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Abstract: This study explores the application of deep learning, specifically the YOLOv8 model, for predicting the 
ripeness of oil palm fruit bunch through digital images. Recognizing the economic importance of oil palm 
cultivation, precise maturity assessment is crucial for optimizing harvesting decisions and overall productivity. 
Traditional methods relying on visual inspections and manual sampling are labor-intensive and subjective. 
Leveraging deep learning techniques, the study aims to automate maturity classification, addressing 
limitations of prior methodologies. The YOLOv8 model exhibits promising metrics, achieving high precision 
and recall values. Practical applications include deployment in production areas and real-time field scenarios, 
enhancing overall production processes. Despite excellent metric results, the model shows potential for further 
improvement with additional training data. The research highlights the effectiveness of YOLOv8 in 
automating the ripeness classification oil palm fruit bunches, contributing to sustainable cultivation practices 
in diverse agricultural settings.

1 INTRODUCTION 

Colombia stands as the largest producer of oil palm 
(Elaeis guineensis) in the Americas and ranks fourth 
globally, annually yielding millions of tons 
(Fedepalmas, 2019). The economic and social 
significance of this cultivation has spurred interest in 
sustainable development models. Within the global 
vegetable oil market, oil palm holds a pivotal role, 
serving as a primary source for industries such as 
food, cosmetics, and biofuels. The economic 
importance has led to a heightened focus on 
optimizing cultivation practices to meet the growing 
demand (Corley & Tinker, 2015). 

A critical aspect of the cultivation process is the 
precise assessment of oil palm fruit bunch maturity, 
influencing harvesting decisions and overall 
productivity. The quality of palm oil is deeply 
intertwined with the ripeness of the fruit. It's ideal for 
the fruit to reach an exact level of ripeness, steering 
clear of both being excessively green or overly ripe 
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extremes. When the fruit is immature, it lacks 
sufficient oil content, and when overly ripe, it 
detaches too easily, leading to significant oil loss as 
the fruits separate from the bunches. The 
classification of the fruits is closely tied to how easily 
they detach from the bunch and a certain color 
change, ultimately dependent on individual 
experience and visual assessment. 

Traditional methods relying on visual inspections, 
manual sampling, and expert judgment are labor-
intensive, time-consuming, and subjective, 
potentially introducing inaccuracies. Classifying the 
fruits is closely associated with how easily they 
detach from the bunch and a certain change in color, 
which ultimately relies on individual experience and 
visual assessment. Many studies have been 
conducted, some related to computer vision attempts 
based on color. Others have used sensors, which also 
did not provide great outcomes, partly because there 
are different palm varieties that alter the shape of 
bunch and fruits (Lai et al., 2023).  
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The advent of deep learning, particularly 
convolutional neural networks (CNN), offers a 
transformative avenue to automate complex visual 
tasks, including image classification. The application 
of deep learning techniques to agricultural processes, 
such as maturity assessment, has shown promising 
results in enhancing accuracy and efficiency  
(Mohanty et al., 2016). 

One of the major challenges in conducting 
predictive work regarding the ripeness of oil palm 
fruit bunches lies in acquiring appropriate images for 
fruit maturity detection. Typically, fruits are 
segregated, and images are captured either when they 
are on the ground or while still on the tree (Suharjito 
et al., 2023).  

There are two critical moments requiring fruit 
maturity classification: 1) while the fruit is still on the 
tree to determine the optimal harvesting time and 2) 
when it's within the production area before oil 
extraction. However, it's uncommon to find work or 
images of fruits during this latter stage, despite it 
being arguably the most crucial. Large companies 
usually have fruit suppliers, and accurately 
classifying incoming fruit is essential. Additionally, 
for a final evaluation of one's own fruits, determining 
their maturity is crucial. 

In fruit unloading zones, there are often inclined 
ramps or reception platforms where fruits are 
transported from trucks to the oil extraction area. 
During transit on these ramps, fruit bunches are 
typically not well-separated and may stack on top of 
one another. Our aim is precisely to develop a model 
capable of classifying fruit at this stage of the process. 
Hence, this work's primary objective is to establish a 
database using images captured specifically on these 
loading ramps. 

