In Silico Virtual Screening Studies Using Molecular Docking of Isoflavonoid Compounds as Potential Antimalarials on the Plasmodium Falciparum Dihydroorotate Dehydrogenase (PfDHODH) Enzyme

Semuel Sandy*

Research Center for Public Health and Nutrition, National Research and Innovation Agency, Kawasan Kerja Bersama (KKB) BRIN Jayapura, Jl. Isele Kampung Waena, Distrik Heram, Jayapura Selatan, 99358, Papua, Indonesia

Keywords: Isoflavonoids, Malaria, Enzyme, Drug, Docking Simulations.

Abstract:

Malaria remains a health problem in Indonesia, leading to an increase in morbidity and mortality. The use of antimalarial drugs has been reported to result in cases of resistance in several Plasmodium spp. Therefore, there is a need for the discovery and development of new drugs to address the broader impact of drug resistance. The aim of this study is to screen flavonoid compounds from plants that have the potential to be developed as antimalarial agents. Virtual screening method is employed using flavonoid compounds obtained from secondary metabolites database server (http://pscdb.appsbio.utalca.cl/viewIndex/index.php). The chemical structures of the flavonoid compounds are then prepared and optimized. The macromolecule used in the docking simulation is the Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme, which plays a role in the synthesis of pyrimidine and purine in the parasite's DNA. The protein structure preparation and optimization are performed with 3D protonation using the AMBER10HT force field in the MOE 2015 application. Docking simulations are carried out using the London scoring system (dG) and the results are visualized in two dimensions using the MOE 2015 application. The goal of this study is to identify potential flavonoid compounds from plants that can be further developed as raw materials for antimalarial drugs. The screening results of molecular docking of isoflavonoid compounds against the PfDHODH enzyme yielded seven compounds: Retonone, Retononone, Degueline, 12a-hydroxyrotanenone, Toxicarol, Tephrosin, and Cristacarpin. These isoflavonoid compounds have lower docking scores than the native ligand 2EN603.

1 INTRODUCTION

Globally, an estimated 1.7 billion malaria cases and 10.6 million malaria deaths were averted in the period 2000-2020. Most of the cases (82%) and deaths (95%) averted were in the WHO African Region, followed by the WHO South-East Asia Region (cases 10% and deaths 2%) (WHO, 2021). Malaria is a serious infectious disease caused by the Plasmodium species and is endemic in more than 90 countries. Malaria is caused by protozoan parasites of the genus Plasmodium, including P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, and it is exclusively transmitted through the bite of female Anopheles mosquitoes. The most deadly form of malaria is caused by Plasmodium falciparum. If not treated within 24 hours, P. falciparum malaria can progress to severe disease, often resulting in death.

Around half of the world's population is at risk of malaria infection, with the highest burden in tropical regions such as Africa, Asia, and Latin America (World Health Organization, 2023).

Malaria remains a common global infectious disease that causes significant morbidity and mortality. Despite the availability of several approved drugs for its treatment, drug resistance has jeopardized many of them, making the development of new drugs for the treatment and prevention of malaria crucial. The completion of the Plasmodium falciparum genome and the growing understanding of parasite biology have triggered the search for new drug targets. However, only a few targets have been chemically validated in vivo. The pyrimidine biosynthesis pathway represents one of the best examples of successful identification of anti-malarial drug targets (Phillips and Rathod, 2010).

131

Purine and pyrimidine bases are essential for the synthesis of RNA and DNA. If a cell cannot synthesize its own RNA or DNA, it will die (Löffler et al., 2005). In human cells, pyrimidine bases can be accessed through salvage pathways or de novo synthesis. If de novo synthesis is inhibited, the cell will rely on salvage pathways, and the cell will not die. However, because Plasmodium species lack the pyrimidine salvage pathway, inhibiting de novo synthesis in the parasite cells leads to their death, making them vulnerable to the inhibition of dihydroorotate dehydrogenase (DHODH) (Vyas et al., 2016). Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth reaction of de novo pyrimidine biosynthesis in the parasite and is an important target for malaria treatment (Vyas et al., 2016). PfDHODH is a Class 2 enzyme consisting of 569 amino acids. Inhibition of PfDHODH disrupts the pyrimidine biosynthesis pathway in the parasite, leading to its death, making it a promising target for developing anti-malarial drugs(Hoelz et al., 2018).

Plants produce a wide variety of organic compounds, which are collectively known as Plant Secondary Compounds (PSC). These compounds, distributed differently among limited taxonomic groups within the plant kingdom, contribute significantly to specific colors, flavors, and odors, as well as provide defense properties. One of the most important applications of plant secondary compounds for humans is their use as traditional medicines and pharmaceuticals. (Wink, 2003).

