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Abstract: A hybrid mechanistic/neural network model was developed for the industrial polymer composite curing 
process of a fibre-reinforced polymer composite. A hybrid model with parallel scheme and a hybrid model 
with the combination of series and parallel schemes were developed. It is found that the hybrid model with 
the combination of series and parallel schemes gives better performance. It is shown that the developed hybrid 
model is more accurate than its mechanistic and neural network counterparts in predicting the degree of cure 
based upon the temperature and time data. The hybrid model is 7.7% and 17.1% more accurate than the neural 
network model and the mechanistic model respectively in terms of sum of absolute errors.  

1 INTRODUCTION 

Fibre-reinforced polymer composites (FRPCs), or 
simply composites, are materials that consist of two 
phases: the matrix phase, delivered by a tough but 
structurally weak thermoset resin, and the reinforcing 
phase, delivered by filaments (diameter ~10μm) of a 
strong and stiff material (Smallman & Bishop, 1999). 
This combines the properties of both constituents (Taj 
et al., 2007) and gives the final composite material 
with high stiffness to weight ratio and improved 
strength in comparison to other structural materials 
(Ahmad et al., 2021). Common fibres used in modern 
composites include carbon, boron, glass, aramid and 
naturally occurring plant fibres. The fibres are 
impregnated with the matrix phase, setting the fibres 
into place and providing lateral support, while also 
minimising damage to the composite by providing 
plastic deformation characteristics lacking in the 
reinforcing phase (Soutis, 2005). 

Originally developed for the aerospace industry to 
reduce the weight of aircraft (Ahmad et al., 2021), but 
due to the reduction in price of composites in recent 
years, many other applications have been found. 
Aerospace now only accounts for 20% of the carbon 
fibre market (Soutis, 2005). The same properties that 
make composites appropriate for use in aeroplanes 
make them useful for increasing fuel efficiency in 
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modern cars. Roughly 75% of fuel consumption of a 
car is directly related to its mass and, thus, lightweight 
composite panels have been the material of choice for 
hybrid and battery powered cars to maximise their 
driving range, and on high performance supercars to 
increase performance. Due to the energy absorption 
of an epoxy matrix phase, composite materials 
provide increased passenger safety when compared to 
metal components, and now composites are used to 
create entire cabs for heavy trucks and large panels on 
buses (Friedrich & Almajid, 2013). This study uses 
data from an automotive industry composite curing 
process. 

Composites are also used extensively outside of 
transport applications. Composites have almost fully 
replaced conventional materials, particularly in 
conjunction with ceramics (Grand View Research, 
2019), in the ballistic armour industry. Polymer 
composite materials are also finding extensive use in 
civil construction, particularly in repair and 
rehabilitation of existing concrete structures 
(Pendhari, et al., 2008) (due to strength and 
toughness). Fibreglass is an incredibly common 
material in the building of yachts and high 
performance dinghies (to reduce weight and increase 
speed). Polymer and ceramic composites are being 
introduced into systems involving corrosive chemical 
storage (due to the chemical resistive nature of the 
polymer matrix phase). 
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In the manufacturing of epoxy composites and 
other thermosetting resins, a technique called resin 
transfer moulding (RTM) is used (Liu et al., 2019). 
This is where the matrix-phase monomer resin is 
applied to the reinforcing phase already in the mould, 
mixed with a curative, usually an amine or anhydride 
(Hara, 1990), to harden the resin by polymerisation 
around the fibre structure in the shape of the mould. 
The temperature control of the curing process is 
delivered by placing the mould in an oven and the 
energy supplied to the part activates the exothermic 
curing reaction. The temperature profile of the 
reaction is dependent on the heat produced and the 
energy supplied to the reaction by the mould system, 
which can be used to control the degree of cure (Joshi 
et al., 1999). 