In response to the limitations of traditional 
methods and building upon promising prior deep 
learning research, this study aims to harness deep 
learning for oil palm fruit bunch maturity 
classification. Primary objectives include developing 
a robust deep learning model capable of accurately 
distinguishing between different maturity stages, 
utilizing images to capture dynamic changes in fruit 
bunches over time. To achieve these goals, images at 
various maturity states will be annotated, and 
YOLOv8 will be employed for maturity detection. 
This study seeks to provide technological 
advancement, enhancing maturity assessment 
accuracy, and contributing to sustainable practices in 
oil palm cultivation. 

 

2 RELATED WORKS 

The use of video data for crop monitoring has 
emerged as a valuable tool in precision agriculture. 
Video-based approaches provide a dynamic 
understanding of crop growth and maturation 
processes over time. Successfully applied in various 
crops such as grapes (Kangune et al., 2019; Zhao et 
al., 2023) and wheat (Virlet et al., 2016), this 
methodology showcases its potential to capture 
temporal changes in oil palm fruit bunches. 

Recent research has made significant strides in the 
maturity classification of oil palm fruit, leveraging 
advanced technologies. Many studies rely on non-
invasive methods, predominantly visual-based, 
avoiding direct contact with the fruit. Some authors 
employ computer vision and machine learning 
systems, extracting color features or other image 
characteristics using methods like support vector 
machine (SVM) (Septiarini et al., 2019) and artificial 
neural networks (ANN). For example, Septiarini A. et 
al. (2021) use different machine learning algorithms 
as Naïve Bayes, SVM and ANN. Others utilize 
Raman spectroscopy, as demonstrated by Raj T. et al. 
(2021) employing Raman signal features as input for 
KNN. Considering the importance of segmentation in 
traditional machine learning and/or computer vision 
methods, some authors have focused on this aspect 
(Septiarini et al., 2020). 

The integration of deep learning techniques into 
agriculture has gained ground, offering innovative 
solutions to various challenges, including crop 
monitoring, disease detection, and yield prediction. 
Deep learning models, particularly Convolutional 
Neural Networks (CNN), have shown remarkable 
success in image-based tasks, providing a foundation 
for their application in maturity classification. Recent 
works, including the use of convolutional neural 
networks capable of classifying oil palm fruit through 
knowledge transfer, for example, Suharjito et al., 
(2021), compare various CNN models, such as 
MobileNetV1, MobileNetV2, NASNet Mobile, and 
EfficientNetB0, with transfer learning (Suharjito et 
al., 2021). On the other hand, models such as YOLO 
show promising results when it comes to classifying 
multiple fruits in a single image with internal 
segmentation. Authors using the YOLO model have 
employed various versions, ranging from YOLOv3 
(Mohd Basir Selvam et al., 2021) to YOLOv5 
(Mansour et al., 2022). Some authors have even 
compared YOLO with other CNN models (Junior & 
Suharjito, 2023; Mansour et al., 2022). 

However, effective classification models depend 
on a robust database, emphasizing the fundamental 
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role of correct data labeling. Selecting the number of 
maturity grades to classify and building a high-quality 
database are key to model performance. Some authors 
have dedicated efforts to label databases for this 
purpose. Divergence exists in the number of maturity 
classes used by different authors, ranging from 2 
(ripe, unripe)(Saleh & Liansitim, 2020) to 6 (unripe, 
under ripe, ripe, over-ripe, empty, abnormal) 
(Suharjito et al., 2023). Up to 7 classes have even 
been used, attempting to differentiate all possible 
options (Herman et al., 2020). But if having few 
classes can be detrimental, as it may not cover all 
maturity options or attempt to group many different 
types of maturity into one class, having too many can 
also be problematic. It is challenging to have images 
for all maturity styles or types of fruits because some 
use the abnormal class, which is for when the fruit has 
issues. The truth is that distinguishing different 
patterns would be ideal whenever we have a sufficient 
amount of data for each class. 

Another important aspect when classifying oil 
palm fruits is the timing of classification. As 
mentioned earlier, there are two critical moments: 
when they are on the tree ready to be harvested and 
when they are in the production stage to determine 
how they were collected. Both stages are 
significant—the first for efficient harvesting. The 
second is crucial for quality control of the harvest. 
While this stage may not seem directly related to 
harvesting, it does ensure control over the quality of 
the process and allows evaluation of other suppliers a 
company might have. Depending on the production 
area, this can become quite complex; classifying fruit 
by fruit is impractical due to inclined surfaces in 
production areas, causing the fruits to be closely 
packed rather than completely separated. 

