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Abstract: Nowadays, deep learning has been widely implemented into biomedical applications, but it is problematic to 
acquire large annotated medical datasets to train the models. As a technique for reusing knowledge obtained 
from one domain in another domain, transfer learning can be used with only small datasets. Despite of some 
current research about model transfer methods for medical images, it is still unclear how sample size 
influences the model performance. Therefore, this study focuses on the estimation of required sample size for 
a satisfactory performance, and also compares transfer methods with only 200 images randomly chosen from 
a colorectal cancer dataset. Firstly, based on a K-fold cross-validation, the balanced accuracies of 3 transfer 
learning networks (DenseNet121, InceptionV3 and MobileNetV2) were generated, and each network used 3 
model transfer methods, respectively. Afterwards, by curve fitting with inverse power law, their learning 
curves were plotted. Furthermore, the estimation of required sample size as well as the prediction of final 
performance were calculated for each model. In addition, to investigate how many images are needed for 
curve fitting, the maximum number of images also changed from 200 to smaller numbers. As a result, it is 
shown that there is a trade-off between predicted final performance and estimated sample size, and suggested 
model transfer methods for large datasets do not automatically apply to small datasets. For small datasets, 
complicated networks are not recommended despite of high final performance, and simple transfer learning 
methods are more feasible for biomedical applications. 

1 INTRODUCTION 

As a popular machine learning technique, deep 
learning has been widely applied into the field of 
biomedical research (Lecun et al., 2015). For 
example, Cheung et al. developed a deep learning 
model for Alzheimer’s disease detection (Cheung et 
al., 2022); Foersch et al. used deep learning for 
colorectal cancer therapy (Foersch et al., 2023); 
Placido et al. predicted pancreatic cancer by deep 
learning (Placido et al., 2023); Narayan et al. built up 
an Enhance-Net to boost performance on real-time 
medical images (Narayan et al., 2023); Wang et al. 
created a deep learning toolkit called PyMIC for 
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annotation-efficient medical image segmentation 
(Wang et al., 2023).  

However, it is practically difficult to obtain large 
amounts of annotated medical data to train deep 
learning models due to legal restrictions, ethical 
reasons and workload. Therefore, the model 
performance is limited (Rajpurkar et al., 2022). 
Because of the ability of reusing knowledge from 
different domains, transfer learning has prevailed in 
this area (Zhuang et al., 2021). In the recent study of 
Luo and Bocklitz, different model transfer methods 
were compared on a colorectal cancer dataset, and 
some of them demonstrated satisfactory performance 
(Luo & Bocklitz, 2023). For instance, using pre-
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trained transfer learning networks with added 
convolutional layers could achieve validation 
accuracies above 0.95 on a dataset with more than 
9,000 images regardless of computational 
complexity. Besides, Soekhoe and Putten revealed 
that dataset size influences classification accuracy of 
transfer learning with general images (Soekhoe & 
Putten, 2016); Samala et al. studied the effects of 
training sample size on multi-stage transfer learning 
for digital breast tomosynthesis (Samala et al., 2019); 
Zhu et al. investigated from plastics manufacturing 
images that training sample size could influence 
classification performance for transfer learning 
models (Zhu et al., 2021).  

Despite of current research about classification 
models as well as model transfer methods for 
biomedical images, how sample size influences the 
model performance remains to be investigated 
further. So, this study focuses on the estimation of 
required sample size for an acceptable performance, 
and also compares model transfer methods with only 
200 limited images randomly chosen from a 
colorectal cancer dataset (Kather et al., 2019). 

2 TRANSFER LEARNING FOR 
BIOMEDICAL IMAGES 

Although data scarcity poses a real threat in the field 
of biomedicine, transfer learning models have already 
showed the efficacy by reusing the knowledge gained 
from other domains (Kim et al., 2022). Based on the 
research of Yu et al., transfer learning models are 
already applied for biomedical image analysis of 
brain, lung, breast cancer, kidney diseases as well as 
other diseases (Yu et al., 2022). And these transfer 
learning models mostly reuse the knowledge obtained 
from ImageNet, which is a large-scale visual database 
containing more than 14 million images 
(Russakovsky et al., 2015). 

