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Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) have equal importance in routine 
examinations. However, in some cases, one certain type may not be available due to limitations in condition. 
Therefore, it is necessary to establish a connection between CT and MRI images. With the idea of image-to-
image translation, this study proposes using the Cycle-Consistent Generative Adversarial Networks 
(CycleGAN) structure to build a mapping between these two kinds of medical images. Through the 
combination of Resnet Generator as well as Patch Generative Adversarial Networks (PatchGAN) 
Discriminator, the CycleGAN model is trained bidirectionally to achieve cyclic translation. Both qualitative 
and quantitative evaluations are implemented to highlight the model's effectiveness in transforming CT or 
MRI images from either direction to the other. In addition, the CycleGAN model excels particularly in cycle 
consistency, meaning a realistic recovery of the transformed images. Therefore, this study presents a powerful 
way for achieving mutual conversion between CT and MRI images, which is especially meaningful to 
diagnosis with limited information. In addition, this research also suggests the potential of image-to-image 
translation in medical image processing. Future research directions can be set upon this study to further 
improve the clarity of images and reduce noise so that the generated results can be truly used for clinical 
diagnosis. 

1 INTRODUCTION 

CT and MRI are two basic ways of getting information 
about the diseased region during diagnosis (Kidwell 
and Amie 2006). Yet each of these two methods has 
its advantages and limitations. For CT, the advantages 
lie in its short examination time, low cost, and wider 
application range (Angela and Müller 2011). 
However, CT has radiation and is not suitable for 
pregnant women and children. Meanwhile, the 
contrast resolution of CT is relatively low. Concerning 
MRI, it is non-invasive to the human body, with 
diverse parameters and the freedom to choose the 
orientation for imaging (Beek and Eric 2008). But it 
also brings drawbacks such as long scanning time, 
large noise, and expensive equipment. In addition, due 
to the strong magnetic field during operation, it cannot 
be used for patients with ferromagnetic substances in 
their bodies. Considering the equal importance of 
these two methods, it is necessary to establish a 
connection between CT and MRI images to provide 
more information for constrained diagnosis. 

Many studies have proposed meaningful methods 
to build this link or create new images based on 
existing information. For example, Han Xiao 

attempted to reconstruct CT images from MRI by 
using a deep convolutional neural network (Han 
2017). Toda Ryo et al. attempted to use semi-
conditional Information Generative Adversarial 
Networks (InfoGAN) to synthesize CT images of 
certain types of lung cancer (Toda et al 2021). 
Alrashedy, Halima Hamid N. et al. proposed Brain 
Generative Adversarial Networks (BrainGAN), 
combining Generative Adversarial Networks (GAN) 
architectures with Convolutional Neural Network 
(CNN) models to generate MRI images (Alrashedy et 
al 2022). Kwon Gihyun et al. used auto-encoding 
generative adversarial networks to generate 3D brain 
MRI images (Kwon et al 2019). However, the above-
mentioned studies as well as most of the existing 
methods can only achieve unidirectional image 
synthesis like synthesizing MRI images with CT 
images. This deficiency has put some constraints on 
doctors to get full information on the patients. Yet in 
recent years, the task of image-to-image translation 
has been broadly discussed, bringing some new ideas 
for connecting CT and MRI images (Isola et al 2017). 
Using a training set of aligned image pairs, image-to-
image translation aims to learn the mapping between 
an input image and an output image. While there have 
already been a lot of existing applications of image 
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translation (e.g. Chen et al 2021), little attention was 
paid to the field of medicine. The idea of image 
translation is very suitable for constructing a 
bidirectional change pathway between CT and MRI. 

Given the facts above, the main objective of this 
study is to enable a free switch between CT and MRI 
images. Specifically, the ct2mri dataset is 
preprocessed first, including the partition of the 
training set and test set, as well as resizing images. 
Second, CycleGAN structure is introduced to achieve 
this translation process (Zhu et al 2017). CycleGAN is 
a powerful model that can learn to translate images 
between different styles without paired examples. 
This independence of paired images is especially 
helpful to the connection of CT and MRI because their 
images always vary greatly in properties. The process 
of CycleGAN can be concluded as training one pair of 
generator and discriminator for each direction. For 
valid image translation, constraints on loss are added 
to ensure consistent content with different styles. 
Through pairs of generator and discriminator in 
CycleGAN, features of the images are extracted and 
reorganized to construct mappings between two 
domains. Thus, a direct connection between images of 
different domains is learned, allowing the model to 
convert any related images into each other. The 
experimental results demonstrate a satisfying 
performance in the bidirectional translation of CT and 
MRI images. This kind of translation model can help 
doctors quickly and effectively obtain the necessary 
information when conditions are limited, such as when 
one of the medical images is unavailable due to patient 
reasons. 