One promising chemical compound as a candidate for antimalarial treatment is the isoflavonoid. Molecular docking screening analysis is conducted to select isoflavonoid compounds that have similar interactions with the inhibitor compound of the PfDHODH enzyme, in this case, the native ligand E2N603. The compound E2N603 has inhibitory abilities at the active site with specific amino acids on the PfDHODH enzyme (Vyas and Ghate, 2011). Newer classes of antimalarial agents target molecular-based enzymes in nucleoside biosynthesis pathways, such as PfDHODH for pyrimidine biosynthesis inhibition, purine nucleoside phosphorylase for purine nucleoside biosynthesis inhibition, adenosine deaminase for nucleoside synthesis inhibition, and dihydrofolate reductase for folate biosynthesis in the parasite (Leartsakulpanich et al., 2002; Belén Cassera et al., 2011; Frame et al., 2015).

The goal of the docking study is to identify new hits from the database of natural compound flavonoids that have the potential to be potent and selective antimalarial agents against the PfDHODH enzyme.

2 MATERIAL AND METHODS

2.1 Protein Preparation for Molecular Docking

Molecular docking simulations for drug discovery were conducted using the crystal structure of Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) co-crystallized with 3-Hydroxy-1-methyl-5-((3 (trifluoromethyl)phenoxy) methyl)-1H-pyrazole-4-carboxylic acid (ID: 6I4B) obtained from X-ray diffraction with a resolution of 1.98Å, R-free = 0.226, and R-work = 0.192. The crystal structure of the DHODH enzyme was downloaded from the RCSB Protein Data Bank (https://www.rcsb.org/structure/6I4B). Ligands, heteroatoms, and water molecules were separated from the PfDHODH enzyme structure prior to the molecular docking simulations (Shivanika et al., 2020). The PfDHODH enzyme's structure was optimized and subjected to 3D protonation using the AMBER10HT force field with the assistance of the MOE 2015 application (Abhimanyu, Srivastava and Jain, 2022).

2.2 Ligands Preparation for Molecular Docking

Chemical compounds of isoflavones from various plants were downloaded from the Plant Secondary Compounds database (http://pscdb.appsbio.utalca.cl/viewIndex/index.php) in sdf format. A total of 122 groups of isoflavone chemical compounds were screened using the Lipinski rule of five, resulting in 103 chemical compounds (Lipinski, 2000, 2004; Valdés-Jiménez et al., 2021). These compounds were then prepared by adding hydrogen atoms and force field AMBER10HT charges, followed by energy minimization of the test compounds using the MOE 2015 application.

2.3 Molecular Docking Simulation

Molecular docking was performed by identifying the binding site of the PfDHODH enzyme using MOE 2015 software. The binding site was automatically identified and saved as a target for the docking simulations of the native ligand E2N603 as the reference and the docking simulations of the test ligands. The docking process was conducted with

flexible ligands and a rigid enzyme PfDHODH receptor. The obtained docking results were scored using the London scoring system (dG) (Rachman and Mutalib, 2008; Sarwar, 2013)

3 RESULT AND DISCUSSION

The results of the binding site analysis for the E2N603 compound can be seen in Figure 1a. The binding site of the PfDHODH enzyme is dominated by a hydrophobic zone, with only a small portion of the hydrogen bonding and polar zones found. Molecular docking validation is performed to ensure the validity of the docking scores. One commonly used validation method is to perform redocking on the active site of the compound with known conformation and orientation, usually obtained from co-crystal structures. A program capable of reproducing poses with a Root Mean Square Deviation (RMSD) value below the pre-selected threshold (usually 1.5 or 2 Å, depending on the ligand size) is considered successful. The selection of poses is then followed by assessment and ranking to determine which scoring function provides the most accurate ranking of poses based on their RMSD

values (Hevener *et al.*, 2010) In the redocking simulation using the reference ligand E2N603 on the PfDHODH enzyme, a root mean square deviation (RMSD) value of 0.9 A was obtained, indicating that the docking simulation process conducted is valid.

The redocking simulation of the native ligand E2N603 resulted in a docking score of -7.87 kcal/mol. The hydrogen bond interactions between the PfDHODH enzyme complex and the E2N603 ligand involve the amino acid residues ARG265, HIS185, and TYR258. Additionally, ionic interactions are formed with HIS185, HIS185, and Pi-Interactions with PHE188 and VAL532 (Table 2). The 2dimensional visualization of the interaction between the PfDHODH enzyme complex and the ligand E2N603 can be seen in Figure 2(a) and Figure 2(b). A total of 122 ligands were obtained from the database, and after screening using the Lipinski's rule of five, 103 isoflavonoid compounds were selected (Hebbar et al., 2022). These isoflavonoid compounds were then subjected to molecular docking simulations. The results of the screening and molecular docking simulations can be seen in Table 1. Among the isoflavonoid compounds, Rotenone showed the highest docking score (-8.62 kcal/mol), while Piscerythramine exhibited the lowest docking score (-1.49 kcal/mol).