In this study, 3 transfer learning base models were 
chosen based on their popularity (Morid et al., 2021): 
DenseNet121 (Huang et al., 2017), InceptionV3 
(Szegedy et al., 2016) and MobileNetV2 (Sandler et 
al., 2018). DenseNet121 has a 7*7 convolutional 
layer, 58 3*3 convolutional layers, 61 1*1 
convolutional layers, 4 average pooling layers and a 
fully-connected layer at the end. InceptionV3 is made 
up of 42 layers, which contains 3 inception modules, 
6 convolutional layers as well as final pooling and 
fully-connected layers. MobileNetV2 consists of the 
initial fully convolution layer with 32 filters, followed 
by 19 inverted residual bottleneck layers. There are 

different options of model transfer methods for these 
transfer learning models, and it has been studied that 
adding convolutional layers (‘add’) outperforms 
simply using the original networks (‘ori’) or fine-
tuning some last layers (‘ft’) (Luo & Bocklitz, 2023). 
However, this study was only conducted with enough 
images, the model performance still needs to be 
checked with very limited images. 

Therefore, with maximal sample size of 200, 
containing both microsatellite unstable or 
hypermutated (MSIMUT) and microsatellite stable 
(MSS) images randomly selected with equal amounts 
(Kather et al., 2019), 3 model transfer methods (‘ori’, 
‘ft’ and ‘add’) as well as 3 base models 
(DenseNet121, InceptionV3 and MobileNetV2) were 
analysed in this study without data augmentation. 
Notably, ‘ft1’, ‘ft2’ and ‘ft3’ refer to fine-tuning the 
last 1, 2 or 3 convolutional layers, respectively; 
likewise, ‘add1’, ‘add2’, ‘add3’ refer to adding 1, 2, 
or 3 convolutional layers at the end, but before the 
SoftMax layer, respectively. The study workflow is 
shown in Figure 1. 

 
Figure 1: Transfer learning model architectures. 

3 LEARNING CURVE 
GENERATION BASED ON  
K-FOLD CROSS VALIDATION 

By separating a dataset into a training part and a 
validation part, K-fold cross-validation is commonly 
used as a method against over-fitting or under-fitting, 
and it can also be implemented to evaluate the model 
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generalisation ability (Kohavi, 1995). In this study, 
firstly image subsets were generated by randomly 
sampling from a colorectal cancer dataset. 
Afterwards, for each image subset (sample), it was 
sent to an external K-fold cross-validation loop. 
Inside the loop, the training part was used for model 
training, and the validation part was used for model 
validation. Finally, the model performance was 
evaluated based on validation balanced accuracies. 

In machine learning, a usual method to assess 
classification performance as a function of sample 
size is to build empirical scaling models called 
learning curves (Cortes et al., 1994). Thus, with 
sample sizes varying from 20 to 200, a learning curve 
for each trained model was generated in this study. 
The overall dataflow of learning curve generation 
based on K-fold cross-validation is demonstrated in 
Figure 2. 

 
Figure 2: Overall dataflow based on K-fold cross-
validation. 

4 LEARNING CURVE FITTING 
USING INVERSE POWER LAW 

For a given classification problem, fitted learning 
curves can be utilised for selecting models, predicting 
the effectiveness of using more data, as well as 
reducing computational complexity. Although there 

exist various parametric forms to fit learning curves, 
recent studies have shown that most deep neural 
networks have power law behaviour with solid 
empirical evidence (Viering & Loog, 2023). 
Therefore, similar as some previous studies 
(Mukherjee et al., 2003; Ali et al., 2018), the inverse 
power law was applied to this study: 𝐼𝑃ሺ𝑛ሻ ൌ 𝑎 ൈ 𝑛ି    𝑐 (1)

where 𝑎 ∈ ሺെ∞, ∞ሻ , 𝑏 ∈ ሺെ∞, ∞ሻ  and 𝑐 ∈ሾ0,  1ሿ. In this equation, c represents the estimated 
final performance; and 𝑛.ଽହ  means the number of 
images needed to reach 95%c, which is the estimated 
sample size. Besides, the trust region reflective 
algorithm was chosen for optimisation (Voglis & 
Lagaris, 2004). During the optimisation process, a, b 
and c initial values all set to 1. 

 

 

 
Figure 3: Curve fitting plots for original DenseNet121, 
InceptionV3 and MobileNetV2. 
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As illustrated in Figure 3, the fitted learning curves 
of simply using original networks (‘ori’) are plotted for 
DenseNet121, InceptionV3 and MobileNetV2, 
respectively. It can be found that for DenseNet121 
(‘ori’), the estimated final validation balanced accuracy 
(c) is 0.9171, and 37 images are needed to reach 95% 
of this performance (𝑛.ଽହ). Besides, for InceptionV3 
(‘ori’) and MobileNetV2 (‘ori’), their c values are 
0.8887 and 0.9364, respectively; and their 𝑛.ଽହ values 
are 59 and 84, respectively. The plots show that simply 
using the original networks can have an acceptable 
performance when there are only limited data.    

