Ethnobotanical Study of Medicinal Plants Used by Ogan Tribes in Lempuing Jaya, South Sumatera-Indonesia to Treat Degenerative Diseases

Arif Setiawansyah¹ ¹ ¹ Abdul Rohim¹ and Muhammad Andre Reynaldi² ¹ Faculty of Pharmacy, Universitas Kader Bangsa, Jl. Mayjend HM Ryacudu No. 88, Palembang, Indonesia ² Department of Pharmacy, STIKES Arjuna, Jl. YP Arjuna, Toba Regency, Indonesia

Keywords: Degenerative Disease, Ethnobotanical Study, Medicinal Plants, Ethnomedicine.

Abstract:

Degenerative disease is one of the non-communicable diseases characterized by progressive loss of cell function, leading to an early organ defect and aging. Ethnobotanical study can be a promising approach to explore potential plants that have been used traditionally based on local knowledge for the treatment of degenerative disease. This study was implemented to uncover the unspooled knowledge of the Ogan tribes in utilizing medicinal plants to treat degenerative diseases. An observational descriptive study was undertaken to collect the data and information regarding the medicinal plants used for the management of several degenerative diseases. Information and data collection was carried out via questionaries and direct interview with traditional healers and local people on the type of ingredients, ways of making, dosage and frequency of usage. The ethnobotanical survey revealed 36 different types of medicinal herbs included in 5 disease categories including uric acid (16 medicinal herbs), hypertension (17 medicinal herbs), hyper-cholesterol (13 medicinal herbs), diabetes mellitus (11 medicinal herbs), and stroke (7 medicinal herbs) with a total of 64 plant species were utilized for the treatment of each health problem. The usage of medicinal herbs is quite diverse such as direct consumption, infusion, and juicing with different frequencies of utilization (i.e., once and twice daily). The survey has shown that Ogan tribes in Lempuing Jaya, South Sumatera-Indonesia have empirically implemented the local knowledge of medicinal herbs for the treatment of several degenerative diseases. However, scientific proof should be undertaken for the medicinal herbs.

1 INTRODUCTION

Degenerative diseases are the term used for numerous disorders caused by progressive loss of cell functions that leads to an early organ damage and aging, generally occurred in elderly. Even though it does not rule out the possibility of occurring at the young age, several main risk factor can be a potential trigger for degenerative disease to be suffered by the community, including lack of activity, ultra-processed food, and oxidative stress (Richardson, 1926). Approximately 50 types of degenerative diseases have been identified in the present time, some of which are cancer, stroke, diabetes mellitus, coronary heart problem, and hypercholesterolemia (Wirasisya et al., 2020). The current managements of

various degenerative diseases implement both the non-pharmacology and pharmacology treatment by modifying the lifestyle and consuming the clinically approved synthetic drugs (Moriguchi et al., 2016). However, the use of synthetic drugs often experiences the number of adverse effects, leading to the emergence of various health problems (Helleday, 2017; Miller et al., 2010). High negative effect of the synthetic drugs increases the needs to discover new drug candidate pointed out as the degenerative diseases therapy that is more safe with low toxicity.

Ethnobotanical study of medicinal plants used by the local people in certain areas is one of the promising approaches in discovering the new drug candidates, in view of the fact that traditional herbal medicine has been extensively utilized since ancient time (Iwu, 2002). The local knowledge of medicinal plants can be an appropriate source of information as a basis of drug discovery and development (Mahmood et al., 2013). Numerous scientific reports have shown the fundamental role of the traditional knowledge in development of new drug candidates that have provided a real substitute in the primary healthcare of the rural communities in developing countries (Cordel et al., 2012; Hayta et al., 2014). Approximately 80% of the developing countries population rely on the herbal medicines with a total of 85% of the traditional medicinal herbs have been extensively utilized globally, making it as a global indigenous heritage (WHO, 2002; Farnsworth, 1988).