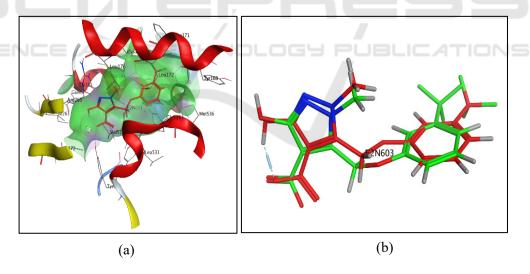


Figure 1: a) Pink color: hydrogen bonding zone, green color: hydrophobic zone, blue color: polarity zone. (b) Redocking results of the E2N603 ligand. The red color represents the native ligand E2N603, while the green color represents the redocking results of the native ligand E2N603. The redocking results obtained a rmsd value of 0.9 Å.

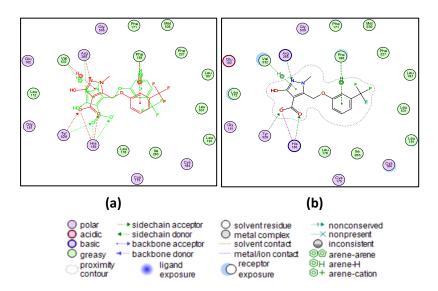


Figure 2: (a) Overlay of native ligand E2N603 interactions before docking and after redocking. (b) E2N603 ligand interactions at the PfDHODH enzyme receptors.

Table 1: The result of docking isoflavonoid compounds at the PfDHODH enzyme receptor

Com- pounds ID	Names	Mole- cular Mass (>500 Dalton)	Formula	N Rota- te Bond	N Hbond Acceptors (<10)	N Hbond Donors (<5)	Molar refract- tivity (<130)	TPSA (<140A)	W- logP	Dock- ing Score (Kcal /mol)
PSCdb 00419	Rotenone	394.42	C23H22O6	3	6	0	106.15	63.22	3.7	-8.62
PSCdb 02048	Rotenonone	406.38	C23H18O7	3	7	0	112.31	88.11	3.95	-8.43
PSCdb 01996	Deguelin	394.42	C23H22O6	2	6	0	106.98	63.22	3.9	-8.28
PSCdb 02015	12a- Hydroxyrote none	410.42	C23H22O7	3	7	1	107.2	83.45	2.7	-8.12
PSCdb 02059	Toxicarol; alpha- Toxicarol	410.42	C23H22O7	2	7	1	109.01	83.45	3.6	-8.12
PSCdb 02057	Tephrosin	410.42	C23H22O7	2	7	1	108.03	83.45	2.89	-8.09
PSCdb 01831	Cristacarpin	354.4	C21H22O5	3	5	2	97.93	68.15	3.19	-7.91
PSCdb 02032	Mucronulato 1	302.32	C17H18O5	3	5	2	82.11	68.15	2.83	-7.80
PSCdb 02025	Lotisoflavan	302.32	C17H18O5	3	5	2	82.11	68.15	2.83	-7.80
PSCdb 02034	Ononin; Formononeti n 7-O- glucoside	430.4	C22H22O9	5	9	4	108.56	138.82	0.65	-7.78
PSCdb 02550	7-Hydroxy- 2',4',5'- trimethoxyis oflavone	328.32	C18H16O6	4	6	1	89.42	78.13	3.19	-7.75
PSCdb 02019	Irisolidone	314.29	C17H14O6	3	6	2	84.95	89.13	2.89	-7.73
PSCdb 02031	Millettone	378.37	C22H18O6	0	6	0	100.06	63.22	3.61	-7.65
PSCdb 02052	Sophoraisofl avanone A	370.4	C21H22O6	4	6	3	101.78	96.22	3.68	-7.63

