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Abstract: In this paper, the authors describe a fast view inpainting algorithm dedicated to practical, real-time immersive 
video systems. Inpainting is an inherent step of the entire virtual view rendering process, allowing for 
achieving high Quality of Experience (QoE) for a user of the immersive video system. The authors propose a 
novel approach for inpainting, based on dividing the inpainting process into two independent, highly 
parallelizable stages: view analysis and hole filling. In total, four methods of view analysis and two methods 
of hole filling were developed, implemented, and evaluated, both in terms of computational time and quality 
of the virtual view. The proposed technique was compared against an efficient state-of-the-art iterative 
inpainting technique. The results show that the proposal allows for achieving good objective and subjective 
quality, requiring less than 2 ms for inpainting of a frame of the typical FullHD multiview sequence. 

1 INTRODUCTION 

There is currently a growing interest in immersive 
video and virtual reality systems, where users can 
virtually immerse themselves in the scene (Vadakital, 
2022), (Wien, 2019), (Boyce, 2021). These systems 
have evolved from previous free-viewpoint television 
and free navigation systems (Tanimoto, 2012), 
allowing users to navigate around a scene 
(Stankiewicz, 2018) (Fig. 1). 

In immersive video systems, a scene is captured 
by a set of precisely calibrated cameras (Tao, 2021). 
The number of cameras used can vary, ranging from 
less than ten (Mieloch2, 2020) to even hundreds 
(Fujii, 2006). However, in order to provide smooth 
virtual navigation, users should not be limited to 
explicitly captured camera videos (blue cameras in 
Fig. 1). They should have the ability to choose their 
preferred viewport (orange camera in Fig. 1), which 
needs to be rendered using data from the input 
cameras (Fachada, 2018), (Dziembowski, 2019). This 
rendering process requires creating a 3D model of the 
scene and calculating the precise position of each 
captured object. Usually, the 3D scene is represented 
as MVD (Müller, 2011) (multiview video plus depth). 
In the MVD representation, each input view is 
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accompanied by the corresponding depth map (either 
captured by time-of-flight cameras (Xiang, 2013) or 
estimated based on the input views (Mieloch, 2020)). 

 

Figure 1: Idea of an immersive video system; blue: input 
views, orange: virtual view. 

In the MVD representation, the typical rendering 
(also called the virtual view synthesis) process 
comprises four main steps: 
1. depth reprojection (creation of the depth map 

corresponding to the virtual view), 
2. texture reprojection (creation of the virtual view), 
3. inpainting (filling of areas, which were not 

reprojected from input views), 
4. optional virtual view postprocessing (e.g., 

additional filtration (Dziembowski, 2016) or color 
correction (Dziembowski, 2018)). 
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In order to provide a high quality of experience for 
the viewer, the entire rendering has to be performed 
in real-time. Therefore, all the steps have to be as fast 
as possible. In this paper, we focus on the efficient 
method of inpainting, which can be used in the 
practical immersive video system. 

In general, image inpainting is a well-known and 
widely described topic, initially developed for such 
applications as image restoration or watermark 
removal (Bertalmio, 2000), (Levin, 2003), (Criminisi, 
2004), (Barnes, 2009). The general idea of inpainting 
is the same independently on the application – filling 
of selected parts of an image (“holes”, Fig. 2) using 
information from its remaining area (e.g., the 
neighborhood of the holes). Therefore, even the 
simplest methods developed for other applications 
can be used for inpainting the virtual views in the 
immersive video system (Tezuka, 2015). Such an 
approach, however, does not take advantage of 
additional information available in the immersive 
video system – the depth maps (Fig. 3). 
 

Figure 2: Idea of an image inpainting. Both images contain 
a fragment of a synthesized virtual view. Left – a direct 
result of a view reprojection. Right – virtual view inpainted 
in order to conceal the presence of missing pixels. 