The documentation of the traditional knowledge on medicinal plants is a key aspect to conserve the global empirical heritage. It has also been implemented by the Indonesian government through the Ministry of Health by upscaling the use of Indonesian traditional herbal medicine, specifically known as Jamu, to be integrated into the primary healthcare system (The Indonesia's Ministry of Health, 2010). This study, therefore, transcribes the empirical information of the Ogan tribes living in Lempuing Jaya, Ogan Komering Ilir district, South Sumatera, Indonesia on medicinal herbs for the management of several degenerative disease. This ethnobotanical survey is the first ethnomedicinal assessment and listing of medicinal plant data, specifically for degenerative diseases in this area.

2 MATERIALS AND METHOD

The ethnobotanical survey used a technique adopted from Wirasisya et al. (2020). The documentation of the local knowledge used an observational descriptive study supported by participative ethnobotany appraisal approach including scheduled and semi-structured direct interview.

2.1 Survey Location

The ethnobotanical survey was conducted in January – April 2023 located in Lempuing Jaya, Ogan Kemering Ilir district, South Sumatera, Indonesia as depicted in Figure 1.

2.2 Documentation and Interview

The semi-structured direct interview was implemented to document the data and local knowledge with the informant criteria as follows:

- 1. Knowledgeable on the utilization of medicinal herbs/plants and medicinal plant ingredients for management of health problem.
- 2. The local inhabitants or enculturated person.
- 3. Known as knowledgeable on the utilization of medicinal herbs/plants and medicinal plant ingredients for management of health problem.

The information regarding informant biodata, medicinal plant species, local name, the usage, part of usage, formulation and preparation.

(Map was courtesy from Governance Section, Ogan Komering Ilir District)

Figure 1: Ethnobotanical survey location.

2.3 Data Analysis

Descriptive and quantitative analysis was carried out to analyse the data and information. The descriptive analysis was undertaken on the characteristics of the informant and the medicinal herbs, while the quantitative analysis was carried out to the medicinal plant data by quantified the ethnobotanical index including the use value (UV) and fidelity level (FL) as explained by Hoffman and Gallaher (2007).

$$Use \ Value \ (UV) \\ UV = \frac{Number \ of \ plant \ utilization}{Number \ of \ event}$$

Fidelity level (FL)

$$FL = \frac{Ip}{Iu} \times 100\%$$

I_p: Informant using specific plant for certain disease

Iu : Total informant using specific plants

3 RESULT AND DISCUSSION

3.1 Location and Respondent Demographic

The survey was carried out in Lempuing Jaya, Ogan Kemering Ilir (OKI) district, South Sumatera, Indonesia specifically at three villages including SP 6 Suka Maju, SP7 Suka Jaya, and Tanjung Sari II which was selected based on the high number of traditional healing practice by the local people. A total of 100 participants were obtained that meets the criteria with the informant demographic as depicted in Figure 2.

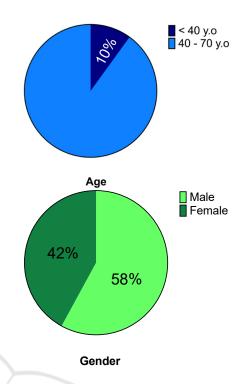


Figure 2: Informant demographic of ethnobotanical survey location

Figure 2 illustrates most of informants are male with the age ranging from 40-70 years old, and only 10% of respondents are 35-40 years old. This indicates that Lempuing Jaya inhabitants that are under 35 years old do not have any knowledge regarding the medicinal herbs. The main source of their medicinal plant's knowledge (75%) was empirically passed down from their ancestors and 25% of the rest were obtained from self-experiences of using the medicinal plants to manage their health problems.

3.2 Medicinal Plants

Ethnobotanical survey revealed 36 types of medicinal herbs included in five disease categories such as uric acid (16 medicinal herbs), hypertension (17 medicinal herbs), hyper-cholesterol (13 medicinal herbs), diabetes mellitus (11 medicinal herbs), and stroke (7 medicinal herbs). A total of 64 medicinal herbs have been documented for the medicinal herb preparations and all of the have been identified botanically. The plant species used by the Ogan tribes summarized in Table 1.