Com- pounds ID	Names	Mole- cular Mass (>500 Dalton)	Formula	N Rota- te Bond	N Hbond Acceptors (<10)	N Hbond Donors (<5)	Molar refract- tivity (<130)	TPSA (<140A)	W- logP	Dock- ing Score (Kcal /mol)
PSCdb 02036	Pachyrrhizon e	366.32	C20H14O7	1	7	0	92.21	76.36	3.29	-7.54
PSCdb 01826	Betavulgarin	312.27	C17H12O6	2	6	1	82.5	78.13	2.9	-7.54
PSCdb 02022	Licoisoflavo ne A; 2',4',5,7- Tetrahydrox y-3'-(3,3- dimethylallyl) isoflavone	354.35	C20H18O6	3	6	4	99.73	111.13	3.79	-7.50
PSCdb 02053	(-)- Sparticarpin	300.31	C17H16O5	2	5	1	79.66	57.15	2.69	-7.45
PSCdb 02001	(-)- Glyceollin II	338.35	C20H18O5	0	5	2	91.84	68.15	2.75	-7.42
PSCdb 00770	Moracin A	286.28	C16H14O5	3	5	2	78.68	72.06	3.53	-7.41
PSCdb 02049	(-)-Sativan	286.32	C17H18O4	3	4	1	80.09	47.92	3.13	-7.39
PSCdb 02002	Hildecarpin	330.29	C17H14O7	1	7	2	80.27	86.61	1.41	-7.38
PSCdb 02033	(-)-Nissolin	286.28	C16H14O5	1	5	2	75.19	68.15	2.39	-7.37
PSCdb 02530	Glyceocarpin ; 2- Dimethylally I-(6aS,11aS)- 3,6a,9- trihydroxypt erocarpan	340.37	C20H20O5	2	5	3	93.46	79.15	2.89	-7.32
PSCdb 02038	(-)- Phaseollin; Phaseolin	322.35	C20H18O4	0	4	1	90.8	47.92	3.75	-7.30
PSCdb 02562	(-)-Sophorol	300.26	C16H12O6	1	6	2	75.61	85.22	2.19	-7.30
PSCdb 02026	Luteone	354.35	C20H18O6	3	6	4	99.73	111.13	3.79	-7.28
PSCdb 01998	Ferreirin; 2,3-Dihydro- 5,7- dihydroxy-3- (2-hydroxy- 4- methoxyphe nyl)-4H-1- benzopyran- 4-one	302.28	C16H14O6	2	6	3	78.06	96.22	2.17	-7.24
PSCdb 02050	Sayanedine	298.29	C17H14O5	3	5	1	82.93	68.9	3.18	-7.17
PSCdb 00045	(-)- Vestitone; Vestitone	286.28	C16H14O5	2	5	2	76.04	75.99	2.47	-7.14
PSCdb 02013	4- Hydroxyhom opterocarpin	300.31	C17H16O5	2	5	1	79.66	57.15	2.69	-7.14
PSCdb 02040	Pisatin; (+)- Pisatin	314.29	C17H14O6	1	6	1	78.25	66.38	1.7	-7.13
PSCdb 02532	Glyceollin III	338.35	C20H18O5	1	5	2	91.01	68.15	2.55	-7.13
PSCdb 01824	Afrormosin	298.29	C17H14O5	3	5	1	82.93	68.9	3.18	-7.11

Com- pounds ID	Names	Mole- cular Mass (>500 Dalton)	Formula	N Rota- te Bond	N Hbond Acceptors (<10)	N Hbond Donors (<5)	Molar refract- tivity (<130)	TPSA (<140A)	W- logP	Dock- ing Score (Kcal /mol)
PSCdb 00685	Albafuran A; 4-((2E)-3,7- Dimethyl- 2,6- octadienyl)- 5-(6- hydroxy-2- benzofuranyl)-1,3- benzenediol	378.46	C24H26O4	6	4	3	115	73.83	6.45	-7.11
PSCdb 02559	(-)-Vestitol	272.3	C16H16O4	2	4	2	75.62	58.92	2.83	-7.10
PSCdb 02054	Sumatrol	410.42	C23H22O7	3	7	1	108.18	83.45	3.41	-7.09
PSCdb 02557	(-)- Medicocarpi n; Medicarpin 3-O- glucoside	432.42	C22H24O9	4	9	4	105.29	127.07	0.16	-7.09
PSCdb 02043	Pratensein	300.26	C16H12O6	2	6	3	80.48	100.13	2.59	-7.09
PSCdb 02448	2'- Hydroxybioc hanin A; Dehydroferre irin	300.26	C16H12O6	2	6	3	80.48	100.13	2.59	-7.05
PSCdb 02017	Irilone	298.25	C16H10O6	1	6	2	78.03	89.13	2.6	-7.05
PSCdb 02549	7,2'- Dihydroxy- 4'-methoxy- isoflavanol; DMI; (3R,4R)-4'- Methoxyisofl avan-2',4,7- triol	288.3	C16H16O5	2		3 S	76.78	79.15	1.99	-7.05
PSCdb 02046	Psoralidin	336.34	C20H16O5	2	5	2	97.53	83.81	4.61	-7.04
PSCdb 01827	Bowdichione	298.25	C16H10O6	2	6	1	77.53	93.81	1.56	-7.04
PSCdb 02062	Vestitol		C16H16O4	2	4	2	75.62	58.92	2.83	-7.04
PSCdb 02561	(+)-Sophorol	300.26	C16H12O6	1	6	2	75.61	85.22	2.19	-7.03
PSCdb 00895	Sainfuran	286.28	C16H14O5	3	5	2	78.68	72.06	3.53	-7.02
PSCdb 00116	(-)- Glyceollin I; Glyceollin	338.35	C20H18O5	0	5	2	91.84	68.15	2.75	-7.00
PSCdb 02063	Wedelolacto ne	314.25	C16H10O7	1	7	3	82.32	113.27	2.82	-7.00
PSCdb 02056	Tectorigenin	300.26	C16H12O6	2	6	3	80.48	100.13	2.59	-6.99
PSCdb 02027	(-)- Maackiain; Inermin	284.26	C16H12O5	0	5	1	72.74	57.15	2.41	-6.99
PSCdb 02560	2',7- Dihydroxy- 4',5'- methylenedi	298.25	C16H10O6	1	6	2	78.03	89.13	2.6	-6.98

