Spatial Analysis of Blastocystosis Patients in Lampung Province: Study on Malignancy Patients who Received Chemotherapy at **RSUDAM Lampung Province in 2022**

Jhons Fatriyadi Suwandi^{1,*} o^a, Noviany² Juspeni Kartika³ and Agnes Kurniawan⁴ o^c

¹Department of Microbiology and Parasitologi, Faculty of Medicine, University of Lampung, Bandar Lampung, Indonesia ²Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia

³Department of Internal Medicine, Faculty of Medicine, University of Lampung / Dr. H Abdul Moeloek General Hospital of Lampung Province, Bandar Lampung, Indonesia

⁴Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia

Keywords: Blastocystis sp, Immunosuppressive, Spatial Analysis, Malignancy.

Abstract:

Blastocystosis is an intestinal protozoan infection that can cause diarrhea. In the immunocompetent group, it can be asymptomatic. However, in immunosuppressed patients, it can be severe. The disease is transmitted by the oro-faecal route through food that has been contaminated with the faeces of patients. Spatial analysis can be used to map people to determine the risk of the parasite spreading. The aim of this study was to investigate the mapping of blastocystosis patients, studies in patients with malignancies at Lampung Provincial Hospital. We diagnosed Blastocystis infection in 62 fecal samples from study subjects through fecal microscopic examination. To determine the location of the patients' residences, we used Google Maps and Google Art applications based on the addresses listed on the questionnaire. The coordinate data were analyzed, and mapped using the ArcGIS 10.8.2. The results of the microscopic examination showed that 32.26% of the samples were positive for Blastocystis infection. Patients are distributed within the coordinates of 104.6380950 to 109.1035280 East and 3.9533070 to 7.0776440 South. The majority of patients are located in Bandar Lampung City, with the farthest origin of residence being Purbalingga Regency in Central Java Province. The buffering pattern was obtained using a radius of 10 kilometers.

INTRODUCTION 1

Several species of intestinal protozoa have been reported to be one of the causes of intestinal disorders such as diarrhea, which can be persistent and chronic diarrhea or acute diarrhea. Intestinal protozoal infections in immunocompetent groups are usually asymptomatic or mildly symptomatic.

In immunosuppressive groups such as patients HIV/AIDS, malignancies, patients immunosuppressive therapy and several other conditions of impaired immunity can be severe and can cause death (Esteghamati et al., 2019; Fletcher et al., 2014). Intestinal protozoa that have been reported as causes of infection are Giardia lamblia, Cryptosporidium sp, Amoeba, Isospora sp, Cyclospora sp and Blastocystis sp (Boughattas et al., 2017; Esteghamati et al., 2019; Giannakopoulos et al., 2019; Laksemi et al., 2020).

Intestinal protozoal infections are often overlooked and underdiagnosed. This is because the symptoms are mild and even asymptomatic, especially groups. However, intestinal immunocompetent protozoal infection is one of the infections that can cause increased morbidity and mortality in the community. Impaired nutrient absorption, resulting in impaired growth and development, especially in

^a https://orcid.org/0000-0002-6938-1628

b https://orcid.org/0000-0002-4046-6134

^c https://orcid.org/0000-0003-1969-5503

children under five years of age, may lead to cognitive impairment in the future. It is therefore important to overcome this infection (Faria et al., 2017).

Blastocystis sp is a cosmopolitan protozoan parasite. Symptoms are generally atypical and include abdominal pain, constipation, diarrhea, flatulence, and irritable bowel syndrome (IBS). Several species of this parasite are found in the gastrointestinal tract of animals and humans. Several subtypes have also been identified. Not all subtypes infect humans, with only 9 of the 17 reported subtypes found in humans (Asfaram et al., 2019; Dacal et al., 2018; Ramírez et al., 2016; Villamizar et al., 2019; Wawrzyniak et al., 2013) This protozoan is thought to be transmitted by the fecal-oral route. Transmission can occur from person to person, but the possibility of transmission from person to animal and vice versa is unclear (Ramírez et al., 2016).