However, improper curing via incorrect 
temperature control can cause irregularities in the 
final mechanical properties of the composite. A key 
parameter in the strength of the composite is the 
strength of the bond between the fibre and the 
polymer, and due to the difference in coefficients of 
thermal expansion between the two phases, the 
incorrect heating of the composite during cure can 
lead to residual micro-stresses in the composite 
structure after the cure has been completed 
(Kondyurin, et al., 2012). Thus in order to exert 
optimal control over the final properties of the 
composite, accurate models of the curing process 
must be created. 

Models for degree of cure in polymer composite 
moulding processes can be generally classified into 
two catagories: mechanistic models and data-driven 
models. Mechanistic models are based on first 
principles such as reaction kinetics. They should be 
accurate and reliable if precise mechanistic 
knowledge is available. However, some mechanistic 
knowledge can be complex and only partially known. 
In such cases simplifications and assumptions have to 
be made leading to reduced model accuracy. 
Furthermore, the development of mechanistic models 
are typically time consuming and effort demanding. 
Data-driven models can be developed quickly and can 
give accurate predictions when used within the range 
covered by the training data. However, they are of 
black box nature and are difficult to interpret. They 
can also give large errors when applied outside the 
range covered by the training data. A hybrid model 
combining both mechanistic model and data-driven 
model could exhibit the advantages of both types of 
models.  

The most common technique to model the cure of 
polymer composite is the use of semi-empirical 
mechanistic modelling. These models state a general 

order for the reaction process replacing the 
concentration of the present species in the kinetic 
equation with a measure of the degree of cure (Halley 
& Mackay, 1996). The model parameters are found 
via experimentation much like that of first-principle 
mechanistic modelling. Simple semi-empirical 
models were used by (Karkanas et al., 1996) and (Du 
et al., 2004) for modelling a composite curing 
process, and both managed to produce models that 
were accurate for ~80% of the experimental data. 
However, these models did not have consistent 
reaction orders as the temperature changed and 
required other equations, such as the diffusion factor 
used by (Du et al., 2004) to manipulate the reaction 
rate constant in the latter stages of the reaction. To 
improve the areas of poor accuracy, first principle 
models can be used, such as those developed by 
(Blanco et al., 2005) and (Riccardi et al., 2001), 
which provide a consistent reaction order for the 
system that does not change with the temperature, but 
the accuracy is still only acceptable for ~80% of the 
cure process, thus not justifying the added complexity 
of these models. Alternatively, Joshi et al. (1999) 
used two separate semi-empirical models to model 
their composite curing process, with the Arrhenius 
parameters and reaction order changing after degree 
of cure reaching 0.18, but there were significant 
inaccuracies in this investigation at the boundary 
between models despite the model being accurate at 
the beginning and end of the cure process. 

Data-driven models, in particular neural network 
(NN) models, have been reported for the modelling of 
degree of cure in reactive polymer composite moulding 
processes. Zhang & Pantelelis (2011) developed a 
bootstrap aggregated neural network model that 
predicted the electrical resistance of a polymer/carbon 
composite part during curing and used this to predict 
the degree of cure. The one-step ahead model used for 
effective process optimisation which increased the 
maximum degree of cure for a part by as much as 0.2 
in offline optimisation. Similar results were found from 
the model produced by Lee & Price (1996), who 
modelled the curing of epoxy by a NN that directly 
predicted the degree of cure rather than resistance. It 
was found that the NN model was more accurate when 
predicting degree of cure (DOC), with the absolute 
error consistently lower (< 0.04) than that of the 
analytical model (≤ 0.12). What is observed is, similar 
to that found by Zhang & Pantelelis (2011) that the NN 
model tended to underpredict the degree of cure as the 
curing neared completion (𝛼 > 0.8) opposed to the 
analytical model which overpredicts. In addition to 
this, Su et al. (1998) found that their NN models for 
controlling a curing process exhibited poor adaptability 
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when the system to be modelled lies outside of the 
training data limits, a problem that was not apparent 
with analytical models. 