Com- pounds ID	Names	Mole- cular Mass (>500 Dalton)	Formula	N Rota- te Bond	N Hbond Acceptors (<10)	N Hbond Donors (<5)	Molar refract- tivity (<130)	TPSA (<140A)	W- logP	Docksing Score (Kcal
	oxyisoflavon e; DMI	,								
PSCdb 02039	(-)- Phaseolliniso flavan	324.37	C20H20O4	1	4	2	93.25	58.92	3.89	-6.98
PSCdb 00911	Vignafuran	270.28	C16H14O4	3	4	1	76.66	51.83	3.82	-6.97
PSCdb 00182	Dihydrobioc hanin A; 2,3- Dihydrobioc hanin A	286.28	C16H14O5	2	5	2	76.04	75.99	2.47	-6.96
PSCdb 00050	Biochanin A	284.26	C16H12O5	2	5	2	78.46	79.9	2.88	-6.95
PSCdb 02061	(-)-Variabilin	300.31	C17H16O5	2	5	1	78.68	57.15	1.98	-6.93
PSCdb 02051	Sojagol	336.34	C20H16O5	0	5	1	95.59	72.81	4.5	-6.92
PSCdb 00104	Calycosin	284.26	C16H12O5	2	5	2	78.46	79.9	2.88	-6.92
PSCdb 01829	Cajanol	316.31	C17H16O6	3	6	2	82.53	85.22	2.47	-6.92
PSCdb 01997	5- Deoxykievit one; (+-)-5- Deoxykievit one	340.37	C20H20O5	3	5	3	95.29	86.99	3.67	-6.91
PSCdb 02045	Pseudobaptig enin	282.25	C16H10O5	1	5	1	76.01	68.9	2.89	-6.87
PSCdb 01828	Cajanin	300.26	C16H12O6	2	6	3	80.48	100.13	2.59	-6.86
PSCdb 02551	2,7- Dihydroxy- 4'-	286.28	C16H14O5	2	5 DL@0	2	75.18	75.99	2.08	-6.86
	methoxyisofl avanone			1			7			
PSCdb 02531	4- Glyceollidin; 4-	340.37	C20H20O5	2	5	3	93.46	79.15	2.89	-6.80
	Dimethylally lglycinol; 4- Dimethylally l-(6aS,11aS)- 3,6a,9- trihydroxypt erocarpan									
PSCdb 02028	Medicarpin; (-)- Medicarpin	270.28	C16H14O4	1	4	1	73.17	47.92	2.69	-6.85
PSCdb 00193	2'- Hydroxyfor mononetin; 2'-	284.26	C16H12O5	2	5	2	78.46	79.9	2.88	-6.83
Da = "	Hydroformo nonetin	200	9907710 -		_	_	07.7:	00.5		
PSCdb 02064	Wighteone	338.35	C20H18O5	3	5	3	97.71	90.9	4.09	-6.82
PSCdb 00108	Kievitone	356.37	C20H20O6	3	6	4	97.31	107.22	3.38	-6.79
PSCdb 01823	(-)- Acanthocarp an	328.27	C17H12O7	0	7	1	77.82	75.61	1.42	-6.77

