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Abstract: We present a real-time system that uses machine learning and georeferenced biometric data from wearables 
and smartphones to detect and map crowd panic emergencies. Our system predicts stress levels, tracks stressed 
individuals, and introduces the CLOT parameter for better noise filtering and response speed. We also 
introduce the DEI metric to assess panic severity. The system creates dynamic areas showing the evolving 
panic situation in real-time. By integrating CLOT and DEI, emergency responders gain insights into crowd 
behaviour, enabling more effective responses to panic-induced crowd movements. This system enhances 
public safety by swiftly detecting, mapping, and assessing crowd panic emergencies. 

1 INTRODUCTION 

Crowd panic emergencies are a significant public 
safety concern, particularly in densely populated 
areas like cities, sports events, concerts, and festivals. 
These incidents can result in injuries, fatalities, and 
property damage, often triggered by perceived 
threats, rumors, or stampedes. Real-time detection 
and mapping of such emergencies are vital for swift 
response and evacuation. 

Recent advancements in machine learning and 
wearable technology offer new opportunities for real-
time detection and mapping. Our system utilizes 
georeferenced bio-metric data from wearables and 
smartphones, providing more accurate insights into 
stress levels and movement patterns. It employs a 
Gaussian SVM machine learning classifier to identify 
stressed individuals. We introduce the Classifier 
Level of Trust (CLOT) as a parameter to balance 
detection speed and noise filtering. 

Once a stressed individual is detected, the system 
conducts real-time spatial analysis to track their 
movement and identify nearby stressed individuals. It 
creates dynamic areas based on trajectories and 
adjacency. The system also introduces the Domino 
Effect Index (DEI) to assess the severity of the 
emergency by considering factors like panic 
transmission rate, panicked crowd density, and 
alignment with road networks. 

Incorporating DEI enhances emergency detection 
and response, ensuring public safety in densely 
populated areas. Emergency responders can use this 

information to de-ploy resources, evacuate affected 
areas, and prevent escalation. The system's 
components, including the machine learning 
classifier and georeferencing, are detailed in 
subsequent sections, along with an evaluation of its 
effectiveness and potential applications. We also 
outline future research directions in this field. 

2 RELATED WORK 

Panic, extensively studied in psychology and human 
sciences, involves intense fear resulting from real or 
perceived danger. It often occurs in groups or crowds, 
leading to regressive behaviors like violence, jumps, 
or collective suicide. Mass panic is an abnormal 
response where a group moves faster than usual due 
to alarming events like stampedes, fires, fights, 
robberies, or riots. 

In recent literature, several studies and systems 
have concentrated on panic detection through the 
utilization of Closed Circuit Television (CCTV) 
technology. These surveillance methods scrutinize 
human behavior by analyzing both still images and 
video sequences of individuals or groups. For 
instance, Hao et al. (Hao, 2016) have presented an 
approach based on optical flow features to identify 
crowd panic behavior, while Ammar et al. (Ammar, 
2021) have outlined a continuous surveillance system 
for a particular public location, employing a 
stationary camera and a methodology for real-time 
analysis of captured images. 
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Another approach to panic detection systems 
involves user intervention and community 
engagement in reporting emergency events. While 
disaster preparedness plans are crucial for community 
safety, traditional methods of data acquisition and 
distribution fall short, especially during time-
sensitive crises. 

The Internet of Things (IoT) technology emerges 
as a solution to acquire real-time da-ta and promptly 
transmit it to experts for decision-making. Wearable 
devices and IoT play a pivotal role in collecting 
biometric data and conducting stress detection. The 
wearables and IoT sector has seen exponential 
growth, thanks to technological advancements in 
sensors and chips. This growth allows real-time 
sensor data to be combined with the capabilities of 5G 
smartphones, providing essential information for 
decision-making. 

Recent research shows that the field of crowd 
evacuation systems, quantitative analysis, and 
visualization is still evolving. Notable contributions 
include Tsai's work (Tsai, 2022), which uses 
wearable data to predict panic attack disorders based 
on time series data, incorporating physiological 
factors and air quality into a prediction model. 

Kutsarova and Matskin (Kutsarova, 2021) 
employ mobile crowdsensing and wearables on the 
CrowdS platform, utilizing smartwatch sensors to 
detect abnormal events and trigger alarms. Alsalat's 
research (Alsalat, 2018) focuses on using machine 
learning with wearables to classify individuals as 
stressed or calm during panic situations. 