The main reason, which introduces holes in the virtual 
view are occlusions. When changing the watching 
perspective, some parts of the scene – occluded in the 
input views – should become visible in the virtual 
view. These areas (called “disocclusions”) cannot be 
synthesized since they are not available in any input 
views. Disocclusions need to be inpainted using 
information from the background (Fig. 4), not the 
foreground objects (which occluded these parts of the 
background in the input views) (Oh, 2009), (Zinger, 
2010). There are numerous depth-based inpainting 
methods described in the literature. These methods 
may follow various principles, e.g., simple extensions 
of typical inpainting methods (Daribo, 2010), 
(Buyssens, 2017), (Cho, 2017), background warping 
(Wang, 2011), (Khatiullin, 2018), usage of 
optimization techniques (Mao, 2014), background 
calculation (Yao, 2014), (Luo, 2017), or temporal 
consistency preservation (Liu, 2012), (Lai, 2017). 

There are numerous depth-based inpainting 
methods described in the literature. These methods 
may follow various principles, e.g., simple extensions 

of typical inpainting methods (Daribo, 2010), 
(Buyssens, 2017), (Cho, 2017), background warping 
(Wang, 2011), (Khatiullin, 2018), usage of 
optimization techniques (Mao, 2014), background 
calculation (Yao, 2014), (Luo, 2017), or temporal 
consistency preservation (Liu, 2012), (Lai, 2017). As 
stated by the authors of all the abovementioned 
papers, each of these methods can be used for 
efficient inpainting of holes in the virtual view in 
terms of perceived quality. 
 

Figure 3: Virtual view and corresponding depth map. 

A B C D 

Figure 4: Basic vs. depth-based inpainting; A: reference 
view, B: reprojected view, C and D: B with holes filled with 
(D) and without (C) depth-based inpainting. 

However, the practical, immersive video system 
has an additional requirement, which has to be 
fulfilled – the entire view rendering pipeline at the 
user’s end has to be performed in real-time. 
Therefore, a practical inpainting method must not 
only provide decent quality but also be as fast as 
possible. The proposed inpainting algorithm satisfies 
both requirements, providing decent quality inpainted 
regions while minimizing computational time. 

2 REAL-TIME RENDERING 

There are several real-time rendering methods, which 
could be used in an immersive video system. Most of 
them require dedicated hardware, such as powerful 
graphic cards (Nonaka, 2018), FPGA devices (Li, 
2019), or even VLSI devices (Huang, 2019), which 
makes them less practical and versatile than CPU-
based techniques (Stankowski, 2023). The CPU-
based rendering can be successfully used even in low-
cost, practical immersive video systems where a user 
accesses the immersive content via a simple personal 
computer or even a laptop (Dziembowski2, 2018). 
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3 PROPOSAL 

The proposed solution is a non-iterative inpainting 
algorithm based on two ideas. The first one is to 
perform inpainting based on the nearest valid pixel(s) 
available in the same row or column as the processed 
one. The second idea is to divide inpainting into two 
separate (and parallelizable) stages: analysis and 
processing. 

Image analysis, the first stage of the proposed 
algorithm, is designed to find missing pixels (holes) 
that have to be inpainted and to determine the position 
of valid pixels that can be used as a source during the 
processing stage. In order to keep the computational 
complexity reasonably low, up to four sources are 
searched. As presented in Fig. 5, the first set of valid 
pixels is determined by scanning within the same row 
(nearest available pixels to the left and right), while 
the second set is determined by scanning within the 
same column (nearest available pixels above and 
below). The position of found inpainting sources is 
then stored in buffers for further processing. 
 

    
Figure 5: Illustration showing the exemplary location of 
valid pixels used as a source for inpainting a missing pixel 
found within the same row/column. 