Table 1: Medicinal plants based on disease category.

Disease categories	Local name	The used part	Species
Disease energoties	Salam	Leaf	Syzygium polianthum
	Sirsak	Leaf	Annona muricata
	Sirih	Leaf	Piper betel
	Bawang putih	Tuber	Allium sativum
	Alang-alang	Herbs	Imperata cylindrica
<u> </u>	Kumis Kucing	Leaf	Orthosiphon aristatus
<u>-</u>	Putri malu	Leaf	Mimosa pudica
<u> </u>	Sirih cina	Leaf	Peperomia pellucida
Uric acid	Jahe merah	Rhizome	Zingiber officinale
<u>-</u>	Sambiloto	Herbs	Androgarphis paniculata
<u> </u>	Kelor	Leaf	Moringa oleifera
<u> </u>	Binahong	Herbs	Anredera cordifolia
<u>-</u>	Ciplukan	Leaf	Physalis angulata
<u> </u>	Kunyit	Rhizome	Curcuma longa
<u> </u>	Pinah	Fruit	Areca catechu
<u> </u>	Brotowali	Herbs	Tinospora cordifolia
	Sirsak	Leaf	Annona muricata
-	Sirih Cina	Leaf	Peperomia pellucida
<u></u>	Tumulawak	Rhizome	Curcuma xanthorriza
<u></u>	Kumis Kucing	Leaf	Orthosiphon aristatus
-	Belimbing Wuluh	Fruit	Averrhoa bilimbi
<u></u>	Bawang Putih	Tuber	Allium sativum linn
	Seledri	Leaf	Apium graveolens
-	Jahe	Rhizome	Zingber officinale
Hypertension	Salam	Leaf	Syzygium polyanthum
Trypertension	Nangka	Leaf	Artocarpus heterophyllus
	Sambiloto	Herbs	Andrographis paniculata
h	Kelor	Leaf	Moringa oleifera
SCIENCE A	Timun	Fruit	Cucumis sativus
	Asam Jawa	Fruit	Tamarindus indica
<u></u>	Kayu Manis	Lignum	Cinnamomum burmani
<u></u>	Alang – alang	Herbs	Imperata cylidnrica
<u> </u>	Bawang merah	Tuber	Alium cepa
	Seledri	Herbs	Apium graveolens
	Mengkudu	Fruit	Morinda citrifolia
	Sambiloto	Herbs	Andrographis paniculata
<u> </u>	Kelor	Leaf	Moringa oleifera
	Ketumbar	Leaf and Seed	Coriandrum sativum
	Sirih	Leaf	Piper betle
Hyper-cholesterol	Seri	Fruit	Muntingia calabura
Tryper enciesterer	Belimbing manis	Fruit	Averrhoa carambola
ŀ	Salam	Leaf	Syzygium polyanthum
	Bawang Putih	Tuber	Allium sativum
	Wortel	Roots	Daucus carota
	Tumulawak	Rhizome	Curcuma xanthorrhiza
	Buncis	Seed	Phaseolus vulgaris
Diabetes mellitus	Sirih Cina	Leaf	Peperomia pellucida
	Seri	Fruit	Muntingia calabura
	Nanas	Fruit	Ananas comosus
	Jahe	Rhizome	Zingiber officinale
	Kayu Manis	Lignum	Cinnamomum verum
ŀ	•	Fruit	Momordica charantia
	Pare	rruit	Momoraica charantia

Disease categories	Local name	The used part	Species
	Salam	Leaf	Syzygium polyanthum
	Sirsak	Leaf	Annona muricata
	Manggis	Fruit peel	Garcinia mangostana
	Sambiloto	Herbs	Andrographis paniculata
	Gingseng	Radix	Panax gingseng
Stroke	Sirih Cina	Leaf	Peperomia pellucida
	Serai	Leaf	Cymbopogon nardus
	Kelor	Leaf	Moringa oleifera
	Ciplukan	Leaf	Physalis angulata
	Sambiloto	Herbs	Andrographis paniculata
	Seledri	Herbs	Apium graveolens
	Bawang Putih	Tuber	Allium sativum