Geographic Information Systems (GIS) are an important tool for studying the distribution of disease within a location or region. Disease mapping is useful for understanding the distribution of disease incidence and identifying underlying geographic risk factors. In addition, disease mapping facilitates decision making and rapid response for disease management. There are not many studies that discuss the spatial analysis of intestinal protozoan infections, especially blastocystosis in Indonesia. In fact, one of the factors in the spread of diseases, especially orofaecally transmitted diseases, is closely related to geographical, environmental and socio-cultural conditions (Fletcher et al., 2014). The use of spatial analysis on the spread of parasitic diseases has been done in Lampung Province (Dharmamedula et al., 2017; Suwandi et al., 2014; Wardani et al., 2018), but blastocystosis infection has never been done. This paper discusses the spatial analysis of blastocystosis patients in the group of malignancy patients who received chemotherapy in Lampung Province.

2 MATERIALS AND METHODS

The design of this study was cross-sectional analytical observational conducted at RSUDAM Lampung Province. The population of this study were patients with malignancies who received chemotherapy with or without symptoms of diarrhea at RSUDAM Lampung Province in the period October to November 2022. The sample of this study is part of the population determined based on inclusion and exclusion criteria. Inclusion criteria for determining research subjects, namely patients with malignancies who receive chemotherapy with or without diarrhea symptoms; age> 1 year; have

received at least 1 chemotherapy with a minimum rarity of at least 1 week since the first chemotherapy; willing to participate in the study by signing an informed consent. Exclusion criteria are suffering from severe complications, not willing to provide feces.

To determine blastocystosis infection, fecal parasitologic examination was performed on all fecal samples of the study subjects. Fecal examination was performed using the formalin ether concentration technique. This technique is used to increase the sensitivity, especially when the number of parasites is low. Approximately 1 ml of fecal suspension in 5% formalin was added to 5 ml of 10% formalin and stirred until homogeneous. After filtering the feces to separate the fiber, 2 ml of diethyl ether was added. The solution was shaken vigorously and centrifuged at 2500 rpm for 2 minutes. The precipitate was removed and the supernatant was collected. The sediment from this concentration test is used for direct testing with 1% Lugol's solvent, which is then read under a microscope at 400X magnification. The result of the test is positive if Blastocystis sp is found or negative if not found.

In order to determine the coordinates of the location of the research subject's residence, it was carried out with the help of google map and google earth devices. The home address contained in the questionnaire was entered into google map or google earth to find the location of the research subject's home. The coordinate points that were successfully found were then analyzed to see the mapping of patients and the buffering pattern formed using ArcGIS 10.8.2 software. The patients were mapped based on the results of the microscopic examination. The buffering pattern refers to the gate distance of houseflies as one of the mechanical vectors for the spread of intestinal protozoa. This research has received ethical approval from the Health Ethics Committee of the Faculty of Medicine, University of Lampung No. 2059/UN26.18/PP/05.02.00/2022.

3 RESULTS AND DISCUSSION

Geographically, the residence of the research subjects is located at the coordinates 104.6380950 east longitude - 109.1035280 east longitude and 3.9533070 south latitude - 7.0776440 south latitude. Administratively, Bandar Lampung City is the place where most of the research subjects live. These subjects generally live in densely populated neighborhoods. Figure 1 shows the distribution of research subjects.

Figure 1: Distribution of All Research Subjects

Based on the results of microscopic examination of fecal parasitology, 20 subjects (32.26%) were positive for Blastocystis sp, 1 subject (1.61%) was positive for Entamoeba histolytica, and 1 subject (1.62%) was positive for hookworm. Almost all subjects found to have parasites resided in Lampung province, only 1 person came from Purbalingga, Central Java. The distribution of patients found positive for parasites by microscopic examination is shown in Figure 2. Administratively, the location of the most positive patients was found in Bandar Lampung City.

