓3% 0.79 ↓7% 109.82K
MobileNetV3 + CA 0.83 ↓3% 0.86 0.85 ↓4% 0.81 ↑1% 0.84 ↓4% 0.83 0.84 ↓2% 88.74K

resulted an slight improvement in precision metric for
both classes and a marginal increase in the overall
F1 score. This enhancement indicates the efficacy of
channel-focused attention mechanisms, like Squeeze-
and-Excitation, in boosting model performance, al-
beit with limitations in capturing the full spectrum of
spatial complexities required for tasks like lane recog-
nition like MobileNetV2 with Coordinate Attention.

For MNV3 models, the variant featuring Coordi-
nate Attention showed consistent performance met-
rics but with a reduced parameter footprint com-
pared to MNV2 models, aligning it more closely with
the resource limitations of low-spec microcontrollers.
However, it is noteworthy that the standard MNV3
model with SE attention was outperformed by its Co-
ordinate Attention-enhanced counterpart, likely due
to SE attention’s limited capability in addressing the
spatial intricacies essential for accurate lane detec-
tion. The integration of Coordinate Attention into
the MNV2 architecture notably enhances its perfor-
mance against both the baseline and SE-boosted vari-
ants. This improvement is attributed to the dual em-
phasis on channel and spatial attention, facilitating a
more comprehensive extraction and analysis of im-
age features. Such an integrated approach is vital for
accurately distinguishing between similar classes like
road and bike lanes, where spatial positioning is often
a key differentiator. Furthermore, the limited impact
of SE attention in these experiments can be attributed
to its primary focus on channel-wise feature recalibra-
tion, lacking the spatial resolution necessary for tasks
that demand an understanding of positional context.

Extending beyond micromobility safety, the im-
plications of these models are significant for au-
tonomous vehicle technology, where efficient and
rapid lane recognition is crucial. Implementing these

compact yet effective models in low-spec microcon-
trollers presents a promising path towards developing
cost-effective, high-performance autonomous naviga-
tion systems, offering an efficient alternative to more
computationally intensive segmentation models. This
approach paves the way for the deployment of ac-
curate, yet economically viable autonomous systems,
particularly suited for environments demanding fast
inference and minimal computational load.

Figure 4 presents a Grad-CAM (Selvaraju et al.,
2017) analysis of model variants applied to sam-
ple images from the MLRD dataset. This visualisa-
tion highlights the distinct behavioral patterns of each
model. However, no consistent pattern can be ob-
served in terms of the positioning of objects within
the images to predict the final classes.

7 CONCLUSIONS AND FUTURE
WORK

Cities around the world are progressing towards eco-
friendly urban transportation systems, including E-
scooters and E-bikes, to promote sustainable mobil-
ity while reducing traffic, noise, and pollution. Ana-
lyzing the behavior of e-mobility users is critical for
effective governance. However, existing GPS and LI-
DAR systems are limited, necessitating the adoption
of computer vision-based solutions. To bridge this
gap, we contribute a novel lane recognition multi-
label image classification dataset specifically for mi-
cromobilty applications.

Our experiments have demonstrated that while in-
tegrating attention mechanisms into compact CNN
models, such as MobileNetV2 and MobileNetV3, can
yield improvements in precision and overall perfor-
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mance, it is not without its challenges. Specifi-
cally, the MobileNetV3 model with channel and spa-
tial attention showed impressive performance, closely
matching the baseline model with significantly fewer
parameters. On the other hand, the MobileNetV2
model with channel and spatial attention, while show-
ing improvements in precision, had a decline in re-
call for the “road” class. Similarly, the MobileNetV3
model with channel attention demonstrated an overall
performance deterioration compared to the baseline,
suggesting potential overfitting. These observations
indicate that while attention mechanisms can enhance
model accuracy, their integration in compact models
must be approached cautiously, balancing the benefits
against the risks of overfitting and increased model
complexity.

In conclusion, we believe that our dataset
(MLRD) serves as a valuable tool for evaluating the
efficacy of MobileNet models with channel and spa-
tial attention mechanisms in enhancing lane recogni-
tion accuracy. These mechanisms hold promise for
deployment in compact models used in micromobil-
ity, especially the MobileNetV2 variants demonstrat-
ing improved F1 scores with a minimal increase in
parameter count. However, the complexities associ-
ated with compression and deployment in micromo-
bility environments can sometimes diminish or off-
set their potential improvements. In the future, we
intend to conduct a more exhaustive comparison in-
volving a wider range of model architectures. We
plan to deploy these models on low-spec target plat-
forms, to evaluate real-world behavior. Additionally,
we intend to explore other more effective and hard-
ware friendly model optimization techniques, such
as structured weight pruning and Quantization Aware
Training.
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