Com- pounds ID	Names	Mole- cular Mass (>500 Dalton)	Formula	N Rota- te Bond	N Hbond Acceptors (<10)	N Hbond Donors (<5)	Molar refract- tivity (<130)	TPSA (<140A)	W- logP	Dock- ing Score (Kcal /mol)
PSCdb 02522	Glycitein; 7,4'- Dihydroxy- 6- methoxyisofl avone	284.26	C16H12O5	2	5	2	78.46	79.9	2.88	-6.75
PSCdb 02044	Prunetin	284.26	C16H12O5	2	5	2	78.46	79.9	2.88	-6.74
PSCdb 02444	Isoformonon etin; 4'- Hydroxy-7- methoxyisofl avone	268.26	C16H12O4	2	4	1	76.43	59.67	3.17	-6.71
PSCdb 00055	Formononeti n	268.26	C16H12O4	2	4	1	76.44	59.67	3.17	-6.70
PSCdb 00401	7-O- Methylluteon e	368.38	C21H20O6	4	6	3	104.2	100.13	4.09	-6.69
PSCdb 01994	(+-)- Dalbergioidi n	288.25	C15H12O6	1	6	4	73.59	107.22	1.87	-6.69
PSCdb 01832	Cyclokievito ne	354.35	C20H18O6	1	6	3	95.69	96.22	3.24	-6.68
PSCdb 02058	Texasin; 6,7- Dihydroxy- 3-(4- methoxyphe nyl)-4- benzopyrone	284.26	C16H12O5	2	5	2	78.46	79.9	2.88	-6.66
PSCdb 00173	2'- Hydroxydaid zein; 3-(2,4- Dihydroxyph enyl)-7- hydroxychro men-4-one	270.24	C15H10O5	11/10	5	3	73.99	90.9	2.58	-6.59
PSCdb 02035	Orobol	286.24	C15H10O6	1	6	4	76.01	111.13	2.28	-6.58
PSCdb 02447	2'- Hydroxygeni stein; 2',4',5,7- Tetrahydrox yisoflavone	286.24	C15H10O6	1	6	4	76.01	111.13	2.28	-6.57
PSCdb 02564	(+)-6a- Hydroxymaa ckiain	300.26	C16H12O6	0	6	2	73.78	77.38	1.4	-6.57
PSCdb 00206	2'- Hydroxydihy drodaidzein; 2'-Hydroxy- 2,3- dihydrodaidz ein	272.25	C15H12O5	1	5	3	71.57	86.99	2.16	-6.56
PSCdb 02000	Glabridin	324.37	C20H20O4	1	4	2	93.25	58.92	3.89	-6.53
PSCdb 00262	Phaseollidin; (-)- Phaseollidin	324.37	C20H20O4	2	4	2	92.42	58.92	3.89	-6.51
PSCdb 02488	2-Hydroxy- 2,3-	288.25	C15H12O6	1	6	4	72.73	107.22	1.48	-6.50

Com- pounds ID	Names	Mole- cular Mass (>500 Dalton)	Formula	N Rota- te Bond	N Hbond Acceptors (<10)	N Hbond Donors (<5)	Molar refract- tivity (<130)	TPSA (<140A)	W- logP	Dock- ing Score (Kcal /mol)
	dihydrogenis									, , , ,
PSCdb 00228	tein 3,9- Dihydroxypt erocarpan; (6aR,11aR)- 3,9- Dihydroxypt erocarpan	256.25	C15H12O4	0	4	2	68.7	58.92	2.38	-6.47
PSCdb 02563	(+)- Maackiain	284.26	C16H12O5	0	5	1	72.74	57.15	2.41	-6.46
PSCdb 02566	2,6,7,4'- Tetrahydrox yisoflavanon	288.25	C15H12O6	1	6	4	72.73	107.22	1.48	-6.44
PSCdb 02514	Equol	242.27	C15H14O3	1	3	2	69.13	49.69	2.82	-6.40
PSCdb 00387	Genistein; 5,7,4'- Trihydroxyis oflavone	270.24	C15H10O5	1	5	3	73.99	90.9	2.58	-6.40
PSCdb 02003	Hispaglabrid in A	392.49	C25H28O4	3	4	2	116.97	58.92	5.4	-6.38
PSCdb 02536	2,7,4'- Trihydroxyis oflavanone	272.25	C15H12O5	1	5	3	70.71	86.99	1.78	-6.38
PSCdb 02519	3',4',7- Trihydroxyis oflavone	270.24	C15H10O5	1	5	3	73.99	90.9	2.58	-6.30
PSCdb 00119	(+)- Medicarpin; 3-Hydroxy- 9-	270.28	C16H14O4			1 5 F	73.17	47.92	2.69	-6.29
	methoxypter ocarpan			7			7			
PSCdb 01833	Daidzein	254.24	C15H10O4	1	4	2	71.97	70.67	2.87	-6.28
PSCdb 00075	3,6,9- Trihydroxypt erocarpan; (6aS,11aS)- 3,6a,9- Trihydroxypt erocarpan; (-)-Glycinol	272.25	C15H12O5	0	5	3	69.74	79.15	1.38	-6.25
PSCdb 00772	Mulberrofura n A	392.49	C25H28O4	7	4	2	119.47	62.83	6.75	-6.08
PSCdb 01830	Coumestrol	268.22	C15H8O5	0	5	2	73.81	83.81	3.1	-5.99
PSCdb 01825	Anhydroglyc inol; 3,9- Dihydroxypt erocarpen	254.24	C15H10O4	0	4	2	70.23	62.83	3.25	-5.93
PSCdb 02042	Pomiferin	420.45	C25H24O6	3	6	3	121.83	100.13	5.16	-5.73
PSCdb 02023	Lonchocarpe nin	448.51	C27H28O6	5	6	1	130.77	78.13	5.77	-5.12
PSCdb 02041	Piscerythram ine	451.51	C26H29NO6	6	6	4	132.33	126.15	5.19	-1.49

