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Abstract: Currently, objective monitoring of resting tremor in Parkinson’s disease (PD) involves wearable devices and 
machine learning. Smartwatches may present an affordable method for remote and unintrusive tremor 
monitoring. However, the development of optimized systems is necessary to perform accurate monitoring in 
free-living settings. In this study, the potential of inertial sensors to detect resting tremors is evaluated. A 
smartwatch was placed on the wrist of six subjects with PD during the execution of MDS-UPDRS motor tasks. 
Data were collected over eight weeks from triaxial accelerometer and gyroscope simultaneously and used to 
implement machine learning algorithms to detect resting tremor. The best performance (accuracy 97.0% in 
tremor detection) was achieved using accelerometer data analysed with a Random Forest classifier, while the 
gyroscope showed lower performance (93.0%). The results indicates that the use of the accelerometer in 
commercial smartwatches can offer effective results for detecting resting tremors, while reducing 
computational workload. These results show opportunities for the development of robust free-living tremor 
monitoring systems using commodity devices and algorithms using a single sensor. 

1 INTRODUCTION 

Parkinson's disease is a neurodegenerative disease 
affecting the central nervous system, leading to motor 
and non-motor manifestations. PD occurs when 

 
a  https://orcid.org/0000-0002-4594-9477  
b  https://orcid.org/0000-0002-9968-5024 
c  https://orcid.org/0000-0003-0875-6913 
d  https://orcid.org/0000-0002-7924-0060 
e  https://orcid.org/0000-0002-9348-8038 
f  https://orcid.org/0000-0001-7440-8787 
g  https://orcid.org/0000-0001-7847-8707 
h  https://orcid.org/0000-0003-1699-7389 
i  https://orcid.org/0000-0003-0970-0452 

neurons do not produce enough of the chemical 
"dopamine" (Wirdefeldt, Adami, Cole, Trichopoulos, 
& Mandel, 2011).  

Globally, 7–10 million individuals are currently 
affected by PD, with an upward trend in recent years. 
PD is rare before the age of 50 and exhibits a greater 
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prevalence among men compared to women. The 
incidence of PD increases with age, affecting around 
1% of the population aged 60 or older (Rocca, 2018). 

The development of the disease over time is 
dependent on the person who suffers from it. During 
the disease, patients progress through different stages, 
associated with the severity of the symptoms and 
physical disability caused. Currently, the diagnosis 
and monitoring of the disease is conducted by a 
medical specialist who assesses a series of exercises 
performed by the patients using standardized 
guidelines (Bhidayasiri & Martinez-Martin, 2017).  

Among the motor symptoms in PD, the most 
common and diagnostically distinct motor symptoms 
is tremor (Halli-Tierney, Luker, & Carroll, 2020). 
Tremor can be defined as an involuntary oscillatory 
movement of parts of the human body, such as in the 
hands or feet. There are different types of tremors 
associated with PD, classified as resting tremor, that 
presents when patients are relaxed; and action tremor, 
which occurs when holding a position against gravity 
or during any voluntary movement (Gironell, 2018).  

The frequency range in which this type of tremor 
manifest is in the range of 3.5-7 Hz (Salarian, et al., 
2003), while common human movements are usually 
found in the 0-20 Hz band (Mannini, Intille, 
Rosenberger, Sabatini, & Haskell, 2013). 

Currently, levodopa is the principal drug used to 
treat PD actively (LeWitt, 2008). It acts by converting 
to dopamine in the brain and works vigorously on 
controlling tremors in patients.  

The subjective nature of motor assessment based 
in observation techniques and the sporadic follow-up 
commonly performed in clinical settings hinders the 
implementation of precise therapies. For this reason, 
the need of tools to improve the diagnosis and 
continuous monitoring is still required. 

The use of smart technologies for diseases such as 
PD is currently on the rise. Wearable technologies, 
stand out for their low cost, battery life, non-
invasiveness, can bring an excellent technological 
support to implement monitoring systems for PD. 

The use of inertial sensors such as accelerometers 
and gyroscopes included in wearable devices with an 
appropriate processing of these data and a subsequent 
implementation of artificial intelligence algorithms 
can be a promising alternative for the monitoring of 
motor symptoms in PD in free-living conditions. 