Based on satellite imagery, it appears that the research subjects who were positive for blastocystosis in Bandar Lampung were located in densely populated areas. This will certainly have an impact on the risk area for the spread of this infection. The satellite image is shown in Figure 3.

can result in the parasite entering the human body (CDC, 2019). The presence of mechanical vectors also increases the transmission process by these vectors. Houseflies (*Musca domestica*) are one of the mechanical vectors that are suspected to be one of the factors that facilitate the spread of this parasite. The abilityto fly and move far from the housefly, as well as the resistance of the parasite attached to the fly's body, are important in the transmission process of this parasite (Hastutiek & Fitri, 2013; Szostakowska

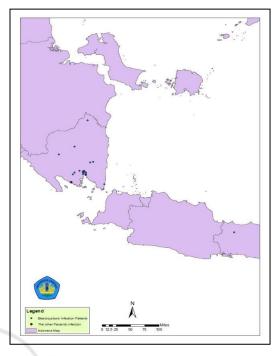


Figure 2: Distribution of Research Subjects Positive for *Blastocystis sp* and Other Intestinal Parasitic Infections

Figure 3: Satellite images of blastocystosis in Bandar Lampung

et al., 2004). In addition to houseflies as potential mechanical vectors, cockroaches have been reported as potential mechanical vectors in the transmission of *Blastocystis sp* (Dokmaikaw & Suntaravitun, 2019; Ma et al., 2020).

The mechanism of transmission of *Blastocystis sp* remains unclear. The infective stage that can be transmitted to humans has not been identified. In general, this transmission is fecal-oral. Parasite contamination from feces on food or eating utensils

Buffer zones are areas of potential or risk for transmission. The radius of this buffer area refers to the area of contact and transmission of parasites by mechanical vectors of houseflies, which are abundant in the environment. The flight distance of houseflies can reach 32km (20 miles) (Hastutiek & Fitri, 2013; Puspitarani et al., 2017; Szostakowska et al., 2004; Zurek et al., 2001). In this study, the radius of the buffer area is up to 10 km, and an overview of the buffer area is shown in Figure 4.



Figure 4: Buffering patterns in patients with blastocystosis

Based on the prevalence obtained, this study has a higher prevalence (32.26%) compared to research in Sydney (5%) (Fletcher et al., 2014); in Rio de Janeiro (12.7%) (Faria et al., 2017); in Iran (5.2%) (Asfaram et al., 2019) and in Padang by 21.3% (Nofita et al., 2015). Other studies in Brazil showed a similar prevalence (31%) (Bertozzo et al., 2022) and in Manado (36,4%) (Muflihatun et al., 2015). This could be due to the different studypopulations. In this study, the population was a high-risk group, namely patients suspected of having a compromised immune system. In the immunocompromised population, the incidence of protozoal infections tends to be high and can cause opportunistic

infections, including Blatocystosis (Laksemi et al., 2020; Xu et al., 2021).

The incidence of intestinal protozoan infections such as Blastocystis sp is inextricably linked to favorable environmental conditions such as poor sanitation, population density, availability of mechanical vectors, and community behavior. Open defectaion practices may result in environmental contamination by human feces containing protozoa. This is consistent with the results of other spatial analysis studies, such as those in Rio de Janeiro (Faria et al., 2017) and Iran (Asfaram et al., 2019).

4 CONCLUSIONS

The prevalence of blastocystosis in risk groups such as patients with malignancies was 32.26%. The buffering pattern formed is quite extensive, especially in Bandar Lampung City, although in general the subtype of this parasite is not yet known.

ACKNOWLEDGEMENTS

We would like to thank all those who helped this study, especially the patients (volunteers) who were willing to be the subject of this study. As well as to the University of Lampung HETI Project which has funded this research.

REFERENCES

Asfaram, S., Daryani, A., Sarvi, S., Pagheh, A. S., Hosseini, S. A., Saberi, R., Hoseiny, S. M., Soosaraei, M., & Sharif, M. (2019). Geospatial analysis and epidemiological aspects of human infections with Blastocystis hominis in Mazandaran Province, northern Iran. *Epidemiology and Health*, 41, e2019009. https://doi.org/10.4178/epih.e2019009

Bertozzo, T. V., David, É. B., Oliveira-Arbex, A. P., Victória, C., & Guimarães, S. (2022). Frequency, spatial distribution, and genetic diversity of Blastocystis among referred individuals to a clinical laboratory: First report of subtype 9 in Brazil. Acta Tropica, 234(June), 1–8. https://doi.org/10.1016/j.actatropica.2022.106608