The results of molecular docking simulations of isoflavonoid compounds were then screened based on docking score values above -7.87 kcal/mol, which is the score of the E2N603 ligand inhibitor. This screening resulted in 7 isoflavonoid compounds with the lowest docking scores. The interactions of these isoflavonoid compounds from the docking simulation with the PfDHODH enzyme complex included hydrogen bond donors involving residues CYS184 and LEU531, as well as Pi-H interactions with the amino acid VAL532, while no ionic interactions were found in the complex. The complete interactions of the PfDHODH complex with the isoflavonoid

compounds can be seen in Table 2. The results of the molecular docking simulations for the isoflavonoid compounds did not show the same amino acid interactions as the native ligand E2N603. The screening results of the molecular docking simulations identified seven isoflavonoid compounds with lower docking scores than the native ligand. The differences in hydrogen bond, ionic, and Pi-H interactions formed in the PfDHODH complex with the test compounds can be considered for further in vitro experimental testing to determine whether these compounds are capable of inhibiting the activity of the PfDHODH enzyme.

Table 2: Molecular interactions of isoflavonoid compounds docked on the PfDHODH enzyme receptor

C		Dock-	Resep- tor	Intera	actions d	listance	(A)	Enc	ergy inte		ıs
Com- pounds ID	Names	ing Score (Kcal/ mol)		Hbon d accep- tor	Hbo nd dom or	Ioni c	Pi- H	Hbon d accept or	Hbo nd dom or	Ion ic	Pi- H
Native ligand	E2N603	-7.87	ARG 265	3.14	-	-	-	-4.4	-	-	-
inguitu			HIS 185	2.79	-/-	-	-	-4.7	-	-	-
			TYR 258	3.11	<u>/-</u>	-	-	-3.4	-	-	-
			HIS 185	-,	-	2.79	R E	- (-	-6.1	-
			HIS 185	7	-	3.39	-7	7 -	-	-2.3	-
SCIE	NCE A	IND .	PHE 188	HIZIC		37	4.39	JELI	C-4	TIC	-0.5
			PHE 188	-	-	-	3.68	-	-	-	-0.6
			VAL 532	-	·	-/	3.65	-	-	-	-0.7
PSCdb 00419	Rotenone	-8.62	CYS 184	-	3.48)(-	-	-0.7	-	1
			LEU 531	-	3.48	-	-	-	-0.7	-	-
PSCdb 02048	Rotenonone	-8.43	CYS 184	-	3.61	-	-	-	-0.5	-	-
			VAL 532	-	-	-	3.97	-	-	-	-0.6
			VAL 532	-	-	-	4.21	1	-	-	-0.5
PSCdb 01996	Deguelin	-8.28	CYS 184	-	3.42	-	-	-	-0.8	-	-
			LEU 531	-	3.25	-	-	-	-0.7	-	1
			VAL 532	-	-	-	4.18	-	-	-	-0.5

Com-		Dock-		Intera	ections d	istance	(A)	Energy interactions (kcal/mol)				
pounds ID	Names	ing Score (Kcal/ mol)	Resep- tor	Hbon d accep- tor	Hbo nd dom or	Ioni c	Pi- H	Hbon d accept or	Hbo nd dom or	Ion ic	Pi- H	
PSCdb 02015	12a- Hydroxyrote- none	-8.12	CYS 184	-	3.29	-	-	-	-0.8	-	-	
PSCdb 02059	Toxicarol; alpha- Toxicarol	-8.12	CYS 184	-	3.43	-	-	-	-0.8	-	-	
			LEU 531	-	3.29	-	-	-	-0.6	-	-	
			VAL 532	-	-		4.18				-0.6	
PSCdb 02057	Tephrosin	-8.09	CYS 184	-	3.19	-	-	-	-0.8	-	-	
PSCdb 01831	Cristacarpin	-7.91	LEU 531		2.69	-	-	-	-1.1	-	-	

4 CONCLUSION

The screening results of molecular docking of isoflavonoid compounds against the PfDHODH enzyme yielded seven compounds: Retonone, Retonone, Degueline, 12a-hydroxyrotanenone, Toxicarol, Tephrosin, and Cristacarpin. These isoflavonoid compounds have lower docking scores than the native ligand 2EN603. Further in vitro experimental research can be conducted on these compounds to test their inhibitory activity against the PfDHODH enzyme.