Most articles that have developed models to 
predict the ripeness of oil palm fruit have done so with 
individual bunches or completely separated from 
each other, for example, on the ground (Junior & 
Suharjito, 2023; Mansour et al., 2022; Saleh & 
Liansitim, 2020; Suharjito et al., 2023). This isn't 
typical in a production area as it's challenging to 
separate cluster by cluster to classify them all. This 
work aims to classify the fruits in the final production 
stage where they pass through an inclined ramp 
before oil extraction. 

These collective efforts highlight diverse 
approaches and methodologies to enhance the 
accuracy of oil palm fruit maturity classification, 
forming a basis for understanding the challenges in 
maturity assessment. The demonstrated potential of 
deep learning in recent works contributes to the 
context of the proposed research on oil palm fruit 

bunch maturity classification. In our case, we propose 
three classes to avoid noise between closely related 
classes, considering their significance for workers in 
the oil palm industry. The database will be built using 
images of fruits from a video taken on an inclined 
ramp in the production area. Furthermore, given the 
capabilities demonstrated by previous versions of the 
YOLO model in other works, we will use the latest 
version of this model. 

3 DATA AND METHODS 

3.1 Methodology 

The methodology followed is shown in Figure 1 
below. First, data collection is performed from videos 
by capturing frames. The images are labeled, 
selecting the bunch based on their ripeness. 
Afterward, the data is preprocessed, meaning it is 
resized to the same dimensions and augmented. 
Following all the data preprocessing, the model 
training takes place, involving tasks such as splitting 
the data into training, testing, and validation sets, 
training the model over several epochs, and validating 
it. The data set was divided into percentages: 85% 
training, 10% testing, and 5% validation. 

Next, the steps of this methodology are described 
in more detail. 

 
Figure 1: Methodology. 
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3.2 Data Collection and Preprocessing 

The data were extracted from videos and 
meticulously labeled by experts. To label the oil palm 
fruit bunches, different ripening stages were 
considered. Based on the available data and aiming 
for practicality in maturity prediction, only 3 maturity 
stages were utilized from the 4 classic types shown in 
Figure 2. In this figure, a) represents the unripe stage, 
crucial as the fruit isn’t yet ready and might not be 
useful for oil production due to low oil content. The 
mature stage, depicted in b), is considered ideal as it 
allows for the extraction of the highest oil yield 
without losses. Stage c) indicates overripeness, 
leading to losses as the fruits easily detach from the 
bunch and might remain unused. Lastly, stage d) 
represents the fruit being beyond overripe, continuing 
its deterioration and entering a state considered rotten 
or spoiled. Despite its significance, due to limited 
available data, this latter stage was not individually 
considered; instead, it was merged with the previous 
stage. Therefore, stages c) and d) were labeled as 
overripe. Finally, the fruit bunches were labeled as 
unripe, ripe, and overripe. 

Two types of palms were considered: Elaeis 
guineensis and hybrids OxG (E. oleifera x E. 
guineensis). Roboflow software facilitated image 
labeling, yielding 65 images from the videos (see 
Figure 3 for one example of the images). Within these 
images, fruit bunch were annotated, resulting in 390 
labeled bunch: 65 unripe, 203 ripe, and 122 overripe. 
 

 
Figure 2: Example of ripeness level of oil palm fruit bunch. 

One of the first things to consider is the difficulty 
of the images. As can be seen, for example, in the 

figure 3, there are many fruits grouped together, 
which can be challenging to identify. This is precisely 
one of the issues with the YOLO model, identifying 
objects that may be overlapped. The photos were 
taken on a loading ramp in the production area, so the 
bunch may shift, and sometimes they can be on top of 
each other or too close. Even due to the detachment 
of fruits from the bunch, there may be some bunch of 
loose fruits that resemble bunches. 

 
Figure 3: Example of image taken from the video. 