Boughattas, S., Behnke, J. M., Al-Ansari, K., Sharma, A., Abu-Alainin, W., Al-Thani, A., & Abu-Madi, M. A. (2017). Molecular analysis of the enteric protozoa associated with acute diarrhea in hospitalized children. Frontiers in Cellular and Infection Microbiology, 7(AUG),

https://doi.org/10.3389/fcimb.2017.00343

- CDC. (2019). Blastocystis sp https://www.cdc.gov/dpdx/blastocystis/index.html
- Dacal, E., Saugar, J. M., De Lucio, A., Hernández-De-Mingo, M., Robinson, E., Köster, P. C., Aznar-Ruiz-De-Alegría, M. L., Espasa, M., Ninda, A., Gandasegui, J., Sulleiro, E., Moreno, M., Salvador, F., Molina, I., Rodríguez, E., & Carmena, D. (2018). Prevalence and molecular characterization of Strongyloides stercoralis, Giardia duodenalis, Cryptosporidium spp., and Blastocystis spp. isolates in school children in Cubal, Western Angola. Parasites and Vectors, 11(1), 1–18. https://doi.org/10.1186/s13071-018-2640-z
- Dharmamedula, Y. P., Mutiara, H., Suwandi, J. F., & Setyaningrum, E. (2017). Mapping of infected students and association of socioeconomic factors and parents' knowledge level with incidence of soil-transmitted helminth infections among primary school students in Natar subdistrict, South Lampung District. *Medula*, 7(5).
 - https://juke.kedokteran.unila.ac.id/index.php/medula/article/view/1921
- Dokmaikaw, A., & Suntaravitun, P. (2019). Prevalence of parasitic contamination of cockroaches collected from fresh markets in Chachoengsao province, Thailand. *Kobe Journal of Medical Sciences*, 65(4), E118–E123.
- Esteghamati, A., Khanaliha, K., Bokharaei-Salim, F., Sayyahfar, S., & Ghaderipour, M. (2019). Prevalence of intestinal parasitic infection in cancer, organ transplant and primary immunodeficiency patients in Tehran, Iran. *Asian Pacific Journal of Cancer Prevention*, 20(2), 495–501. https://doi.org/10.31557/APJCP.2019.20.2.495
- Faria, C. P., Zanini, G. M., Dias, G. S., da Silva, S., de Freitas, M. B., Almendra, R., Santana, P., & Sousa, M. do C. (2017). Geospatial distribution of intestinal parasitic infections in Rio de Janeiro (Brazil) and its association with social determinants. *PLoS Neglected Tropical Diseases*, 11(3), 1–21. https://doi.org/10.1371/journal.pntd.0005445
- Fletcher, S., Caprarelli, G., Merif, J., Andresen, D., Van Hal, S., Stark, D., & Ellis, J. (2014). Epidemiology and geographical distribution of enteric protozoan infections in Sydney, Australia. *Journal of Public Health Research*, 3(2), 83–91. https://doi.org/10.4081/jphr.2014.298
- Giannakopoulos, X., Sakkas, H., Ragos, V., Tsiambas, E., Bozidis, P., Evangelou, A. M., Papadopoulou, C., Petrogian-Nopoulos, L., & Sofikitis, N. (2019). Impact of enterococcal urinary tract infections in immunocompromised – neoplastic patients. *Journal of B.U.ON.*, 24(5), 1768–1775.
- Hastutiek, P., & Fitri, L. E. (2013). Potency of *M. domestica* Linn. as a Vector for Several Diseases *Jurnal Kedokteran Brawijaya*, 23(3), 125–136. https://doi.org/10.21776/ub.jkb.2007.023.03.4
- Laksemi, D. A., Suwanti, L. T., Suwanti, L. T., Mufasirin, M., Mufasirin, M., Suastika, K., & Sudarmaja, M. (2020). Opportunistic parasitic infections in patients with human immunodeficiency virus/acquired immunodeficiency syndrome: A review. Veterinary