5 EXPERIMENT RESULTS WITH 
DIFFERENT MODEL 
TRANSFER METHODS 

To investigate how other model transfer methods 
perform with limited available data, the curve fitting 
experiments were also conducted based on ‘ft’ and 
‘add’ methods. Their results are introduced in the 
following. 

5.1 Results Using Fine-Tuning 

Firstly, the methods of fine-tuning 1 (‘ft1’), 2 (‘ft2’) 
or 3 (‘ft3’) last layers at the end of network were 
applied. These results for DenseNet121 are illustrated 
in Figure 4. And these plots for InceptionV3 and 
MobileNetV2 are attached in the appendix section. 

As demonstrated in the plots, DenseNet121 (‘ft1’) 
has a prediction of final performance with 0.9538 
validation balanced accuracy; and it needs 119 image 
samples to achieve 95% of that accuracy. Besides, 
DenseNet121 (‘ft2’) needs 43 images to achieve 95% 
of the validation balanced accuracy 0.9063. In 
addition, for DenseNet121 (‘ft3’), 622 images are 
required for 95% of a perfect predicted final 
performance (100%). 

It is quite clear that the ‘ft1’ and ‘ft2’ could also 
deal well with limited number of images, but it might 
be challenging for the more complicated method 
‘ft3’. Although ‘ft3’ had high predicted final 
performance (even 100%), the required number of 
images is beyond the limitation of this study and too 
high for a medical pre-study. 

5.2 Results Using Additional 
Convolutional Layers 

Beside the aforementioned fine-tuning experiments, 
additional convolutional layers were also added to the  

 

 

 
Figure 4: Curve fitting plots for DenseNet121 fine-tuning 
the last 1, 2, and 3 layers, respectively. 

transfer learning networks for further comparison. 
With a kernel size of 3, 2048 filters were contained in 
each additional convolutional layer. And for this 
study, the numbers of additional convolutional layers 
were 1 (‘add1’), 2 (‘add2’) or 3 (‘add3’). Afterwards, 
learning curve fitting was also carried out in the same 
way as previously introduced for each model. Figure 
5 consists of the curve fitting plots for DenseNet121 
using ‘add1’, ‘add2’ as well as ‘add3’. 

From these plots, it is visible that the predicted 
final performance of DenseNet121 (‘add1’) is 0.8871, 
while 17 images are necessary to reach its 95%. 
Besides, despite DenseNet121 (‘add2’) and 
DenseNet121 (‘add3’) apparently have very high 
predicted final performance (1 and 0.9759), due to 
network complexity, their estimated sample size 
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values are both more than 3000, which could be 
impractical for plenty of biomedical applications. 

 

 

 
Figure 5: Curve fitting plots for DenseNet121 using 1, 2, 
and 3 additional convolutional layers, respectively. 

5.3 Summary of Learning Curve 
Fitting Results 

Table 1: Experiment results for DenseNet121. 
 c 95%c 𝒏𝟎.𝟗𝟓 

ori 0.9171 0.8712 37 
ft1 0.9538 0.9061 119 
ft2 0.9063 0.8610 43 
ft3 1.0000 0.9500 622 

add1 0.8871 0.8427 17 
add2 1.0000 0.9500 3427 
add3 0.9759 0.9271 3311 

Table 2: Experiment results for InceptionV3. 

c 95%c 𝒏𝟎.𝟗𝟓 
ori 0.8887 0.8443 59 
ft1 0.8755 0.8317 37 
ft2 0.8901 0.8456 63 
ft3 0.8830 0.8389 49 

add1 0.8601 0.8171 28 
add2 0.8555 0.8127 47 
add3 0.8276 0.7862 66 

Table 3: Experiment results for MobileNetV2. 