Hybrid mechanistic/neural-network models 
(HNN) use a mechanistic component and a NN 
component to strike the balance between the speed 
and accuracy of a neural network and the applicability 
of a mechanistic model (i.e. allowing the HNN to 
operate outside of the range of training data 
effectively). To the authors’ knowledge, there are no 
known examples of applying a HNN to the curing 
process of reactive polymer composite moulding, but 
in other complex systems, HNNs have found 
successes. Lee et al. (2002) developed 4 models for 
analysis of the treatment of coke-plant wastewater 
(mechanistic, NN, serial-HNN, parallel-HNN). The 
serial-HNN used a single NN to estimate the 
parameters for the two types of biomass which fed 
into the mechanistic model, and the parallel-HNN 
model used a single NN to produce error estimations 
for the mechanistic model to be combined to guide 
the mechanistic model output. The parallel-HNN was 
the most accurate of the two HNNs investigated, and 
while the NN outperformed the parallel model in 
training but for the validation on unseen data, the 
hybrid model was more accurate. This shows the 
advantage of using a hybrid model, in that it has 
greater ability to estimate unseen data than a standard 
neural network or mechanistic model. Tian et al. 
(2001) applied a parallel hybrid neural network model 
to a polymerisation process of methyl methacrylate. 
In the reported study, rather than one neural network, 
a stacked neural network (bootstrap aggregated 
neural network) was used to predict the error from the 
mechanistic model to compare to using a single 
optimised neural network for the parallel hybrid. The 
stacked neural network was more successful, but 
most interestingly the confidence bounds (used as an 
indication of reliability on unseen data) were 
incredibly tight for the parallel model’s prediction of 
conversion. 

This paper presents a hybrid mechanistic and 
neural network model for the modelling of degree of 
cure in an industrial polymer composite moulding 
process.  

2 MODELLING OF DEGREE OF 
CURE  

2.1 Data Collection 

The cure-process raw data was provided by SOTIRA, 

a subsidiary of the SORA Composites Group, who 
manufacture plastic/carbon composite parts for the 
automotive and agriculture industries. The raw data 
consisted of resistance and temperature 
measurements of the composite part at minute 
intervals during the industrial manufacturing process, 
collected using OptiMold from Synthesites (Zhang & 
Pantelelis, 2011). The temperature was controlled at 
114oC but fluctuated randomly throughout each 
experiment due to process noise. 25 sets of 19-
minute-long runs were provided for this investigation 
(labelled A1-A25). Figure 1 shows the pictures of the 
product and the mould. 
 

 
(a) 

 
(b) 

Figure 1: Product (a) and mould (b) for the reactive polymer 
composite moulding process. 

The degree of cure (DOC) was determined using 
Eq(1) (Zhang & Pantelelis, 2011). The value of αmax 
was calculated for each data set using Eq(2), where 
Rmax,O represents the maximum resistance achieved 
by any of the 25 experiments (4.05x106 MΩ on 
experiment A6). This is considered universal (A1-
A25) as each composite part is assumed to be the 
same shape and size. However, Rmin was taken on a 
case-by-case basis as due to the confidential nature of 
the experimental setup, it is assumed that the resin 
and the curative have not interacted before the 
experiment begins. 
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𝛼ா ൌ logሺ𝑅ሻ െ log൫𝑅,൯log൫𝑅୫ୟ୶,൯ െ log൫𝑅,൯ 𝛼୫ୟ୶, ,  𝑖 ൌ ሼ1, … ,25ሽ  
 

(1)

𝛼୫ୟ୶, ൌ log൫𝑅୫ୟ୶,൯log൫𝑅୫ୟ୶,ை൯ , 𝑖 ൌ ሼ1, … ,25ሽ  (2)

where αE is the experimental DOC, αmax is the 
maximum DOC, R is resistance (MΩ), and i is 
experiment number. 