Sun et al. (Sun, 2021) address crowd behavior 
during emergencies, particularly in earthquake 
evacuations. They conducted an evacuation drill 
experiment to analyze evacuation processes, 
participation ratios, and behavior characteristics. 
Their study includes a computer-aided quantitative 
simulation, establishing a response rule equation for 
crowds in emergencies, exploring panic behavior, 
exit familiarity, and the relationship between training 
time and exit familiarity. The study aims to optimize 
the efficiency of evacuation processes and prevent 
congestion and stampede accidents. 

These studies collectively contribute to our 
understanding of crowd panic and emergency 
response, pushing the boundaries of current research 
in this field. 

In a related study, Zhang et al. (Zhang, 2023) 
address the challenges of urban security and 
management concerning crowd gatherings in large 
public spaces like shopping malls, stations, and 
entertainment venues. They propose a Crowd Density 
Estimation Model (CDEM-M) that utilizes deep 

learning and Geographic Information System (GIS) 
technology. This model surpasses the limitations of 
traditional crowd density estimation methods that rely 
on human head features, which can be problematic in 
high-altitude scenes or when head information is 
obscured. The CDEM-M provides a comprehensive 
solution by integrating GIS, offering a unified map 
visualization interface for accurate crowd area ex-
traction through semantic segmentation. It considers 
various aspects, including crowd information 
extraction, geographic mapping, number estimation, 
and map visualization. 

Another study by Albarakt et al. (Albarakt, 2021) 
explores the role of public spaces in cities, focusing 
on their political, social, economic, and sustainability 
aspects. The research investigates how streets, 
commercial centers, squares, and cafes either support 
or restrict public engagement. It also delves into the 
evolving political use of public spaces, the 
contestation over space, and the competition among 
various stakeholders for dominance. Using examples 
from the Middle East and ArcGIS mapping, the study 
examines visual and verbal narratives of protest 
events in contested public spaces. The findings have 
potential implications for urban planning and 
management strategies related to public spaces.  

In conclusion, these studies illustrate the potential 
of utilizing machine learning and sensor data for real-
time detection and mapping of crowd panic 
emergencies. Each paper offers a distinct approach, 
utilizing various data types and machine learning 
algorithms. 

Our proposed system builds upon this prior 
research by leveraging georeferenced biometric data 
from wearable devices and smartphones, employing 
a Gaussian SVM machine learning classifier for the 
real-time detection and mapping of crowd panic 
emergencies. 

This represents a significant advancement, as it 
utilizes precise data, offering a more accurate 
assessment of stress levels and panic behavior 
compared to traditional data sources like GPS or 
video. Additionally, our system conducts real-time 
spatial analysis to monitor the movement of stressed 
individuals and generate dynamic areas, providing 
emergency responders with accurate, up-to-date 
information about the situation. 

In essence, our research takes a comprehensive 
and precise approach to the real-time detection and 
mapping of crowd panic emergencies, enabling 
emergency responders to make faster, more informed 
decisions that mitigate risks and ensure public safety. 
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3 METHODOLOGY 

3.1 Workflow Process 

Our crowd panic detection system aims to extract 
insights from collected biometric and spatiotemporal 
data to identify panic patterns in crowds, as shown in 
Figure 1. The process begins with a wearable device 
monitoring biometric data, while an Android 
smartphone collects GPS coordinates, time, activity, 
speed, and step data. This information is compiled 
into encrypted UDP packets and sent to a server over 
the GSM network. The server decrypts and processes 
the data to identify panic patterns, handling a 
significant volume of real-time data. 

3.2 Stress Profile Index (SPI) 
Classification 

The proposed method characterizes an individual as 
calm or in a panic state using a classifier that takes 
various biometric and geospatial data from wearable 
devices as input, as described in (Lazarou, 2022). To 
select the most suitable machine learning classifier, 
several classifiers were assessed with a dataset 
comprising of 27 subjects. This dataset includes 
biometric information such as heart rate, heart rate 
variability, spatiotemporal data including location 
coordinates, activity type, subject speed, step count, 
and descriptive data like gender, age, weight, and a 
unique identification code for each subject. 

The biometric and spatiotemporal attributes in the 
dataset are categorized into four groups, with values 
informed by relevant studies: i) biometric data from 
wearables, including heart rate and heart rate 
variability; ii) spatiotemporal data from smartphones, 
which includes location coordinates, activity type, 
subject velocity, and step count; iii) descriptive data 
from wearables, encompassing subject gender, age, 
and weight; and iv) the unique ID assigned to each 
subject from smartphones. Additionally, a feature 
called "heart rate moving average deviation" 
(HRMAD) is introduced to detect sudden panic 
conditions based on heart rate values. 