In this work, it has been evaluated which of the 
inertial sensors integrated in a smartwatch, 
accelerometer or gyroscope, could provide better 
performance in terms of accuracy for the 
classification of tremor in PD patients using machine 
learning models. The dataset (Sigcha, et al., 2023) 

used contains weekly records from several 
Parkinson's disease patients during various planned 
activities, while they were wearing a smartwatch. 

2 BACKGROUND 

Currently, the most used method for the assessment 
of PD is the Movement Disorders Society's review of 
the Unified Parkinson's Disease Rating Scale (MDS-
UPDRS) (Goetz, et al., 2008). Motor symptoms are 
evaluated in the part III of this guide on a scale of 0 
to 4, with 0 assigned to the non-existence of 
symptoms and 4 the label for the most severe value.  

Despite this scale is widely used, the evaluation 
can be subjective by the physician and depends on his 
or her perception at the time, which may vary from 
one neurologist to another. This, together with the 
fact that patients make very occasional visits to the 
clinic, has led many authors to study the possibility of 
remote and objective symptom monitoring.  

Therefore, in recent years, numerous studies have 
evaluated the possibility of using wearable devices 
for healthcare applications. Some studies have 
focused on the development of specific devices, while 
others have used commercial devices for the 
evaluation of PD pathologies (Sigcha, et al., 2023). 

Regardless of how the monitoring has been 
approached, MEMS (Micro Electronic Mechanical 
Systems) type sensors have been used due to their 
small size and low cost. The most common sensors 
used in motor symptom monitoring are the 
accelerometer and the gyroscope.  A study conducted 
by (San-Segundo, et al., 2020) used accelerometers to 
compare tremor detection in free-living conditions 
and in the laboratory environment, achieving a 10% 
and 5% error. (López-Blanco, et al., 2019) conducted 
one year of monitoring using a smartwatch that 
collected data from a gyroscope yielded a Spearman 
coefficient between the mean of the resting tremor 
scores and smartwatch measurements was 0.81. 

The combination of accelerometer and gyroscope 
data for tremor detection was evaluated in (Sun, et al., 
2021), where a watch integrating both sensors was 
developed, achieving an accuracy of over 94%.  

Despite the progress in tremor monitoring, 
previous studies have not focused on evaluating 
which inertial sensor (accelerometer or gyroscope) 
can provide more information to assess this symptom. 
This paper will to study the potential of inertial 
sensors in a commercial smartwatch to detect restring 
tremor and evaluate which dataset, the one collected 
from the accelerometer or the one obtained from the 
gyroscope, could provide more useful information. 
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3 MATERIALS AND METHODS 

3.1 Data Collection  

The data used in this study were collected during the 
TECAPARK project (TECAPARK, n.d.), using a 
proprietary m-health application named Monipar 
(Sigcha, et al., 2023). A consumer-grade smartwatch 
and a smartphone were used to monitor motor 
symptoms in PD patients. The Monipar dataset 
contains weekly records from Parkinson's disease 
patients during planned activities, including 
standardized exercises and resting periods for their 
upper limbs, while they were wearing a smartwatch. 

Data was collected from 6 PD patients (3 males/3 
females, 64.2 ± 8.2 years). These subjects were in 
early stages of the disease according to the Hoehn and 
Yahr scale (Hoehn & Yahr, 1998) (H&Y = 1).  

Three participants did not present tremors while 
the other three presented tremors. A trained specialist 
evaluated tremor according to MDS-UPDRS 3.17, 
assigning score from 0 (no tremor) to 2 (mild tremor).  

The data collection was conducted over 8 weeks, 
and, during the study, all patients maintained their 
usual medication regimen. 

To perform tasks such as signal labeling, 
preprocessing and feature extraction, MATLAB 
software (R2017a) was employed. For the evaluation 
and the training of the models, Python (3.6), and the 
libraries Pandas, and Scikit learn were chosen. 

3.2 Acquisition Device (Smartwatch) 

A consumer-grade smartwatch was used as the data 
acquisition device during the measurement sessions 
and was placed on the wrist of the most affected side. 