The second stage of the proposed algorithm is the 
actual filling of missing pixels. In this stage, valid 
source coordinates stored in intermediate buffers are 
used and the depth-based inpainting is performed. In 
total, two approaches to depth-based inpainting were 
proposed and investigated. The simpler one selects 
the source with the farthest depth (considered as 
related to the background) and will be referred to as 
“selection inpainting” method. The more 
sophisticated method finds the farthest depth and 
finds all source pixels within the allowed depth range 
around the farthest one. The found sources are then 
adaptively merged by calculating a weighted average, 
while the weight depends on the depth difference and 
the distance between pixels. This approach will be 
called “merging inpainting”. 

When compared to the iterative approach 
(Bertalmio, 2000), the non-iterative inpainting has 
several advantages. The processing is done in a single 
pass, which allows for achieving predictable 
computing time. Additionally, the non-iterative 
inpainting reduces memory bandwidth by avoiding 

repetitive scanning of the entire image buffer. 
Moreover, the separation into stages allows for the 
division of the computation into several independent 
tasks and consequently for effective parallelization. 

4 IMPLEMENTATION 

In order to evaluate the proposed algorithm, the 
authors prepared several implementations. The 
inpainting analysis was implemented in four different 
manners: naïve, corners originating, rows-columns, 
and tile-based. 

The naïve analysis is the conceptually simplest 
one. For every missing pixel, a full scan in each 
direction is performed. The pixels within a row or a 
column are browsed (starting from the closest one) 
until a valid one is found (or an image edge is 
encountered). The processing of each pixel is 
independent of each other, and the search operation 
can be easily divided into many threads. 

The remaining approaches (corners originating, 
rows-columns, and tile-based) do not require 
exhaustive search but instead introduce data 
dependency between neighboring pixels. One can 
notice that in a consistent group of missing pixels 
within a single row (see Fig 5), all of them will have 
the same coordinates for left and right valid pixels. 
Therefore, there is no need to repeatedly scan the 
same area and the valid pixel coordinated from 
neighboring missing pixels can be reused. 

In corners originating implementation, the 
analysis is performed in two passes. The left-top pass 
detects left and above valid pixels, and the bottom-
right pass detects right and below valid pixels. This 
approach has low computational and memory 
complexity, but due to data dependency, the 
possibility of parallelization is limited to two threads 
(the first thread for the left-top pass and the second 
thread for the bottom-right pass). 

The rows-columns implementation defines four 
separate passes dedicated for searching left, right, 
above, and below valid pixels. This means that the 
image has to be scanned four times but – on the other 
hand – it is more prospective for parallelization. For 
example, for left or right valid pixel search, the data 
dependency occurs only within an image row. This 
leads us to the conclusion that each row could be 
analyzed separately. In the case of analyzing the 
vertical direction, the dependency occurs only within 
an image column – allowing for processing each 
column independently. 

The tile-based variant aims for the reduction of 
required memory bandwidth and compute burden 
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while preserving the parallelization ability. This 
approach introduces an additional pre-analysis pass 
intended to detect areas of the image that contain 
holes (missing pixels). These areas are grouped into 
square tiles with a size equal to 64×64 (the optimal 
size was determined experimentally), and tiles 
containing any holes are marked as “inpainting 
required”. Subsequently, tiles marked as required for 
further processing are analyzed using the 
abovementioned rows-columns method. This 
approach allows for reducing the impact of multiple 
analysis passes introduced by the original rows-
columns method. Inpainting processing 
implementation is quite straightforward since there 
are no data dependencies at this stage. 

All listed analysis and processing methods were 
implemented in two variants: single-threaded and 
multithreaded. In the case of the parallel, 
multithreaded variant, authors spent a lot of effort in 
preparing a flexible implementation that scales up to 
dozens of threads and exploits the possibilities of 
modern multicore CPUs. 

In order to perform a fair comparison to the state-
of-the-art iterative approach (Bertalmio, 2000), 
authors prepared an efficient and simplified 
implementation of this algorithm (both single and 
multithreaded) and included it in the performance 
evaluation. 