REFERENCES

- Abhimanyu, Srivastava, P. and Jain, C.K. (2022) 'In-Silico Investigation of Plant-Derived Natural Allosteric Compounds Towards Enhanced Drug-Protein Interaction of MOA Protein Complex in Depression Based on Molecular Docking and Molecular Dynamic Simulation Approaches', Current Trends in Biotechnology and Pharmacy, 16(4), pp. 529–539. Available at: https://doi.org/10.5530/ctbp.2022.4.86.
- Belén Cassera, M., Zhang, Y., Hazleton, K.Z. and Schramm, V.L. (2011) 'Purine and Pyrimidine Pathways as Targets in Plasmodium falciparum', *Top Med Chem*, 11(16), pp. 2103–2115.
- Frame, I.J., Deniskin, R., Arora, A. and Akabas, M.H. (2015) 'Purine import into malaria parasites as a target for antimalarial drug development', *Annals of the*

- New York Academy of Sciences, 1342(1), pp. 19–28. Available at: https://doi.org/10.1111/nyas.12568.
- Hebbar, S., Nandan, S.K., Shetty, C.R., Nayak, P., Dhas, N. and Naha, A. (2022) 'In-silico screening and molecular docking studies of active constituents of Withania somnifera to investigate its kinase inhibitory activities', *Journal of Pharmaceutical Negative Results*, 13(4), pp. 1342–1349. Available at: https://doi.org/10.47750/pnr.2022.13.04.187.
- Hevener, K.E., Zhao, W., Ball, D.M., Babaoglu, K., Qi, J., Stephen, W. and Lee, R.E. (2010) 'Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase', *J Chem Inf Model*, 49(2), pp. 444–460.
- Hoelz, L.V., Calil, F.A., Nonato, M.C., Pinheiro, L.C. and Boechat, N. (2018) 'Plasmodium falciparum dihydroorotate dehydrogenase: A drug target against malaria', Future Medicinal Chemistry. Future Medicine Ltd., pp. 1853–1874. Available at: https://doi.org/10.4155/fmc-2017-0250.
- Leartsakulpanich, U., Imwong, M., Pukrittayakamee, S. and Yuthavong, Y. (2002) 'Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax', *Molecular & Biochemical Parasitology 119*, 119, pp. 63–73.
- Lipinski, C.A. (2000) 'Drug-like properties and the causes of poor solubility and poor permeability', *Journal of Pharmacological and Toxicological Methods*, 44, pp. 235–249.
- Lipinski, C.A. (2004) 'Lead- and drug-like compounds: The rule-of-five revolution', *Drug Discovery Today: Technologies*, pp. 337–341. Available at: https://doi.org/10.1016/j.ddtec.2004.11.007.

- Löffler, M., Fairbanks, L.D., Zameitat, E., Marinaki, A.M. and Simmonds, H.A. (2005) 'Pyrimidine pathways in health and disease', *Trends in Molecular Medicine*, 11(9), pp. 430–437. Available at: https://doi.org/10.1016/j.molmed.2005.07.003.
- Phillips, M.A. and Rathod, P.K. (2010) 'Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy', *Infect Disord Drug Targets*, 10(3), pp. 226–239. Available at: http://www.mmv.org/.
- Rachman, A. and Mutalib, A. (2008) 'Molecular Docking Fevicordin on Human Estrogen α Receptor Using MOE Software', in *Proceeding of The International Seminar on Chemistry 2008*, pp. 325–331. Available at: www.intel.com.
- Sarwar, M.W. (2013) 'Insilico Characterization and Homology Modeling of Arabitol Dehydrogenase (ArDH) from Candida albican', *Bioinformation*, 9(19), pp. 952–957. Available at: https://www.researchgate.net/publication/259224502
- Shivanika, C., S, D.K., Ragunathan, V., Sumitha, A. and P, B.D. (2020) 'Molecular docking, validation, dynamics simulations , and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main- protease', *Journal of Biomolecular* Structure and Dynamics, pp. 1–27. Available at: https://doi.org/10.1080/07391102.2020.1815584.
- Valdés-Jiménez, A., Peña-Varas, C., Borrego-Muñoz, P., Arrue, L., Alegría-Arcos, M., Nour-Eldin, H., Dreyer, I., Nuñez-Vivanco, G. and Ramírez, D. (2021) 'Pscdb: A structured and searchable 3d-database for plant secondary compounds', *Molecules*, 26, p. 1124. Available at: https://doi.org/10.3390/molecules26041124.
- Vyas, V.K. and Ghate, M. (2011) 'Recent Developments in the Medicinal Chemistry and Therapeutic Potential of Dihydroorotate Dehydrogenase (DHODH) Inhibitors', Reviews in Medicinal Chemistry, 11, pp. 1039–1055.
- Vyas, V.K., Qureshi, G., Ghate, M., Patel, H. and Dalai, S. (2016) Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity, SAR and QSAR in Environmental Research. Taylor and Francis Ltd. Available at: https://doi.org/10.1080/1062936X.2016.1189959.
- WHO (2021) World malaria report 2021. 1st edn. Geneva: World Health Organization.
- Wink, M. (2003) 'Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective', *Phytochemistry*, 64(1), pp. 3–19. Available at: https://doi.org/10.1016/S0031-9422(03)00300-5.
- World Health Organization (2023) *Malaria Fact Sheet*, *Malaria*. Available at: https://www.who.int/en/newsroom/fact-sheets/detail/malaria.