The wearable device was used to collect vibration 
signals in the time domain using the bult-in inertial 
sensors (accelerometer and gyroscope) in three axes. 
In the case of the accelerometer, in m/s2, and, for the 
gyroscope, in rad/s. 

In this study, a smartwatch with dimensions of 
46.6×51.8×12.9 mm and a weight of 32.5g was used, 
with WearOs® as the operating system. This 
smartwatch is equipped with an LSM6DS3 type 
package, which includes a 3-axis digital gyroscope 
and a 3-axis digital accelerometer. The triaxial 
accelerometer has a maximum measurement 
amplitude of ±2 g, while the triaxial gyroscope has a 
measurement range of ±2000 dps.  

The smartwatch was set to record data at a 
sampling rate of 50 Hz. This frequency has been 
established as it is appropriate for the analysis of 
human movement, as common human movements are 

usually found in the 0-20 Hz band, while it also 
allows recording the typical PD tremors in the range 
of 3.5-7 Hz (Salarian, et al., 2003). 

3.3 Experimental Protocol 

In each measurement session, each patient performed 
8 exercises designed to assess the motor status, 
including resting periods between exercises. These 
exercises were conducted using Monipar application, 
which guides the user through exercises by displaying 
the tasks to be performed on the mobile screen.  

In specific, each exercise belongs to the MDS-
UPDRS part III. The exercises proposed are related to 
the amplitude of resting and postural tremor of the 
hands, movement of the hands towards the chest, 
finger tapping, hand movements, pronation-
supination of the hands, getting up and gait.  

Each exercise has a different duration 
(explanation plus execution); some take 15 seconds, 
while others may require 50 seconds. Furthermore, 
there is a 30-second break between exercises, making 
7 minutes the approximate duration of each single 
measurement session. Furthermore, each patient's 
sessions were video recorded for subsequent labeling. 

For the completion of this work, only the data 
related to resting tremor amplitude, assessed through 
section 3.17 of the MDS-UPDRS were used. In this 
task, the patient should sit quietly in a chair with 
hands resting on the armrest (not on the lap) and feet 
resting comfortably on the floor, for 10 seconds, 
without any other indication. Figure 1 shows the 
interface of the resting tremor exercise.  

 
Figure 1: Exercise explanation in mobile application. 

3.4 Data Labelling 

For data labelling, Monipar automatic generated 
labels were used for each of the exercises. The 
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sequence of exercises is numbered from 1 to 8 
according to the order in which they are performed. 
The resting tremor exercise corresponds to label 1.  

For tremor labeling, data were automatically 
labeled using thresholds according to magnitude 
analysis in the tremor band (3.5-7.5 Hz).  Then, these 
labels were verified and corrected using video 
recordings for each test. Data was labeled according 
to the MDS-UPDRS section 3.17 guidelines. In 
specific, the following were assigned to the data: 0 
(Normal) if no tremor is observed, 1 (Slight) if the 
maximum amplitude of the movement is less than 1 
cm, 2 (Mild) if the maximum amplitude is between 1 
and 3 cm, 3 (Moderate) if it is between 3, and 10 cm 
and as 4 (Severe) if it is greater than 10 cm.  

Figure 2 shows the distribution of tremor labels. 
Only labels 0,1,2 are available, with 0 being the most 
common label, present in 78% of the data. 

 
Figure 2: Observations distributed by tremor label. 

In this paper, the tremor label was used in two 
ways. On the one hand, to classify among MDS-
UPDRS scores. And on the other hand, to 
differentiate between the presence or not of tremor, 
so labels 1 and 2 will be grouped into a single label. 

3.5 Algorithmic Approach 

This paper presents machine learning models that 
predict the level of tremor amplitude using 
accelerometer and gyroscope data to identify which 
of them is more useful for prediction. This work was 
developed following the schema shown in Figure 3.  

 
Figure 3: Algorithm development diagram. 