5 EXPERIMENTS 

5.1 Methodology 

The experiments were performed on a test set 
containing 9 miscellaneous test sequences, 
commonly used in immersive video applications, e.g., 
within ISO/IEC JTC1/SC29/WG04 MPEG Video 
  

Table 1: Test sequences. 

Sequence Resolution Type ID Name 

ERP 
A01 ClassroomVideo1 4096×2048
C01 Hijack2 4096×2048
C02 Cyberpunk3 2048×2048

Perspective 
(CG) 

J01 Kitchen4 1920×1080
J04 Fan5 1920×1080

W02 Dancing4 1920×1080

Perspective 
(natural) 

D01 Painter6 2048×1088
L01 Fencing7 1920×1080
L03 MartialArts8 1920×1080

1(Kroon, 2018), 2(Doré, 2018), 3(Jeong, 2021), 4(Boissonade, 
2018), 5(Doré, 2020), 6(Doyen, 2018), 7(Domański, 2016), 
8(Mieloch, 2023) 
 

Coding group (ISO, 2023) (Table 1, Fig. 6). The 
proposal was compared with a fast implementation of 
the state-of-the-art iterative inpainting method 
(referred as “I”) – the depth-based extension of 
(Bertalmio, 2000). Both inpainting algorithms were 
implemented within the real-time CPU-based virtual 
view synthesizer, described by the authors of this 
manuscript in (Stankowski, 2023). 

The efficiency of the proposed view synthesizer 
(including proposed inpainting) was compared with 
the state-of-the-art view rendering technique – 
ISO/IEC MPEG’s reference software, RVS (Fachada, 
2018), (ISO, 2018). The computational time was 
evaluated on a modern x86-64, 12-core CPU: AMD 
Ryzen 9 5900X. The processing time was measured 
using precision time stamps according to (Microsoft, 
2020). The quality of rendered virtual views was 
assessed using two commonly used full-reference 
objective quality metrics: IV-PSNR (Dziembowski, 
2022) and WS-PSNR (Sun, 2017). 

 

 

 

 
Figure 6: Test sequences; first row (from left): A01, C01, 
C02; second row: J01, J04, W02; third row: D01, L01, L03. 

5.2 Computational Time Evaluation 

The computational complexity of the proposed 
algorithm was evaluated by performing virtual view 
synthesis and measuring processing time. Table 2 and 
Table 3 contain detailed analysis of each 
implementation gathered for Painter (FullHD, 
perspective) and ClassroomVideo (4K, ERP) 
sequences. Separate processing times (Microsoft, 
2020) are shown for each analysis and filling 
algorithm. Moreover, the implementation of state-of-
the-art iterative inpainting was included as a 
reference. 

Two variants of synthesis conditions were 
evaluated in order to evaluate algorithms in different 
conditions: 
1. with two source views – leading to a small number 

of missing pixels in the virtual view, 
2. with only one source view – leading to a vast 

number of missing pixels. 
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Table 2: Computational time analysis for D01 sequence. 
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Single-threaded processing time [ms]
2 3479 40.94 1.34 3.93 4.68 2.24 1.09 1.19
1 120019 525.16 158.45 4.24 5.00 5.23 2.10 3.31

Multi-threaded processing time [ms]
2 3479 24.01 1.69 2.33 2.24 0.87 0.25 0.26
1 120019 237.57 178.06 3.02 2.33 1.82 0.38 0.52

 

In the case of the analysis stage, the naïve 
approach is reasonably fast only if the number of 
missing pixels is low. However, it can be very slow 
for a higher number of missing pixels and does not 
scale with the number of threads (due to memory 
bandwidth starvation). Corners originating and rows-
columns approaches offer more consistent and 
predictable results and noticeable speedup for parallel 
execution. The tile-based approach is the fastest for 
all multithreaded tests and offers competitive 
performance for the single-threaded variant. 