2 METHODOLOGY 

2.1 Dataset Description and 
Preprocessing 

The dataset used in this study is sourced from Kaggle 
called CT and MRI brain scans (CT and MRI brain 
scans 2020). It contains a total number of 4974 images 
of the results of CT and MRI brain scans. The size of 
these images is not uniform, for the training process of 
CycleGAN is unpaired, which means it is not affected 
by whether the image size corresponds or not. The 
images have been pre-adjusted to make sure that the 
results of brain scans are in the center and take up 
approximately even space in every image. 

The goal of the experiment is to learn a map 
between CT and MRI images in the dataset. To be 
loaded for use in a CycleGAN implementation for 
image-to-image translation, all of the CT and MRI 

brain images are organized into a directory structure 
and labeled as A and B respectively, with 2486 CT 
images for A and 2488 MRI images for B. Also, for 
model evaluation, a training set and a testing set are 
created from each of the parts with a ratio of 70% to 
30%. Fig. 1 displays a typical pair of CT and MRI 
images from this collection. 

 
Figure 1: An illustration of a CT and MRI image from the 
dataset of CT and MRI brain scans (Picture credit: 
Original). 

2.2 Proposed Approach 

The core issue of this proposed approach for CT and 
MRI image translation lies in constructing a complete 
structure of CycleGAN. This involves choosing 
proper network structure for both generator and 
discriminator in each direction, as well as a powerful 
loss function to drive the entire training process. For 
the Discriminator, it is chosen to have a PatchGAN 
structure with a patch size of 70x70; For the 
Generator, several Resnet Blocks are utilized to build 
the whole network. With regard to the loss function, 
GAN loss and cycle consistent loss are combined to 
ensure better performance. Fig. 2 illustrates the 
structure of the system. 

 
Figure 2: Composition of the model (Picture credit: 
Original). 

2.2.1 ResNet Generator 

ResNet is a well-known convolutional neural network 
with efficient performance regarding vanishing or 
exploding gradient problems. Resnet Block takes a 
step further. It draws on the core ideas of Resnet, 
which is "skip connection", and generalizes into a 
universal neural network layer structure to have two 
convolutional layers and a skip connection. This 
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method largely prevents the degradation of deep 
neural networks. The generators in this study are 
designed to be mainly made up of 9 Resnet Blocks, 
with reflection padding inside convolutional layers to 
preserve edge information of images. In addition, 
downsampling is implemented prior to the input of 
Resnet Blocks to reduce subsequent computational 
complexity, together with upsampling after Resnet 
Blocks to recover the image size. In the last 
convolutional layer, 64 generator filters with size 7x7 
are created to contain the generated information. All 
of the operations above contribute to achieving better 
results of feature extraction, pushing the generator to 
generate more realistic images as well as enhancing 
robustness. Fig. 3 shows the basic sequence of the 
generator structure. 

 
Figure 3: Sequential layer structure of the Resnet generator 
(Picture credit: Original). 

2.2.2 PatchGAN Discriminator 

Initially, PatchGAN is proposed to solve ambiguous 
generation in L2 or L1 loss cases. Instead of dealing 
with the whole image at one time, PatchGAN focuses 
on local image patches step by step and penalizes 
structure at the scale of patches. Convolutationally 
scanning across the image, this discriminator aims to 
decide whether each patch is fake or not, and finally 
collect all responses to provide the ultimate output. 
This kind of patch-based structure has fewer 
parameters than a discriminator dealing with full 
images, which can greatly accelerate the training 
process. Besides, discriminator with PatchGAN 
structure can be applied to arbitrarily-sized images 
process, providing great convenience for this study. 
According to the suggestions in the original paper, the 
patch size in this study is set to 70x70 to get an 
optimal performance. In addition, for network 

architecture, the PatchGAN discriminator is 
constructed through 3 main convolutional layers with 
an increasing number of filters and converges to one 
output channel by performing convolution processing 
again in the end to get the predicted results.  

2.2.3   Loss function 

It is critical to choose the right loss function in the 
training of deep learning models, especially in 
generational ones. As for this image-to-image 
translation task, the full objective loss function 
mainly consists of two terms: The first is adversarial 
losses. Here an improved version of vanilla GAN 
losses proposed in Zhu et al’s study is implemented. 
It is called LSGAN loss: 𝑙ௌሺ𝐺ଵ,𝐷ሻ ൌ 𝔼௬~ೌೌሺ௬ሻሾሺ𝐷ሺ𝑦ሻ െ 1ሻଶሿ                                                     𝔼௫~ೌೌሺ௫ሻ ቂ𝐷൫𝐺ଵሺ𝑥ሻ൯ଶቃ (1)  

The above formula illustrates the form of LSGAN 
loss, where 𝐺 represents the generator mapping from 𝑋 to 𝑌, while 𝐷denotes the discriminator on domain 𝑌. LSGAN loss substitutes a least square loss for the 
original negative log-likelihood, which brings a more 
stable training as well as better performance. For the 
opposite direction, there is also a similar function  𝑙ௌሺ𝐺ଶ,𝐷ሻ. 