To train and evaluate the proposed models, the 
signal obtained from the smartwatch has been 
processed. First, the signal obtained from each of the 
three axes of each sensor was combined into one by 
means of Euclidean Norm according to equations (1) 
and (2). This is since the inertial sensors embedded in 
the wearable device can have a random orientation, 
so this combination has been performed to avoid 
errors. In addition, the computational load during 
training and prediction can be reduced. 𝐴𝑐𝑐𝑒𝑙 ൌ ට𝑎𝑐𝑐𝑒𝑙௫ଶ  𝑎𝑐𝑐𝑒𝑙௬ଶ  𝑎𝑐𝑐𝑒𝑙௭ଶ (1)

𝐺𝑦𝑟𝑜 ൌ ට𝑔𝑦𝑟𝑜௫ଶ  𝑔𝑦𝑟𝑜௬ଶ  𝑔𝑦𝑟𝑜௭ଶ (2)

After calculating the Eucliden norm the signal 
was filtered using a Butterworth band-pass filter of 
order 3 to select the signal between 0.5 and 10 Hz. 
This frequency range is suitable for human activity 
recognition and relevant for the tremor present in PD 
(Khan, Hammerla, Mellor, & Plötz, 2016). 

Following, signal segmentation was performed 
using 128-sample windows (2.56 seconds) using 50% 
overlap. A total of 5158 windows have been defined. 
This combination of segmentation and overlapping is 
recommended for PD tremor analysis (Patel, et al., 
2009) using inertial sensors.  

To establish the tremor amplitude label in each of 
the windows, if the label is repeated for more than 
half of the observations in each window, the assigned 
value will be that label. If this does not occur, such 
windows will be excluded. 

Finally, the signal was transformed to the 
frequency domain using the Fast Fourier Transform 
(FFT), since it has been shown (Ahlrichs & Samà, 
2014) that the signal in the frequency domain could 
be representative to evaluate the tremor. 

Both time and frequency domain features will be 
obtained. The time variables are the easiest to obtain 
since do not entail a very high computational cost; 
however, they do not lead to very robust conclusions 
due to their difficult interpretation in this domain in 
view of the tremors associated with human 
movement. Nevertheless, the frequency variables 
allow an improvement in the detection of the tremors 
despite being more computationally complex to 
acquire due to the need to calculate the FFT. 

For each domain, the same type of features was 
obtained. The Table 1 shows the extracted features 
with a brief explanation of each of them. The database 
used will be composed of 18 characteristics, 9 from 
the time domain and 9 from the frequency domain. 
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Table 1: Features extracted from the filtered accelerometer 
and gyroscope signals in each domain. 

Feature Description 
Standard 
Deviation 

Returns the standard deviation of 
the signals in each domain.

Mean Calculates the median value of all 
the measurements. 

Median Finds the median value of the 
filtered signals in each domain.

Percentile 25 The 25th percentile of the input 
data for each domain signal slice.

Percentile 75 The 75th percentile of the input 
data for each domain signal slice.

Skewness Asymmetry of the filtered signals 
in each domain. 

Max Finds the maximum of the values 
for each window in each domain.

Min Finds the minimum of the values 
for each window in each domain.

Entropy Returns the entropy of the filtered 
signals in each domain. 

To these 18 features, those obtained from the FFT 
of the signal must be added. In this case, 65 additional 
features were obtained. So, a total of 83 features were 
calculated for each of the 5158 defined windows. 

For the development of machine learning models, 
the database was divided using Hold Out Validation. 
In this case, 80% (4126 windows) of the data for 
algorithm training and 20% (1032 windows) for 
algorithm validation. Although all measurements 
were collected during the same task, since human 
movement, especially PD, is different from one to 
another, the train-test distribution has been 
randomized among the entire dataset. 

As the target variable is categorical, the models 
proposed are classification models. In this study, the 
following models are proposed: Gradient Boosting 
(XGB), AdaBoost (ADAB), KNeighbours (KNN), 
Random Forest (RF), Logistic Regression (LR) and 
Decision Tree (TREE). Evaluation of the models was 
performed using accuracy, sensitivity, specificity, 
precision and F1-score metrics. 