Table 3: Computational time analysis for A01 sequence. 
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Single-threaded processing time [ms]
2 134887 308.84 11.86 15.31 18.72 11.98 7.16 7.41
1 522251 881.23 47.85 16.21 20.36 20.17 11.14 15.71

Multi-threaded processing time [ms]
2 134887 160.75 17.13 9.75 13.96 5.10 2.49 3.40
1 522251 433.29 58.60 9.75 14.07 9.92 3.53 5.27

Table 4: Inpainting computational time for all sequences. 

Seq 
Empty 
pixels 
(avg)   

Inpainting time 
[ms]

Inpainting time per 
pixel [ns]

I S M I S M 
A01 134904 166.3 8.99 9.31 1232.7 66.66 69.01
C01 225629 491.6 8.88 8.25 2178.9 39.34 36.56
C02 892321 1749.9 6.21 7.49 1961.1 6.96 8.40
D01 2448 22.9 1.02 0.96 9338.9 416.26 390.37
J01 36968 47.4 1.34 1.52 1281.8 36.27 41.00
J04 44346 60.2 2.07 1.83 1357.7 46.75 41.28
L01 114944 142.1 1.66 1.31 1236.2 14.41 11.40
L03 176439 223.6 2.00 3.09 1267.2 11.36 17.48
W02 38010 36.4 2.03 2.85 957.3 53.36 75.07

Avg. ERP 802.6 8.03 8.35 1790.9 37.65 37.99
Avg. Perspective 88.8 1.69 1.93 2573.2 96.40 96.10
All 326.7 3.80 4.07 2312.4 76.82 76.73
 

When inpainting processing is considered, the 
“merging” approach (referred to as “M”) is slower 
than the simpler “selection” method (referred to as 
“S”), but the difference can be treated as negligible. 

In Table 4 the summary for all test sequences was 
presented. In this case, the fastest possible analysis 
algorithm (tile-based) was used, and combined times 
for analysis and processing were presented. All 
results were gathered using multithreaded processing, 
as the authors consider this scenario more relevant. In 
general, the proposed algorithm is ~80 times faster 
than the reference, iterative approach. 

5.3 Quality Evaluation 

In the quality evaluation, a virtual view was 
synthesized using two real views. Results of the 
objective quality evaluation are presented in Tables 5 
and 6, separately for each test sequence. As presented, 
both proposed fast inpainting methods allow for 
achieving similar quality as a more sophisticated and 
complicated iterative approach, both in terms of WS-
PSNR and IV-PSNR. 

Table 5: Quality of rendered virtual views: WS-PSNR. 

Seq WS-PSNR [dB] ΔWS-PSNR [dB] 
(compared to I)

I S M S M 
A01 31.74 31.61 31.74 – 0.13 – 0.00
C01 37.65 37.81 37.92    0.16    0.27
C02 23.73 22.67 23.66 – 1.07 – 0.07
D01 37.64 37.62 37.62 – 0.01 – 0.01
J01 29.41 29.18 29.48 – 0.23    0.07
J04 28.12 27.90 28.16 – 0.21    0.05
L01 28.86 28.80 28.80 – 0.06 – 0.06
L03 26.69 26.26 26.54 – 0.43 – 0.15
W02 29.08 28.74 28.94 – 0.34 – 0.13

Average 30.32 30.07 30.32 – 0.26 – 0.00

Table 6: Quality of rendered virtual views: IV-PSNR. 

Seq IV-PSNR [dB] ΔIV-PSNR [dB] 
(compared to I)

I S M S M 
A01 46.14 46.10 46.24 – 0.04    0.10
C01 47.44 47.66 47.64    0.21    0.20
C02 32.90 31.94 33.13 – 0.96    0.23
D01 47.52 47.47 47.44 – 0.05 – 0.07
J01 38.13 37.82 38.12 – 0.30 – 0.01
J04 37.20 37.05 37.33 – 0.15    0.12
L01 41.89 41.59 41.59 – 0.30 – 0.30
L03 32.23 31.77 32.09 – 0.46 – 0.14
W02 42.63 41.84 42.16 – 0.79 – 0.46