Machine learning models are trained on this 
dataset to differentiate between panic states and 
normal behavior. Various classifiers, including 
decision trees, logistic regression, Gaussian and 
kernel naïve Bayes, Gaussian SVM, SVM kernel, and 
boosted trees, were examined. The Gaussian SVM 
classifier yielded the highest accuracy, especially 
when using the HRMAD60 feature. Consequently, 
the Stress Profile Index (SPI) is introduced as a binary 
index, indicating a Calm state (value 0) or a Stressed 

state (value 1) based on the classifier's output 
(Lazarou, 2022) 

3.3 Real-Time Analysis of Spatial 
Patterns 

The purpose of real-time spatial analysis in 
monitoring panic conditions is supported by a data 
model as in (Lazarou, 2023), represented in Figure 3. 
This model processes streaming data containing 
spatiotemporal and biometric information collected 
from wearable devices and smartphones. As stated in 
the previous section, a Gaussian SVM machine 
learning classifier is utilized to distinguish between 
normal behavior and panic conditions, assigning the 
SPI values of 0 and 1, respectively. The resulting 
categorization labels the data as either Points of No 
Interest or Panic Points. 

Real-time spatial analysis for panic monitoring 
relies on a data model, as illustrated in Figure 3 and 
detailed in (Lazarou, 2023). This model processes 
streaming data, combining spatiotemporal and 
biometric information from wearables and 
smartphones. A Gaussian SVM classifier discerns 
normal behavior from panic, assigning SPI values of 
0 and 1, respectively. The data is categorized as 
"Points of No Interest" (SPI 0), marking the end of a 
sequence of "Panic Points" (SPI 1) representing 
highly stressed profiles. If isolated Panic Points are 
followed by a Point of No Interest, no further action 
is taken. However, consecutive Panic Points form a 
"Panic Trajectory" with an associated "Panic 
Trajectory Origin." 

A Panic Trajectory is a continuous sequence of 
Panic Points linked to a subject, ending with one or 
more Points of No Interest. The initiation of a Panic 
Trajectory can depend on a single or multiple panic 
points, with the required initiation and termination 
points determined by the "Classifier Level of Trust" 
(CLOT). 

In Section 4, we delve into various start and end-
point scenarios for Panic Trajectories, exploring 
variations where two or more Points of No Interest 
are needed to conclude a Panic Trajectory. We also 
examine scenarios requiring two or more Panic Points 
for initiation. Once a Panic Trajectory begins, the first 
point becomes the "Panic Trajectory Origin." We use 
the DBSCAN algorithm to identify spatiotemporal 
correlations among these origins. This algorithm 
works within a 100-meter radius and a 10-second 
timeframe, aiding our understanding of panic 
behavior patterns. 

Meeting specific conditions triggers the creation 
of "Crowd Panic Areas," comprising the "Origin 

Real-Time Detection and Mapping of Crowd Panic Emergencies

487



Crowd Panic Area" and the "Current Location Crowd 
Panic Area." The Origin CPA traces the origin of 
correlated Panic Trajectory starting points, while the 
Current Lo-cation CPA relies on the most recent 
points of ongoing correlated Panic Trajectories. 

Additionally, the "Domino Effect Index," 
introduced later, assesses the severity of panic-
induced crowd behavior during emergencies. 

3.4 Classifier Level of Trust (CLOT) 

CLOT, a numerical parameter from 0 to 10, indicates 
the system's confidence in the classifier's output. 
Lower CLOT values prioritize fast detection with less 
noise reduction, while higher values filter out more 
noise, reducing false positives but slowing detection. 

In essence, adjusting CLOT balances detection 
speed and noise filtering, enabling performance 
testing under different settings and noise levels. 

 
Figure 1: Example of CLOT = 3. 

In Figure 1, two examples highlight the influence 
of a CLOT value set at 3. On the top, a subject initially 
exhibits calmness with two Points of No Interest. 
Then, a sequence of Panic Points unfolds, triggering 
the system to mark the third successive Panic Point as 
the Point of Trust (POT), initiating a Panic 
Trajectory. If the sequence continues uninterrupted, 
the trajectory extends. Points of No Interest 
eventually appear, and the system assesses if at least 
three consecutive Points of No Interest are present to 
end the Panic Trajectory. In the bottom example, 
another subject remains composed, and the 
subsequent Panic Points don't surpass the CLOT 
threshold of 3. As a result, the system classifies them 
as noise, leading to no trajectory formation. 