The second part is defined as cycle consistency 
loss: 𝑙௬ሺ𝐺ଵ,𝐺ଶሻ ൌ 𝔼௫~ೌೌሺ௫ሻ ቂฮ𝐺ଶ൫𝐺ଵሺ𝑥ሻ൯ െ 𝑥ฮଵቃ                                𝔼௬~ೌೌሺ௬ሻ ቂฮ𝐺ଵ൫𝐺ଶሺ𝑥ሻ൯ െ 𝑦ฮଵቃ     (2) 

 

where 𝐺  and 𝐹  represent two generators. The cycle 
consistency loss guarantees that the cycle of image 
translation is able to bring the input back to the 
original image as similarly as possible. Then the full 
objective is established through a combination of the 
following forms:  𝑙ሺ𝐺ଵ,𝐺ଶ,𝐷 ,𝐷ሻ ൌ 𝑙ௌሺ𝐺ଵ,𝐷ሻ  𝑙ௌሺ𝐺ଶ,𝐷ሻ                                                            𝜆𝑙௬ሺ𝐺ଵ,𝐺ଶሻ          (3) 

 
where 𝜆 controls the relative weight of two different 
types of loss. This parameter was determined through 
hyperparameter tuning to ensure optimal 
performance. To prevent overfitting, instance 
normalization is implemented. In comparison to 
traditional batch normalization, instance 
normalization performs better in image translation 
because, for this type of task, each pixel of the input 
sample is crucial to the training process. 
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2.3 Implementation Details 

In the training process of the suggested model, several 
important aspects are highlighted. Firstly, Adam is 
chosen to be the optimizer of all generators and 
discriminators in CycleGAN because of its satisfying 
performance concerning gradient descent in high-
dimensional spaces. Speaking of hyperparameters, in 
the first 50 training epochs, the learning rate is fixed 
at 0.0002, and in the subsequent 50 training epochs, it 
decreases linearly to zero. This can make sure that the 
model learns more at the beginning, and keeps the 
parameters almost unchanged near the end to reduce 
the probability of overfitting. The momentum term of 
Adam is set to be 0.5. Limited by equipment 
RTX3060, the batch size during training is constrained 
to 2, and the model trains for a total of 100 epochs. 

3 RESULTS AND DISCUSSION 

As a generative model, evaluation of the performance 
usually focuses on observing the generation results 
through the test set on the trained model. Specifically, 
the results of this study will be discussed through the 
method of visualization as well as generation 
accuracy. For testing and evaluation, 744 unpaired CT 
and MRI images are prepared to give translation. Here 
only the translation results of the model from CT 
images to MRI images and back to CT will be shown. 
It is because, for CycleGAN, the results of image 
translation from both two directions (which is CT-
MRI-CT and MRI-CT-MRI) should be equivalent in 
performance. 

3.1 Visualization Analysis 

Some typical test outputs are selected to be 
demonstrated in Fig. 4 below. From left to right, the 
generated MRI image, original MRI image, restored 
CT image, and original CT image are sequentially 
displayed in columns. 

 
Figure 4: Typical outputs of the constructed CycleGAN 
(Picture credit: Original). 

It can be intuitively seen from Fig. 4 that the 
CycleGAN model constructed in this study effectively 
maps the given CT images into MRI ones, with 
necessary details as well as correct contour. Thanks to 
the delicate structure of the Resnet Generator, the 
CycleGAN model has such a strong feature extraction 
ability that it can rebuild most of the detailed 
information of the real images. Besides, PatchGAN 
Discriminator enhanced the refinement of the 
generator as well by serving as an adversarial part, 
forcing the generator to pay more attention to details. 
Though defects can be observed such as there is still 
residual information from the original image, it is 
caused by the nature of CycleGAN, which tends to 
preserve the content. Nevertheless, the CycleGAN 
model still establishes a valid connection between CT 
and MRI images from a visual perspective. 

At the same time, the model almost perfectly 
recovers the transformed images back into the original 
ones. This means that the CycleGAN model in this 
study has a strong cycle consistency, which should be 
attributed to the powerful constraint of cycle 
consistency loss in the loss function on the generation 
of image content. In addition, the results imply that the 
parameter λ is not obtained too morbidly to cause 
failures in image generation, proving a success in 
hyperparameter tuning. 