Average 40.67 40.36 40.64 – 0.31 – 0.04

Subjectively, rendered virtual views are similar 
although the characteristics of the artifacts differ 
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between various methods (Fig. 7). In the iterative 
approach, disocclusions are blurred, what is plausible 
in smooth areas, but distractive in areas containing 
edges (e.g., a building corner in Cyberpunk 
sequence). Both fast inpainting methods preserve 
edges much better due to horizontal and vertical 
image analysis performed before the inpainting. It is 
worth noting that the quality achieved by the 
proposed algorithm is similar to the reference 
iterative approach, however, the computation time is 
about 100 times shorter (~4ms for proposed vs 326 
for iterative). 

5.4 Comparison Against Widely Used 
General Inpainting Algorithms  

The comparison of the proposed approach against 
state-of-the-art inpainting techniques was particularly 
challenging. There are several algorithms designed 
for the inpainting of synthesized views (Daribo, 
2010), (Buyssens, 2017), (Cho, 2017), however 
software with their implementations is not available. 
Therefore, for this comparison, we decided to choose 
two inpainting algorithms based on availability 
(widespread software libraries) and a decent quality 
of implementation. The first is an inpainting 
algorithm based on the biharmonic equation 
(Damelin, 2018) (“[Dam]”) with an implementation 
available in a widely recognized “scikit-image” 
image processing library. The second candidate is an 
algorithm based on the fast marching method (Telea, 
2004) (“[Tel]”) with an implementation available in 
the widely used OpenCV library. 

Table 7: Inpainting computational time for all sequences. 

Seq Empty pixels 
(average) 

Inpainting time per frame [ms]
M [Dam] [Tel]

A01 134904 9.31 2406 27877
C01 225629 8.25 13489 7791
C02 892321 7.49 > 10 min 27723
D01 2448 0.96 320 104
J01 36968 1.52 511 465
J04 44346 1.83 1483 2093
L01 114944 1.31 15111 228
L03 176439 3.08 16624 1810
W02 38010 2.85 583 8156
Average (excl. C02) 4.07 6316 8472

In the case of the C02 sequence, the algorithm 
(Damelin, 2018) was excluded due to excessive 
computation time exceeding 10 minutes per frame 
thus making it useless for real-time purposes. The 
detailed result of computational time analysis is 
presented in Table 7. On average, the investigated 
algorithm is about three orders of magnitude slower 

than the proposed one (they process frame in several 
seconds in contrast to several milliseconds for the 
proposed one). 

Table 8: Quality of rendered virtual views: WS-PSNR. 

Seq WS-PSNR [dB] ΔWS-PSNR [dB] 
(compared to I)

M [Dam] [Tel] [Dam] [Tel]
A01 31.74 30.95 31.18    0.79 0.56
C01 37.92 35.92 35.84    2.00 2.08
C02 23.66 --- 21.56 --- 2.10
D01 37.62 37.46 37.35    0.16 0.27
J01 29.48 28.32 29.01    1.16 0.47
J04 28.16 25.3 25.76    2.86 2.40
L01 28.8 28.48 28.66    0.32 0.14
L03 26.54 26.61 26.11 – 0.07 0.43
W02 28.94 28.43 28.41    0.51 0.53

Avg excl. C02 31.15 30.18 30.29    0.97 0.86

The results of inpainting quality evaluation in 
terms of WS-PSNR and IV-PSNR were presented in 
Table 8 and Table 9. In 95% of test cases, the 
proposed algorithm offered better quality of inpainted 
pictures when compared to (Damelin, 2018) and 
(Telea, 2004). On average, the objective quality 
achieved by the proposed algorithm was ~0.9 dB 
better in terms of WS-PSNR and ~1.05 dB better in 
terms of IV-PSNR. 

Table 9: Quality of rendered virtual views: IV-PSNR. 