3.3 Dosage and Preparation

The most common way of use of the medicinal plant/herbs at the ethnobotanical study location is by infusion the plants. However, several methods were also found including juicing and direct consumption. The simple preparation and convenience of the infusion methods makes this herbal preparation technique highly used by the local people. The used of medicinal plant in Lempuing Jaya sometimes combined with other ingredients i.e., sugar, salt, and honey to increase a good savour.

The frequency and duration of usage was also diverse depending on the medicinal herbs and the severity level of diseases. The use of medicinal herbs indicated for curative purposes shows an intense use (three times a day) than palliative and preventive purposes which only use once and twice daily for seven days or more. In addition, the local inhabitants of Lempuing Jaya have a unique dosage for preparation of medicinal herbs. They apply the odd number in every dosage of the medicinal plant ingredients.

3.4 Ethnobotanical Index

3.4.1 Use Value (UV)

UV is an index that can describes the level of use value of species for treating diseases based on predetermined categories (Silalahi, 2016). The UV value indicate how frequent the medicinal plants species were utilized by the community. The UV value of medicinal plant used by the local inhabitant of Lempuing Jaya is described in table 2.

Local Name	Species	UV Index
Salam	Syzygium polyanthum	0,2
Sirsak	Annona muricata	0,18
Sirih	Piper betle	0,04
Alang-alang	Imperata cylindrica	0,06
Bawang putih	Allium sativum	0,09
Kumis kucing	Orthosiphon aristatus	0,17
Putri malu	Mimosa pudica	0,01
Sirih cina	Peperomia pellucida	0,17
Jahe merah	Zingiber officinale	0,04
Sambiloto	Andrographis paniculata	0,10
Kelor	Moringa oleifera	0,09
Binahong	Anredera cordifolia	0,03
Ciplukan	Physalis angulate	0,03
Kunyit	Curcuma longa	0,01
Pinang	Areca catechu	0,01
Brotowali	Tinospora cordifolia	0,01
Tumulawak	Curcuma xanthorrhiza	0,07
Belimbing wuluh	Averrhoa bilimbi	0,03
Seledri	Apium graveolens	0,15

Table 2: The use value index of medicinal plants

Local Name	Species	UV Index
Jahe	Zingiber officinale	0,04
Nangka	Artocarpus heterophyllus	0,03
Timun	Cucumis sativus	0,01
Asam jawa	Tamarindus indica	0,01
Kayu manis	Cinnamomum burmani	0,01
Bawang merah	Alium cepa	0,01
Mengkudu	Morinda citrifolia	0,03
Ketumbar	Coriandrum sativum	0,01
Seri	Muntingia calabura	0,04
Belimbing manis	Averrhoa carambola l	0,03
Wortel	Daucus carota	0,03
Buncis	Phaseolus vulgaris	0,04
Serai	Cymbopogon nardus	0,01
Nanas	Ananas comosus	0,01
Pare	Momordica charantia	0,01
Manggis	Garcinia mangostana	0,01
Gingseng	Panax gingseng	0,01

The UV index calculation showed that *Syzygium* polianthhum provide the highest UV index indicating this plant species is the most commonly used by the local inhabitants of Lempuing Jaya in their daily purposes, not only for the management of their health problem, but also for other purposes including daily consumption. The traditional healers and local inhabitants claim that *Syzygium* polianthum can be used for the treatment of several diseases including

uric acid, hypertension, hyper-cholesterol, diabetes mellitus, and stroke.

3.4.2 Fidelity Level (Fl)

FL was used to quantify the importance of the plant species for treatment of certain diseases in which the higher the FL of the medicinal plant species, the more trusted the plant species to be used for the treatment of a disease category (Hoffman & Gallaher, 2007).