3.2 Generation Accuracy 

In this work, the structural similarity index measure 
(SSIM) is utilized to assess the trained model's 
generation accuracy. The SSIM metric extracts three 
key features from an image: brightness, contrast, and 
structure, which are used to measure the similarity 
between two given images. Implementing this metric 
through the outputs of the test set, the model gets an 
average score of 0.4038 on the generated MRI images 
and 0.9642 on the recovery of the translated images. 
SSIM metric provides a quantified summary of the 
performance of the CycleGAN model. Combined with 
the visualization results, it can be concluded that the 
CycleGAN model has no problems in generating most 
of the image details, but still faces challenges in terms 
of image brightness and clarity, which is caused by 
CycleGAN’s property of keeping the original 
structure information as is discussed before. This 
observation raises the necessity for some structural 
alteration on the CycleGAN model to eliminate excess 
information. 
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4 CONCLUSION 

This article introduces an approach employing a 
CycleGAN architecture to decipher the intricate 
mapping relationship between CT and MRI images, 
with a curated dataset of brain scans serving as the 
primary data source. The model exhibits remarkable 
performance in feature analysis and extraction, 
leveraging the Resnet and PatchGAN architectures for 
its generator and discriminator components. This 
choice empowers the model to excel in capturing 
salient features and fostering discriminative 
capabilities. 

An extensive series of experiments has been 
meticulously conducted to evaluate the proposed 
methodology, employing a range of qualitative and 
quantitative metrics. The results garnered from these 
experiments on the CT and MRI brain scan dataset are 
highly promising. The CycleGAN model successfully 
forges a meaningful connection between CT and MRI 
images, preserving intricate details and structural 
integrity. Moreover, the model demonstrates robust 
cycle consistency, affirmed through both visual 
inspection and the SSIM. 

The model's remarkable image generation 
capabilities can be attributed to ResNet's ability to 
retain vital input information and PatchGAN's 
effectiveness in scrutinizing generated images at the 
patch level. It is important to acknowledge that future 
research endeavors will be primarily dedicated to 
refining the model's architecture to address any 
identified limitations. Additionally, the exploration of 
a diverse range of models for enhancing performance 
in the domain of image translation will remain a focal 
point in upcoming research pursuits. This 
commitment to continuous improvement underscores 
the model's potential contributions to the field of 
medical imaging. 

REFERENCES 
S. Kidwell, W. Amie,  “Imaging of the brain and cerebral 

vasculature in patients with suspected stroke 
advantages and disadvantages of CT and MRI,” Current 
neurology and neuroscience reports, vol 6, 2006, pp. 9-
16. 

C. Angela, P. Müller, “Introduction to computed 
tomography,” Kgs. Lyngby: DTU Mechanical 
Engineering, 2011 

J. R.  Beek, A. Eric, “Hoffman Functional imaging: CT and 
MRI Clinics in chest medicine, vol. 29, 2008, pp. 195-
216 

X. Han, “MR‐based synthetic CT generation using a deep 
convolutional neural network method Medical physics, 
vol. 44, 2017, pp. 1408-1419 

R. Toda et al, “Synthetic CT image generation of shape-
controlled lung cancer using semi-conditional 
InfoGAN and its applicability for type classification,” 
International Journal of Computer Assisted Radiology 
and Surgery, vol. 16, 2021, pp. 241-251 

H. Alrashedy, N. Hamid et al, “BrainGAN: brain MRI 
image generation and classification framework using 
GAN architectures and CNN models,” Sensors, vol. 22, 
2022, pp. 4297 

G. Kwon, H. Chihye, D. Kim, “Generation of 3D brain MRI 
using auto-encoding generative adversarial networks,” 
International Conference on Medical Image Computing 
and Computer-Assisted Intervention Cham, Springer, 
2019 

P. Isola et al, “Image-to-image translation with conditional 
adversarial networks,” Proceedings of the IEEE 
conference on computer vision and pattern recognition, 
2017 

Z. Chen et al. “Semantic segmentation for partially 
occluded apple trees based on deep learning,” 
Computers and Electronics in Agriculture, vol. 181, 
2021, p. 105952 

J. Y. Zhu et al, “Unpaired image-to-image translation using 
cycle-consistent adversarial networks,” Proceedings of 
the IEEE international conference on computer vision, 
2017 

CT and MRI brain scans https://www.kaggle.com/ 
datasets/darren2020/ct-to-mri-cgan  

Image-to-Image Translation Based on CycleGAN: From CT to MRI

233