Seq IV-PSNR [dB] ΔIV-PSNR [dB] 
(compared to I)

M [Dam] [Tel] [Dam] [Tel]
A01 46.24 45.55 46.35 0.69 – 0.11
C01 47.64 45.63 45.31 2.01   2.33
C02 33.13 --- 30.29 ---   2.84
D01 47.44 47.05 46.83 0.39   0.61
J01 38.12 37.38 37.19 0.74   0.93
J04 37.33 34.95 34.68 2.38   2.65
L01 41.59 39.85 40.94 1.74   0.65
L03 32.09 32.04 31.26 0.05   0.83
W02 42.16 41.74 41.59 0.42   0.57

Avg excl. C02 41.58 40.52 40.52 1.05 1.06

5.5 Real-Time View Rendering vs. 
State-of-the-Art View Rendering 

In the last experiment, the entire view rendering 
algorithm (Stankowski, 2023), which includes the 
proposed inpainting technique was compared to the 
state-of-the-art view synthesis software – RVS (ISO, 
2018). The results – both computational time and 
objective quality – are reported in Table 10. 
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Figure 7: Fragments of views rendered using real-time synthesizer (Stankowski, 2023) with different inpainters (columns 2 – 
4), compared to views rendered using state-of-the-art view synthesizer – RVS (ISO, 2018). Sequences (from top): C02, J01, 
W02. 

Table 10: The real-time view synthesizer (Stankowski, 
2023) with proposed fast inpainting vs. state-of-the-art RVS 
(ISO, 2018). 

Se
qu

en
ce

 Rendering 
time [ms] WS-PSNR [dB] IV-PSNR [dB] 

RV
S 

Pr
op

. 

RV
S 

Pr
op

. 

Δ RV
S 

Pr
op

. 

Δ 

A01 15885 39.7 31.90 31.73 – 0.17 45.04 46.24   1.20
C01 15547 36.9 37.55 37.92    0.37 46.93 47.64   0.71
C02   7878 19.0 22.63 23.66    1.03 31.45 33.13   1.68
D01   3838   8.8 38.51 37.62 – 0.89 48.08 47.44 – 0.64
J01   3370   7.7 28.83 29.48    0.65 37.02 38.12   1.10
J04   3723   7.8 27.14 28.16    1.02 36.68 37.33   0.65
L01   3355   8.4 29.70 28.80 – 0.90 40.77 41.59   0.82
L03   3285   8.1 26.90 26.54 – 0.36 32.31 32.09 – 0.22
W02   3437   8.2 29.40 28.94 – 0.46 41.60 42.16   0.56
Avg  30.28 30.32    0.03 39.99 40.64   0.65

In terms of subjective quality, the real-time view 
synthesizer slightly outperforms the RVS, especially 
in disoccluded regions, where RVS tries to preserve 
continuity between reprojected pixels (using triangle-
based reprojection (Fachada, 2018)) while all tested 
inpainting methods do not introduce distractive 
artifacts (Fig. 7). 

6 CONCLUSIONS 

In the paper, we have presented an efficient inpainting 
method, which can be used in the virtual view 

rendering in a practical, real-time immersive video 
system. The proposal allows for achieving a high 
Quality of Experience for an immersive video system 
user while requiring extremely short computational 
time. The proposed approach is based on splitting the 
inpainting process into two highly parallelizable 
stages: view analysis and hole filling. 

The experimental results show that in a typical 
case, where a FullHD virtual view is rendered using 
two input views, the proposed inpainting requires less 
than 2 ms per frame (result averaged over 6 test 
sequences). Moreover, the objective and subjective 
quality of rendered views is similar to using more 
sophisticated and time-consuming inpainting 
methods. 

The proposal was implemented within a real-time 
CPU-based virtual view synthesizer (Stankowski, 
2023) developed by the authors of this manuscript, 
showing that it is possible to obtain vastly fast 
rendering, allowing the development of a practical, 
consumer immersive video system. 
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