Before training, image pre-processing was 
conducted. Initially, the image size was adjusted to 
640x640 pixels. Various data augmentation processes 
were then applied, including flipping, rotating, 
cropping, saturating, adjusting brightness, and 
exposure alterations. The applied data augmentation 
processes are as follows: 
 Flip: Horizontal, Vertical 
 90° Rotate: Clockwise, Counter-Clockwise, 

Upside Down 
 Crop: 0% Minimum Zoom, 20% Maximum 

Zoom 
 Rotation: Between -15° and +15° 
 Shear: ±15° Horizontal, ±15° Vertical 
 Saturation: Between -15% and +15% 
 Brightness: Between -15% and +15% 
 Exposure: Between -15% and +15% 

The data augmentation process was performed 
during training, obtaining 165 images to train the 
model, significantly increasing the data per classes: 
156 immature, 642 mature, and 309 overripe. 

3.3 YOLOv8 Model 

In this study, we employed the YOLOv8 model for 
object detection, the latest version to date in the You 
Only Look Once (YOLO) series. Developed by 
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Ultralytics, this model is renowned for its real-time 
capabilities (Jocher et al., 2023). 

The architecture is based on a CNN. It utilizes a 
simple CNN to predict bounding boxes and class 
probabilities in a single pass. YOLOv8 is a multiscale 
model, employing three scale-detection layers. This 
model is at the forefront of real-time object detection, 
providing a balance between accuracy and speed, 
making it a valuable tool for various applications. 

Our utilization of YOLOv8 involved fine-tuning 
on labelled datasets, including pre-processing steps 
such as resizing images to 640x640 pixels. 

3.4 Metrics 

Object detection involves not only the classification 
of an object but also the classification of several 
objects. In each case, it is necessary to evaluate 
whether the detection position is correct. 

To assess the performance of the YOLOv8 model 
for object detection, various metrics are employed to 
evaluate accuracy and efficiency. These metrics 
provide information about the model's ability to 
accurately identify objects within an image. 

3.4.1 Intersection over Union (IoU) 

Intersection over Union (IoU) is a metric used to 
evaluate the overlap between the predicted bounding 
box and the ground truth bounding box. It is 
calculated by dividing the area of overlap between the 
two boxes by the area of their union. IoU provides a 
measure of how well the predicted box aligns with the 
actual object location. 
 𝐼𝑂𝑈 ൌ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛  (1) 

3.4.2 Precision and Recall 

Precision and recall are fundamental metrics 
quantifying the model's accuracy in correctly 
identifying positive instances (precision) and 
capturing all relevant instances (recall). 

3.4.3 Mean Average Precision (mAP) 

One key metric is the mean Average Precision (AP), 
measuring the average accuracy across different 
object classes. Where (AP) is calculated as the area 
under the precision-recall curve. This metric is crucial 
for understanding the overall effectiveness of the 
YOLOv8 model in various scenarios.  

This metric is often calculated under an IoU 
threshold. For example, mAP50 calculates the mean 

of AP at an IoU threshold of 0.5, considering only 
predictions with IoU greater than or equal to 0.5. This 
metric is useful when flexibility in bounding box 
matching is needed. On the other hand, mAP50-95 is 
the mean of AP at different IoU thresholds from 0.5 
to 0.95, calculated at 0.05 intervals. These two 
metrics provide information about the model's ability 
to accurately detect objects at different levels of 
overlap between predicted bounding boxes and 
ground truth. 

4 RESULTS AND DISCUSION 

In this study, the YOLOv8 model was employed to 
train the previously described dataset. The advantage 
of using a model like this is the ability to detect fruit 
bunches in images without the need for prior 
segmentation. This contributes to a faster model. The 
model was trained using transfer learning for 300 
epochs with a batch size of 16. 
 

 
Figure 4: Training loss graphs of the model. 

Figure 4 illustrates the training loss graphs. In the 
figure, graphs related to three losses that play a 
significant role in the performance of a YOLO model 
can be observed: loss related to bounding box 
regression (box_loss), loss associated with 
classification accuracy (cls_loss), and distribution 
focal loss (dfl_loss). The box_loss measures the 
accuracy of predicted bounding boxes around objects, 
indicating the alignment between predicted and actual 
object boundaries. Meanwhile, cls_loss evaluates the 
precision of object classification, reflecting the 
model's ability to correctly identify object classes. 
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Lastly, dfl_loss is a variant that aids in mitigating 
class imbalance and challenging examples during 
model training, thereby enhancing its capability to 
handle varied classes and complex instances. The first 
row contains three graphs related to losses, showing 
a clear trend of decreasing loss, indicating that more 
training epochs could have been performed. The 
subsequent three graphs are about the validation 
losses. The limited number of validation images 
results in somewhat unstable loss despite a decrease 
at the same level. This instability may be attributed to 
the scarcity of validation data. 