Each model development process consisted of 
fitting and testing. The experimental data was divided 
into two groups: 70% for fitting and 30% for testing. 
This was the ratio used in (Zhang & Pantelelis, 2011) 
when building their NN from a similarly sized dataset 
using degree of cure data, resulting in an accurate 
model. The fitting data was used to define the model 
parameters (i.e. kinetics constants or node weights) 
where the experimental DOC data was available to 
the model. The testing data set was used to test the 
model to get an indication of how the model will 
perform when it is applied to the real life cure process, 
i.e. testing performance as opposed to “recall” (Lee et 
al., 2002). 7 runs (~30%) were selected at random for 
use in the testing stage. These were: A2, A3, A12, 
A13, A14, A21 and A23, and Figure 2 shows how the 
spread of fitting and testing data compares. 

 

 
Figure 2: Degree of cure in training and testing data. 

For the NN and HNN models, the fitting group 
was further divided again into training and cross 
validation groups. The training group is used to define 
several combinations of node weights that model the 
input/output relationship adequately. These 
candidates are then exposed to the cross-validation set 
which allows the most accurate model to be chosen 
from the candidates. This is not to be confused with 
testing, as the output data is still available to the 
model, and the candidate selected will carry any 

biases present in the cross-validation data (Demuth & 
Beale, 2004). 

2.2 Mechanistic Modelling 

A mechanistic model was identified to act as the 
mechanistic component of the hybrid neural network 
(HNN) model, but also to be used for comparison 
purposes to the HNN model to test model 
performance. To identify the best mechanistic model, 
three types of semi-empirical models were identified 
and tested to compare their respective accuracy and 
precision. The three mechanistic models are shown in 
Eq(3) to Eq(5) and are labelled as Models 1 to 3. 
These are the semi-empirical models presented by 
(Karkanas et al., 1996) that apply to the majority of 
different matrix-phase curing processes, and versions 
of these models are used by Joshi et al. (1999) and Du 
et al. (2004). 
 

Model 1: dαd𝑡 ൌ 𝑘ଵሺ1 െ 𝛼ሻ , 𝑘ଵ ൌ 𝐴,ଵ𝑒ିாಲ,భோ்  (3)

Model 2: dαd𝑡 ൌ ሺ𝑘ଵ  𝑘ଶ𝛼ሻሺ1 െ 𝛼ሻ , 
𝑘௫ ൌ 𝐴,௫𝑒ିாಲ,ೣோ்  

(4)

Model 3: dαd𝑡 ൌ 𝑘ଵ𝛼ሺ1 െ 𝛼ሻ , 𝑘ଵ ൌ 𝐴,ଵ𝑒ିாಲ,భோ்  (5)

In the above equations, k1 and k2 are reaction rate 
constants (min-1), m and n are reaction orders, A0 is 
the nominal Arrhenius pre-exponential factor (min-1), 
EA is the nominal activation energy (J.mol-1), and R is 
the universal gas constant (J.mol-1.K-1). 

The model parameters in these equations are 
obtained by fitting the training dataset. This was 
carried out by using the FMINCON function from the 
MATLAB Optimisation Toolbox. This is a non-linear 
optimisation algorithm that locates points of zero 
gradient in the objective function based on several 
inputs. For larger optimisation problems, a Hessian is 
used, and for small/medium size problems a 
Sequential Quadratic Programming method is used to 
find the optimum (Novac et al., 2009). While 
FMINCON finds only local minima (therefore the 
output objective function is dependent on the initial 
guess values) and genetic algorithms have been found 
to be more accurate optimisers. The fitted 
mechanistic models were then applied to the testing 
dataset with the results given in Table 1. It can be seen 
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that Model 3 was identified to be the most accurate 
mechanistic model having the lowest SAE (sum of 
absolute errors) and SSE (sum of squared errors). 
Model 3 is used in the development of HNN model. 

Table 1: Identified model parameters and performance on 
the testing data. 