Table 3: The fidelity level index of medicinal plant species

Disease categories	Local name	Species	\mathbf{FL}
	Salam	Syzygium polianthum	18,75
	Sirsak	Annona muricata	62,5
	Sirih	Piper betel	6,25
	Bawang putih	Allium sativum	6,25
	Alang-alang	Imperata cylindrica	18,75
	Kumis Kucing	Orthosiphon aristatus	13,5
	Putri malu	Mimosa pudica	6,25
Uric acid	Sirih cina	Peperomia pellucida	18,75
Oric acid	Jahe merah	Zingiber officinale	18,75
	Sambiloto	Androgarphis paniculata	12,5
	Kelor	Moringa oleifera	12,5
	Binahong	Anredera cordifolia	12,5
	Ciplukan	Physalis angulata	6,25
	Kunyit	Curcuma longa	6,25
	Pinah	Areca catechu	6,25
	Brotowali	Tinospora cordifolia	6,25
	Sirsak	Annona muricata	11,76
	Sirih Cina	Peperomia pellucida	23,52
11	Tumulawak	Curcuma xanthorriza	5,88
Hypertension	Kumis Kucing	Orthosiphon aristatus	35,29
	Belimbing Wuluh	Averrhoa bilimbi	11,76
Γ	Bawang Putih	Allium sativum linn	5,88

Disease categories	Local name	Species	FL
	Seledri	Apium graveolens	35,29
	Jahe	Zingber officinale	5,88
	Salam	Syzygium polyanthum	58,82
	Nangka	Artocarpus heterophyllus	11,76
	Sambiloto	Andrographis paniculata	5,88
	Kelor	Moringa oleifera	11,76
	Timun	Cucumis sativus	5,88
	Asam Jawa	Tamarindus indica	5,88
	Kayu Manis	Cinnamomum burmani	5,88
	Alang – alang	Imperata cylidnrica	5,88
	Bawang merah	Alium cepa	5,88
	Seledri	Apium graveolens	7,69
	Mengkudu	Morinda citrifolia	15,38
	Sambiloto	Andrographis paniculata	23
	Kelor	Moringa oleifera	7,69
	Ketumbar	Coriandrum sativum	7,69
	Sirih	Piper betle	7,69
Hyper-cholesterol	Seri	Muntingia calabura	15,38
31	Belimbing manis	Averrhoa carambola l.	7,69
	Salam	Syzygium polyanthum	15,38
	Bawang Putih	Allium sativum	23
	Wortel	Daucus carota	15,38
	Tumulawak	Curcuma xanthorrhiza	30,76
	Buncis	Phaseolus vulgaris	23
	Sirih Cina	Peperomia pellucida	9
	Seri	Muntingia calabura	9
	Nanas	Ananas comosus	9
	Jahe	Zingiber officinale	18,18
	Kayu Manis	Cinnamomum verum	9
Diabetes mellitus	Pare	Momordica charantia	EATIONS
	Salam	Syzygium polyanthum	27,27
	Sirsak	Annona muricata	9
	Manggis	Garcinia mangostana	9
	Sambiloto	Andrographis paniculata	9
	Gingseng	Panax gingseng	9
	Sirih Cina	Peperomia pellucida	14,28
	Serai	Cymbopogon nardus	14,28
	Kelor	Moringa oleifera	14,28
Stroke	Ciplukan	Physalis angulata	14,28
	Sambiloto	Andrographis paniculata	14,28
	Seledri	Apium graveolens	14,28
	Bawang Putih	Allium sativum	14,28

By considering the UV and FL for each disease categories, several medicinal plant species have been pointed out as the priority to be used including uric acid (Annona muricata, Syzygium polyanthum, Peperomia pellucida, Zingiber officinale), hypertension (Syzygium polianthum, Orthosiphon aristatus, Apium graveolens), hyper-cholesterol (Curcuma xanthorriza, Morinda citrifolia, Phaseolus vulgaris, Syzygium polyanthum), diabetes mellitus (Syzygium polyanthum, Zingiber officinale), and

stroke (*Androgarphis paniculate, Apium graveolens, Moringa oleifera*). Several pictures of selected medicinal plant species are depicted in Figure 3.