 
 

3.5 Domino Effect Index (DEI) 

The DEI assesses panic severity by considering 
factors such as panic transmission rate, panicked 
population density, new panic origins, convex hull 
area change rates, and alignment with the road 
network. It's rated from 0 to 5, with higher values 
indicating more severe panic. This scale has five 
levels, with DEI scale 1 being the lowest severity, and 
DEI scale 5 indicating the highest severity. By 
incorporating various factors contributing to the 
domino effect, DEI offers a dependable evaluation of 
crowd panic, aiding decision-makers in shaping 
effective emergency response strategies. 
Methodologically, DEI is determined by a 
combination of weighted and normalized factors 
influencing panic propagation, detailed in Table 2 
below: 

Table 1: DEI contributing factors. 

Factor Description 
Rate of panic 

transmission (𝑓ଵ) 
The rate at which panic spreads 

among the crowd 

Number of new panic 
origins within the 

panic origin convex 
hull (𝑓ଶ) 

The distribution of new panic 
origins within the area where panic 

first emerged 

Density of panicked 
people (𝑓ଷ) 

The concentration of panicked 
individuals within the current 

location convex hull 

Area change rate of 
the panic origin 
convex hull (𝑓ସ) 

The rate at which the area of the 
panic origin convex hull changes 

over time 

Area change rate of 
the current location 

convex hull (𝑓ହ) 

The rate at which the area of the 
current location convex hull 

changes over time 

Number of aligned 
clusters (𝑓) 

The count of panic clusters aligned 
with the road network, which 

might indicate the crowd's 
tendency to use streets for escape 

Each factor is normalized between 0 and 1, and 
then multiplied by a weight that reflects its 
importance in contributing to the domino effect. The 
DEI is then calculated as the sum of these weighted 
factors: 

DEI = ∑𝑤𝑓 for i =1…6 

where 𝑓  and 𝑤  denote the 𝑖 -th factor and the 
corresponding weight, respectively. 

To normalize the contributing factors for DEI, 
each factor is scaled between 0 and 1, ensuring fair 
comparisons and combining different numerical 
values. This process involves three steps. First, 
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determining the factor's minimum and maximum 
values to set its range. Second, scaling the current 
factor value at a time step to a normalized value 
within 0 to 1 by subtracting the minimum and 
dividing by the range between the maximum and 
minimum values.  

normalized_value = (current_value - min_value) / 
(max_value - min_value) 

To compute DEI, normalization ensures that 
various factors, regardless of their original scales, are 
equitably assessed for their collective influence on the 
domino effect's severity. Normalized values are then 
weighted by user-defined weights and summed to 
determine the final DEI value. This quantifies the 
potential panic propagation extent in a crowd and aids 
in intervention prioritization. The DEI value is 
classified into five intervals (0-0.2, 0.2-0.4, 0.4-0.6, 
0.6-0.8, 0.8-1), with each interval corresponding to 
DEI scales from 1 to 5, as shown in Table 3. 

Table 2: DEI scales. 

DEI Scale DEI value 
1 0-0.2 
2 0.2-0.4 
3 0.4-0.6 
4 0.6-0.8 
5 0.8-1 

DBSCAN clustering is employed to identify 
panicked individual clusters based on their alignment 
with the road network. DBSCAN, a widely used 
density-based clustering algorithm, identifies dense 
regions in datasets. Each cluster is enclosed by a 
minimum area bounding rectangle (MABR), and the 
axis ratio is calculated. If the axis ratio is below a 
certain threshold (e.g., 0.5), it is deemed an aligned 
cluster. This information is valuable, suggesting that 
panic transmission is more likely when a significant 
portion of a panicked crowd flees through the streets. 
The DEI metric and its scale are valuable for assessing 
panic severity in real-world scenarios like evacuations, 
natural disasters, or terrorist attacks. By quantifying the 
domino effect and categorizing it into five severity 
levels, emergency planners and responders can better 
understand crowd behavior and develop more effective 
response strategies to mitigate risks associated with 
panic-induced crowd movements. 

4 EXPERIMENTAL SETUP AND 
RESULTS 

We conducted a proof of concept in Syntagma 
Square, Athens, testing three unique crowd panic 

scenarios: ESCAPE, SHRINK, REPULSION. These 
scenarios were designed to examine different crowd 
panic behaviors and DEI dynamics. 