- World, 13(4), 716–725. ttps://doi.org/10.14202/vetworld.2020.716-725
- Ma, L., Zhang, Y., Qiao, H., Li, S., Wang, H., Zhang, N., & Zhang, X. (2020). Cockroach as a vector of blastocystis sp. Is risk for golden monkeys in zoo. Korean Journal of Parasitology, 58(5), 583–587. https://doi.org/10.3347/kjp.2020.58.5.583
- Muflihatun, T., Bernadus, J. B. B., & Wahongan, G. J. P. (2015). Comparison of *Blastocystis hominis* Detection by Microscopic Examination and Copro Elisa Examination. *Jurnal E-Biomedik*, 3(1), 1–4. https://doi.org/10.35790/ebm.3.1.2015.7476
- Nofita, E., Harminarti, N., & Rusjdi, S. R. (2015). Microscopic and PCR Identification of *Blastocystis hominis* in Stool Samples at the Laboratory of Dr. M. Djamil Hospital Padang. *Majalah Kedokteran Andalas*, 37(1), 26. https://doi.org/10.22338/mka.v37.i1.p26-31.2014
- Puspitarani, F., Sukendra, D. M., & Siwiendrayanti, A. (2017). Application of Ultraviolet Light on Fly Trap Equipment on the Number of Houseflies Trapped. Higeia Journal of Public Health Research and Development, 1(3), 84–94.
- Ramírez, J. D., Sánchez, A., Hernández, C., Flórez, C., Bernal, M. C., Giraldo, J. C., Reyes, P., López, M. C., García, L., Cooper, P. J., Vicuña, Y., Mongi, F., & Casero, R. D. (2016). Geographic distribution of human Blastocystis subtypes in South America. *Infection, Genetics and Evolution*, 41, 32–35. https://doi.org/10.1016/j.meegid.2016.03.017
- Suwandi, J. F., Supargiyono, S., Asmara, W., & Kusnanto, H. (2014). Mapping and Prevalence of Malaria Falciparum Patients with ACT Failed Therapy, in Hanura Public Health Center, Pesawaran, Lampung, Indonesia. *Open Journal of Epidemiology*, 04(03), 169–177. https://doi.org/10.4236/ojepi.2014.43023
- Szostakowska, B., Kruminis-Lozowska, W., Racewicz, M., Knight, R., Tamang, L., Myjak, P., & Graczyk, T. (2004). *Cryptosporidium parvum* and *Giardia lamblia* recovered from flies on a cattle farm and in a landfill. *Applied and Environmental Microbiology*, 70(6), 3742–3744. https://doi.org/10.1128/AEM.70.6.3742-3744.2004
- Villamizar, X., Higuera, A., Herrera, G., Vasquez-A, L. R., Buitron, L., Muñoz, L. M., Gonzalez-C, F. E., Lopez, M. C., Giraldo, J. C., & Ramírez, J. D. (2019). Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study. *BMC Infectious Diseases*, 19(1), 1–11. https://doi.org/10.1186/s12879-019-3810-0
- Wardani, A. B., Suwandi, J. F., & Sari, R. D. P. (2018).
 Mapping of Potential Mosquito Breeding Sites in Hanura Health Center Area. *Medula*, 8(1).
 https://juke.kedokteran.unila.ac.id/index.php/medula/a rticle/view/2105
- Wawrzyniak, I., Poirier, P., Texier, C., Delbac, F., Viscogliosi, E., Dionigia, M., & Alaoui, H. E. (2013). Blastocystis, an unrecognized parasite: An overview of pathogenesis and diagnosis. *Therapeutic Advances in*

- *Infectious Disease*, *1*(5), 167–178. https://doi.org/10.1177/2049936113504754
- Xu, N., Jiang, Z., Liu, H., Jiang, Y., Wang, Z., Zhou, D., Shen, Y., & Cao, J. (2021). Prevalence and genetic characteristics of *Blastocystis hominis* and *Cystoisospora belli* in HIV/AIDS patients in Guangxi Zhuang Autonomous Region, China. *Scientific Reports*, 11(1), 1–10. https://doi.org/10.1038/s41598-021-94962-3
- Zurek, L., Denning, S. S., Schal, C., & Watson, D. W. (2001). Vector competence of *Musca domestica* (Diptera: Muscidae) for *Yersinia pseudotuberculosis*. *Journal of Medical Entomology*, *38*(2), 333–335. https://doi.org/10.1603/0022-2585-38.2.333