Figure 3: Several selected medicinal plant species. (A) Annona muricata, (B) Peperomia pellucida, (C) Orthosiphon aristatus, and (D) Syzygium polyanthum.

4 CONCLUSIONS

A total of 64 medicinal herbs have been successfully documented along with 36 plant species have been identified. This shows Ogan tribes in Lempuing Jaya, Specifically in SP 6 Suka Maju, SP7 Suka Jaya, and Tanjung Sari II have empirically implemented the local knowledge of medicinal herbs for the treatment of several degenerative diseases. The documentation of the local knowledge regarding the traditional medicinal herbs is necessary to be implemented to avoid the loss of the local knowledge. Furthermore, the scientific proof of the use of the traditional herbal medicine should be undertaken.

REFERENCES

Faruque, M. O., Uddin, S. B., Barlow, J. W., Hu, S., Dong, S., Cai, Q., Li, X., & Hu, X. (2018). Quantitative ethnobotany of medicinal plants used by indigenous communities in the Bandarban district of Bangladesh.

Frontiers in Pharmacology, 9(FEB). https://doi.org/10.3389/fphar.2018.00040

Farnsworth NR. (1988). Screening plants for new medicines. In: Wilson E.O., Ed., Chapter 9 in Biodiversity, National Academy Press, Washington DC.

Helleday, T. (2017). Chemotherapy-induced toxicity-A secondary effect caused by released DNA? *Annals of Oncology*, 28(9), 2054–2055. https://doi.org/10.1093/annonc/mdx349

Hoffman, B., & Gallaher, T. (2007). Importance Indices in Ethnobotany. *Ethnobotany Research and Applications*, 5, 201–218.

Iwu, M. M. (2002). Ethnobotanical approach to pharmaceutical drug discovery: strengths and limitations. In M. M. Iwu & J. C. Wootton (Eds.), Advances in Phytomedicine (Vol. 1, pp. 309–320). Elsevier. https://doi.org/https://doi.org/10.1016/S1572-557X(02)80034-4

Miller, R. P., Tadagavadi, R. K., Ramesh, G., & Reeves, W. B. (2010). Mechanisms of cisplatin nephrotoxicity. *Toxins*, 2(11), 2490–2518. https://doi.org/10.3390/toxins2112490

- Moriguchi, Y., Alimi, M., Khair, T., Manolarakis, G.,
 Berlin, C., Bonassar, L. J., & Härtl, R. (2016).
 Biological Treatment Approaches for Degenerative
 Disk Disease: A Literature Review of in Vivo Animal
 and Clinical Data. In *Global Spine Journal* (Vol. 6,
 Issue 5, pp. 497–518). Thieme Medical Publishers, Inc.
 https://doi.org/10.1055/s-0036-1571955
- Richardson, A. M. (1926). Book Review: The Degenerative Diseases: Their Causes and Prevention. *The Family*, 7(6), 194–195. https://doi.org/10.1177/104438942600700607
- Silalahi, M. (2016). Studi Etnomedisin Di Indonesia dan Pendekatan Penelitiannya. *Jurnal Dinamika Pendidikan, 9*(3), 117- 124.
- WHO. (2002). Traditional Medicinen and Alternative Medicines. Geneva. Fact Sheet. No. 271.
- Wirasisya, D. G., Hanifa, N. I., & Hajrin, W. (2020). Ethnobotanical Study of Medicinal Plants Used to Treat Degenerative Disease in East Lombok. *Jurnal Biologi Tropis*, 20(3), 423–431. https://doi.org/10.29303/jbt.v20i3.2119.