4 EXPERIMENTS AND RESULTS 

This section presents the results obtained in the 
present study. Multiple experiments were conducted 
to evaluate and determine which sensors provide the 
best performance. Section 4.1 presents the results 
related to the evaluation using a binary classification 
between tremor and non-tremor, obtaining the best 
sensor with the results of the best model obtained. 
Section 4.2 presents the results using the 

classification of the tremor level thresholds according 
to the MDS-UPDRS scale and establishing the best 
sensor and model obtained. 

4.1 Results of the Training of Binary 
Models 

The proposed classification models shown in Section 
3.5 were implemented and trained using the set of 
features extracted from the time and frequency 
domains for each triaxial signal. In specific, two 
different sets of features were extracted to each 
inertial sensor (accelerometer and gyroscope). 

In this case, as an unbalanced database is used, 
metrics such as accuracy or precision, which measure 
the proportion of correct predictions out of the total 
number of predictions, can be misleading as they 
provide a very high percentage of correct predictions, 
but they could be only correct predictions of no 
tremor. Thus, the study has focused on analyzing the 
F1-score, because this metric combines precision and 
recall using their harmonic mean, so a maximum F1-
score implies maximizing both precision and recall 
simultaneously. Figure 4 show the training results 
obtained, as reflected in the F1-score for each of the 
models for the accelerometer and the gyroscope.   

 
Figure 4: F1-score comparison for each algorithm using 
accelerometer and gyroscope data. 

From the observation of figures 4, it is evident that 
results obtained from the data provided by the 
accelerometer suppose a better performance of the 
prediction model over those achieved through the 
gyroscope. The average F1-score value of the models 
trained with the accelerometer data was 0.86 while 
that obtained with the gyroscope dataset is 0.70. 

However, to determine which is the best 
classification model obtained, all calculated metrics 
were considered. Table 2 and Table 3 show the 
training results for each of the models. 
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Among all the machine learning algorithms 
implemented, it is observed that the Random Forest 
algorithm offers the best metrics, and in particular the 
balance of sensitivity and specificity is highlighted. 

Table 2: Metrics obtained for each machine learning 
algorithm from accelerometer data. 
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XGB 0,94 0,86 0,96 0,87 0,87
ADAB 0,94 0,87 0,96 0,86 0,86
KNN 0,94 0,86 0,97 0,88 0,87
RF 0,95 0,87 0,97 0,90 0,88
LR 0,93 0,81 0,97 0,87 0,84

TREE 0,94 0,86 0,96 0,86 0,86

Table 3: Metrics obtained for each machine learning 
algorithm from gyroscope data. 
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XGB 0,88 0,51 0,99 0,92 0,65
ADAB 0,89 0,61 0,97 0,84 0,71
KNN 0,90 0,61 0,98 0,89 0,72
RF 0,90 0,68 0,97 0,86 0,76
LR 0,88 0,57 0,97 0,85 0,68

TREE 0,86 0,68 0,90 0,67 0,68

The test data, 20% of the total dataset, has been 
evaluated with the best model, Random Forest, to 
identify which of the two dataset yields better results. 
The metrics are shown in Table 4 while the related 
normalized confusion matrices are shown in Figure 5. 

Table 4: Metrics associated with Random Forest algorithm 
for accelerometer and gyroscope for test set. 

[%] Accelerometer Gyroscope 
Accuracy 96.98 92.99 
Sensitivity 91.06 75.07 
Specificity 98.56 97.70 
Precision 94.38 89.54 
F1-score 92.69 81.67 

It can be appreciated that both inertial sensors 
have above 75% in all the metrics that were 

considered. However, there are notable differences 
based on the selected inertial sensor. For all these 
metrics, the accelerometer database shows better 
performance than the gyroscope. While both sensors 
obtain quite similar specificity values, significant 
differences are shown in the other metrics, with the 
most significant difference in sensitivity, where the 
accelerometer provides a value of 91% while the 
gyroscope obtains a value of 75%. 

It is noteworthy that the gyroscope data produces 
an error of 25% predicting no tremor when it is 
tremor. 91.06% sensitivity and 98.56% specificity for 
the data provided by the accelerometer indicate a very 
high accuracy rate in the prediction of resting tremors. 

Accelerometer Gyroscope

Figure 5: Confusion matrices for accelerometer and 
gyroscope for test set. 