 Model 1 Model 2 Model 3
A0,1 9.997×104 9.928×104 9.996×104

A0,2 - 9.997×104 -
EA,1 4.297×104 5.334×104 4.900×104

EA,2 - 4.164×104 -
m - 0.2119 0.2033
n 1.0893 1.3787 1.3728

SAE 6.695 6.658 6.636
SSE 0.527 0.521 0.520

2.3 Neural Network Modelling 

A neural network model was developed for the 
purpose of comparison with the hybrid model. The 
model inputs are curing temperature (T) and curing 
time (t). A two hidden layer feedforward neural 
network is developed. The fitting data were further 
portioned to training data (75%) and validation data 
(25%). The number of hidden neurons were 
determined by considering a range of hidden neurons 
and the one giving the best performance on the 
validation data is considered to have the appropriate 
network structure. For building the NN model and the 
NN part of the HNN model, the MATLAB Deep 
Learning Toolbox was employed. This allows the 
user to specify the architecture of different inbuilt 
neural network systems. The neural network that was 
used for this investigation was the feedforward neural 
network as shown in Figure 3. The feedforward 
neural network architecture is simple and does not 
require time delays or for the neural network to be 
recurrent which allows greater control for the user 
and for a greater number of network types to be 
investigated. The final selected NN model is shown 
in Figure 3, where the numbers of hidden neurons 
were determined through cross-validation using the 
validation data. 

 
Figure 3: NN model structure. 

 

3 HYBRID MODEL 

3.1 Model Structure 

The hybrid neural network is shown in Figure 4. The 
neural network model was trained to model the error, 
αError, between the mechanistic model and the 
experimental value for α calculated using Eq(1) and 
Eq(2). This does not exactly follow the explicit 
parallel form of the hybrid created by (Lee et al., 
2022) as their hybrid relied on inputs for the 
mechanistic model and the neural network being the 
same with no series characteristics. The model setup 
following this mantra is shown in Figure 4, however 
initial modelling studies found greater accuracy using 
the output of the mechanistic model as the input for 
the neural network. Hence, the model shown in 
Figure 5 was preferred over Figure 4. 

 
Figure 4: Hybrid model with the parallel scheme. 

 
Figure 5: Hybrid model with the combination of series and 
parallel schemes. 

3.2 Model Performance 

Table 2 shows the performance of the mechanistic 
model, NN model, and HNN model on the testing 
data. It can be seen from Table 2 that the mechanistic 
model gives the worst performance. This could be due 
to that the three considered mechanistic models do 
not fully represent the reaction kinetics of the reactive 
polymer curing process. The NN model gives better 
performance than the mechanistic model in this case. 
This could be due to the excellent capability of NN in 
representing nonlinear functions. The HNN model 
integrating a mechanistic model and an NN model 
gives the best performance. In terms of SAE, the 
HNN model is 7.7% more accurate than the NN 
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model and 17.1% more accurate than the mechanistic 
model. Figures 6 to 12 show the predications of the 
three models on the testing batches.  

Table 2: Model performance on the testing data. 

Models  SSE SAE 
Mechanistic 0.5197 6.6356 
NN 0.3806 5.9606 
HNN 0.3741 5.5011 

 

 
Figure 6: Model predictions on the test batch A2. 

 
Figure 7: Model predictions on the test batch A3. 

 
Figure 8: Model predictions on the test batch A12. 

 
Figure 9: Model predictions on the test batch A13. 

 
Figure 10: Model predictions on the test batch A14. 
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Figure 11: Model predictions on the test batch A21. 

 
Figure 12: Model predictions on the test batch A23. 

4 CONCLUSIONS 

Hybrid mechanistic/neural network models for the 
curing of FRPCs are developed in this paper. The 
obtained results have shown that the hybrid model 
with the combination of series and parallel schemes 
gives the best performance and it can provide 7.7% 
better accuracy than the NN model and 17.1% more 
accurate than the mechanistic model in terms of sum 
of absolute errors, using only curing temperature and 
curing time as model inputs. An important factor for 
increasing the accuracy of the HNN was found to be 
high data-diversity in the cross-validation training 
group, as well as mechanistic-component accuracy. 
When the mechanistic model is improved, and the 
fitting data set is large and diverse enough, the HNN 
can achieve further improved prediction 
performance. 
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