c 95%c 𝒏𝟎.𝟗𝟓 
ori 0.9364 0.8896 84 
ft1 0.9155 0.8697 43 
ft2 0.8633 0.8201 26 
ft3 1.0000 0.9500 208583 

add1 0.9252 0.8789 75 
add2 1.0000 0.9500 13119 
add3 1.0000 0.9500 12514 

As shown in Tables 1-3, some methods although have 
very high performances, e.g. 95% of the c value, but 
their 𝑛.ଽହ values are too high to be realistic in small 
scale studies. For example, the 95%c values of 
DenseNet121 (‘add2’) and MobileNetV2 (‘add3’) are 
both 0.95, but their 𝑛.ଽହ values are 3427 and 12514. 
On the other hand, some methods just have tolerable 
95%c values and their 𝑛.ଽହ values are acceptable for 
limited available data: for example, the 95%c values 
of DenseNet121 (‘ft1’), InceptionV3 (‘ft2’), and 
MobileNetV2 (‘ori’) are 0.9061, 0.8456 and 0.8896, 
while their 𝑛.ଽହ  values are 37, 63 and 84, 
respectively. They outperformed the state-of-art 
methods using transfer learning as feature extractor 
with PCA-LDA and PCA-SVM (just around 0.50), 
‘ori’ (around 0.80) and ‘ft’ (mostly below 0.85) even 
with over 9,000 images from the same dataset (Luo & 
Bocklitz, 2023). 

Therefore, it is found that the model transfer 
methods for large datasets do not automatically apply 
to small datasets, and there is a trade-off between 
predicted final performance (c) and estimated sample 
size (𝑛.ଽହ). Besides, despite of possible high final 
performance, complicated networks are not 
recommended for small datasets, while simple 
transfer learning methods are more practical, e.g. ‘ori’ 
and ‘ft1’ for all 3 networks in Tables 1-3. 

6 FITTED CURVE PREDICTION 

Afterwards, to investigate how many images are 
needed for curve fitting, the maximum number of 
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images changed from 200 to smaller numbers: 100, 
80, 60, 40 and 20. Figure 6 shows the examples of 
fitted curve predictions for DenseNet121 (‘ori’), 
InceptionV3 (‘ori’), and MobileNetV2 (‘ori’), 
respectively. And the rest plots for ‘ft’ and ‘add’ 
model transfer methods are in the appendix. As 
shown in the plots, very small datasets usually lead to 
problematic prediction of learning curve, e.g. 20 
images. Besides, at least 80 images are necessary to 
obtain an acceptable prediction of learning curve. 
Additionally, it can also be found that complicated 
networks still are not recommended for small datasets 
because of too many required images, e.g. ‘ft3’, 
‘add2’, ‘add3’. 

 

 

 
Figure 6: Plots of fitted curve prediction for original 
DenseNet121, InceptionV3 and MobileNetV2. 

7 CONCLUSIONS 

With only 200 limited images randomly chosen from 
a colorectal cancer dataset, this study conducted the 
experiments to estimate required sample sizes for 
satisfactory performance. In this study, three deep 
learning networks (DenseNet121, InceptionV3 and 
MobileNetV2) and different transfer methods (‘ori’, 
‘ft’ and ‘add’) were compared by their validation 
balanced accuracies, which were generated from an 
external K-fold cross-validation loop. With these 
accuracies, learning curves were then fitted by 
inverse power law to obtain the values for final 
prediction performance (c) and the number of 
required images to reach of the final performance 
95%c ( 𝑛.ଽହ ). Based on experiment results, well-
performed model transfer methods for large datasets 
cannot be automatically applied to small datasets, and 
a trade-off has been found between predicted final 
performance (c) and estimated sample size (𝑛.ଽହ). 
Besides, complicated networks are not recommended 
for small datasets regardless of possible high final 
performance, instead simple transfer learning 
methods are more feasible for medical applications 
with only limited images. Afterwards, by reducing the 
maximum number of images, fitted learning curves 
were predicted. From these experiments, it is 
discovered that very small datasets (e.g. 20 images) 
can cause seriously erroneous predictions, and at least 
80 images should be contained for an acceptable 
prediction of learning curve. Additionally, due to 
model complexity and limited available data, 
complicated networks (e.g. ‘ft3’, ‘add2’, ‘add3’) also 
did not perform desirably for predicting learning 
curves. 

Future works are planned to be done to further 
improve this study. For example, this study procedure 
is planned to be implemented to other datasets beyond 
colorectal cancer detection for verifying 
generalisability. In addition, various data 
augmentation techniques will be tested for their 
ability to improve model performance, but also for 
their effect on the sample size. 
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APPENDIX 

A: Plots of Learning Curve Fitting 
Using Fine-Tuning for InceptionV3 
and MobileNetV2 
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B: Plots of Learning Curve Fitting 
Using Additional Convolutional 
Layers for InceptionV3 and 
MobileNetV2 

 
 

 
 

 
 

 

 
 

 

C: Plots of Fitted Curve Prediction 
Using Fine-Tuning 
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D: Plots of Fitted Curve Prediction 
Using Additional Convolutional 
Layers 
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