4.2 Results of the Training of 
Multiclass Models 

This experiment will approach the lines of resting 
tremor prediction in a more qualitative way, leaving 
behind binary classification. It has sought to evaluate 
the performance of the algorithms by faithfully 
predicting the tremor label assigned by the MDS-
UPDRS scale, using multiple classification. 

In this case, the model that has been proposed is 
the one that has achieved the best results in the binary 
classification model. The Table 5 shows the metrics 
obtained from the model trained using the data from 
the different data sources.   

Table 5: Comparison of the accuracy of each class for 
Random Forest (multiclass classification). 

 Accelerometer  Gyroscope 

[%] 0 1 2 0 1 2 
Accuracy 96.8 89.3 
Sensitivity 98.6 88.5 93.6 97.9 54.7 60.2 
Specificity 98.6 88.5 93.6 97.9 54.7 60.2 
Precision 97.9 88.9 100 93.7 64.6 75.5 
F1-score 98.2 88.7 96.7 95.8 59.2 67.0 
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It can be noticed that the prediction of true resting 
tremors of amplitude according to MDS-UPDRS 
(scores 1 and 2) has a much higher hit rate with the 
accelerometer data than by the gyroscope. For the 
detection of no tremor (label 0), the values obtained 
by the accelerometer and the gyroscope are quite 
similar, however, it is again the dataset obtained from 
the accelerometer that provides the best results. 

From the observation of Figure 6, for the 
gyroscope data, it is a difficult task to discern between 
tremor and no tremor. It makes an error of 36% 
predicting tremor 1 when it is really rest, and 38% 
predicting tremor 2 when it is tremor 1. This is not the 
case for the accelerometer, with very low percentages 
of error between predictions for no tremor and 
different level of tremor (11% and 6%, respectively).  

Accelerometer Gyroscope

 
Figure 6: Confusion matrix for Random Forest model. 

5 CONCLUSIONS 

Monitoring PD individuals is crucial for precisely 
tracking their progression and treatments. This study 
seeks to optimize this process and aims to implement 
efficient algorithms to facilitate the monitoring. 

With the rise of technology in recent decades, this 
study indicates that a commercial smartwatch can 
provide useful data to monitor resting tremor in PD in 
subjects. Several models for the prediction of resting 
tremor were implemented using data provided by 
inertial sensors embedded in a smartwatch during the 
performance of eight standardized exercises. 

The results suggest that the use of the 
accelerometer as only inertial sensor can provide 
optimal results for prediction of resting tremor. The 
use of a single inertial sensor in wearables could help 
improve the battery performance and power 
consumption of the device, as well as reduce the 
computational load needed for data.  

However, it should be noted that this study has 
certain limitations that need to be considered in future 
projects. It has been worked with 6 PD patients for 8 
weeks, which may be a small sample. In addition, the 
database is unbalanced, with more than 75% of the 

samples from the same label. So, a larger number of 
measurement sessions would be necessary to increase 
the reliability of the study. 

The binary prediction of PD resting tremor 
achieves its best hit rate using a Random Forest model 
with the accelerometer data, obtaining 91.06 % in the 
sensitivity metric and 98.56 % in the specificity 
metric. These results are remarkably satisfactory for 
the automatic detection of resting tremor, and are 
similar to those proposed in (Sun, et al., 2021) and 
(San-Segundo, et al., 2020), but with the advantage 
that it has been achieved using a single sensor. 

 To find a prediction that fits better the true level 
of resting tremor, an experiment has been conducted 
in which the Random Forest algorithm was trained for 
a multiple prediction that differentiates the resting 
tremor collected according to the MDS-UPDRS 
labelling guide. Based on the results, it is observed 
that, using the data provided by the accelerometer, it 
is possible to predict very reliably, with a sensitivity 
and specificity rate of 98.6% in no presence of resting 
tremor, 88.5 % for tremor with MDS-UPDRS score 
1, and 93.6 % for resting tremor score 2, with the 
biggest challenge for the algorithm being the 
differentiation between no tremor and tremor score 1.  

A multiclass classification gives a more specific 
idea of the severity of the disease, and in a future real-
world application, would contribute to the clinician's 
understanding and follow-up of the patient's data.  
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