 

 
Figure 5: Training metrics graphs of the model. 

Figure 5 shows the graphs that represent precision 
and recall, achieving values of 96.5% and 95%, 
respectively. Finally, mAP50 and mAP50-95 graphs, 
crucial for measuring model precision, reached 
significant values of 98% for mAP50 and 80% for 
mAP50-95. The validation resulted in an mAP of 
94.3%. 

Table 1: Average precision by class. 

Class Precision
Unripe 92 
Ripe 85 

Overripe 93 

Table 1 displays the precision results for each 
class in the validation set. It can be observed that the 
intermediate class, 'mature,' has the lowest precision, 
while 'green' and 'overripe' exhibit the highest 
precision.  

 

 
Figure 6: Image classify by the model. 

As depicted in Figure 6, the model adeptly 
identifies fruits in all three classes. It can be seen in 
the figure that the model also provides a percentage 
of the classification of the identified object, which can 
also be a factor in the prediction, selecting only 
objects with a specific threshold. Such a model holds 
great utility for camera deployment in production 
areas, where photos are taken on a conveyor where 
fruits pass before being taken to tanks for oil 
extraction. Although this marks the final production 
stage, it is crucial for evaluating the overall 
production process. Additionally, the model could be 
applied in the field, using a smartphone camera to 
classify fruits in real-time, assisting fruit pickers in 
harvesting at the right moment of ripeness. 

Despite achieving excellent metric results, the 
model shows promise for even better performance 
with additional training data. 

Consideration could be given to adding another 
class for empty or rotten bunch. A detailed analysis 
revealed challenges, especially in classifying overripe 
bunch, indicating the need for a nuanced approach. 
Although overripe bunch tend to lose many fruits, 
they are not necessarily empty or semi-empty, 
introducing another level of complexity, but the 
quantity of such instances was insufficient to 
establish a separate class in this study. 

Figure 7 shows how the model makes a mistake in 
classifying the bunch at the bottom right as overripe 
when it is actually ripe. It can be seen that this specific 
bunch has lost fruits, but despite that, it is not 
overripe. Perhaps the loss of fruits was due to the 
transportation process in production and not the 
maturity state. These can become classic errors and 
are challenging to detect even by some experts. 
However, increasing the quantity of images in the 
data is believed to significantly aid in improving 
distinctions like this. 
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Figure 7: Image classify by the model, with wrong 
identification. 

5 CONCLUSIONS 

The research presented in the article leverages the 
YOLOv8 model for identifying the maturity of fruit 
bunches through digital images, demonstrating its 
application in production scenarios and considering it 
a promising tool for fruit harvesting. Several key 
observations can be extracted: 
 

• The study focuses on classifying fruits as ripe or 
overripe, highlighting the model's ability to 
discern different stages of fruit maturity, being 
more accurate in the unripe and ripe stages. 

• Deep learning, particularly YOLO variants, 
proves effective in various fruit detection 
scenarios, capable of identifying objects in 
images with multiple items without the need for 
prior segmentation. 

• The analyzed models exhibit real-time 
capabilities, with applications in complex 
orchard scenarios, contributing to timely fruit 
classification and harvest decisions. 

• Experimental results, especially with the YOLO 
v8 model, emphasize its robustness in addressing 
variations in lighting and unstructured grape 
growth environments. 

• In conclusion, the research underscores the 
versatility and effectiveness of YOLOv8 and 
related models in the detection, classification, 
and identification of the maturity of oil palm fruit 
bunches in diverse agricultural settings. 

• For future work, it is recommended to split the 
overripe class into two, adding the empty or 
rotten bunch class to learn different patterns 
more effectively and increase the quantity of 
images. 

• Another recommendation for future work is to 
utilize different types of photos, capturing fruit 
bunches not only on the loading ramp but also 
while on the tree. This approach would provide 
broader coverage for the final application's 
usability. 
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