In these scenarios, the crowd responds to aversive 
events by dispersing (ESCAPE), contracting towards 
the center (SHRINK), or reacting to repulsive forces 
(REPULSION). Weight variations in each scenario 
were applied to analyze the DEI factors' impact on 
crowd behavior, contributing to a better 
understanding of panic propagation. 

Regarding the ESCAPE scenario that will be 
presented in this paper, approximately 30 individuals 
from diverse backgrounds gather in a controlled 
environment, initially in a calm state, engaging in 
various activities. At a predetermined moment, an 
unpleasant event is deliberately introduced, causing a 
sudden onset of stress and panic among some 
participants. This event triggers physiological 
symptoms like increased heart rate and rapid 
breathing. As panic spreads, individuals' emotions 
influence each other, resulting in a chain reaction of 
stress and anxiety. This phenomenon is known as 
emotional contagion, where emotions transfer 
between people through nonverbal cues and social 
interactions. Those initially calm also become 
stressed as they observe the panic. As the situation 
unfolds, panic continues to propagate, with 
individuals instinctively seeking escape in various 
directions. This amplifies the scale and magnitude of 
the event. 

In Figures 2, 3, and 4, the maps illustrate the 
progression of the phenomenon over time. Panic 
points are depicted as red dots, calm points as green 
dots, and recovered points as blue dots. Panic 
trajectories are represented by red lines, while the 
origins of these trajectories are marked by green flags. 
The shaded orange region denotes the Origin CPA 
(Common Panic Area), and the hollow red region 
indicates the Current Location CPA. 

 
Figure 2: Initial expansion. 
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Figure 3: Panic starts to spread widely. 

 
Figure 4: After some time it still expands but some subjects 
tend to recover (blue dots). 

Figures 5, 6, 7, and 8, depict real-time counts of 
individuals categorized as stressed, calm, and 
recovered. These visualizations facilitate the effective 
monitoring of emotional distribution within the 
group. Real-time charts graphically represent 
emotional trends for each category, helping identify 
influencing factors and individual transitions between 
emotional states. 

Furthermore, the Panic Transmission and 
Recovery Rate Charts offer insights into the speed of 
panic propagation and recovery rate, providing 
valuable information about the effectiveness of 
interventions and the overall resilience of the group. 
Additionally, the DEI Current Value offers real-time 
insights into the collective emotional state, reflecting 
stress and anxiety levels. The DEI Progress Diagram 
tracks the evolution of the emotional state over time, 
providing valuable information about its progression 
throughout the scenario. 

 
Figure 5: Transmission rate and panicked population. 

 The count of recovered individuals demonstrates 
a progressive increase after a certain period, as 
evidenced by the recovery rate. Simultaneously, the 
number of calm individuals exhibits a noticeable 
decline, gradually approaching zero. 

 
Figure 6: Recovery rate and recovered population. 

 

Figure 7: Calm population. 

Ultimately, the comprehensive evaluation of the 
DEI reveals that, in this particular scenario, the 
phenomenon only marginally surpasses the threshold 
of 0.40, resulting in a DEI scale of 2. 

 
Figure 8: Evolution of DEI. 

In Figure 9, it is evident that the population of 
panicked individuals exhibits considerable 
fluctuations over time, indicating the arbitrary nature 
of the phenomenon's expansion and its variable 
impact on different individuals. During the initial 
minutes, the transmission rate remains predominantly 
low, as the panic has yet to propagate to a wider 
population. However, in subsequent stages, the 
transmission rate reaches higher values, signifying 
the widespread dissemination of panic. 

 

Figure 9: Final state where the event has spread 
significantly, and multiple subjects are now in the recovery 
phase. 
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5 CONCLUSIONS AND FUTURE 
WORK 

In our experiments, we closely monitored participants 
to understand panic behavior in groups. We used a 
digital map to visualize how panic evolves, 
identifying clusters of stressed individuals and 
support networks. The Domino Effect Index (DEI) is 
a vital tool for assessing emergency severity. It 
considers panic speed, density, and road alignment. 
The Classifier Level of Trust (CLOT) balances noise 
filtering and quick detection. Our research can shape 
interventions for managing panic in real-life 
situations, reducing negative consequences. In 
conclusion, our real-time spatial analysis, using 
wearables and smartphones, advances crowd panic 
monitoring. serves as a valuable index for prioritizing 
interventions in scenarios characterized by 
concurrent multiple events. Empirical validation of 
this approach has been substantiated through rigorous 
experimental investigations. Future work will delve 
into bio-algorithms and mathematical models to 
better understand panic spread, refining our approach 
in crowd safety and security. 
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