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Abstract: Image recognition is presently a central area of study within the machine learning domain. Convolutional 
neural networks (CNN) are a special type of artificial network model commonly used for image processing 
and recognition. The design inspiration for this deep learning model comes from human visual recognition 
systems, whose core idea is to use convolution operations to extract features from images. Then the network 
utilizes a series of different functional hidden layers to ultimately recognize and classify the input image 
data. This article constructs a deep CNN model utilizing the ResNet50 for image recognition and 
classification on a dataset containing butterfly and moth images, and analyzes the classification results. 
After 10 epochs, the CNN model demonstrated a 94.3% accuracy rate when applied to the test dataset. 
According to research findings, the model exhibits commendable accuracy on the dataset. Nevertheless, 
owing to the limited number of training epochs, the performance on the test set fell short of optimal 
outcomes. Therefore, augmenting the number of epochs can be a viable approach to enhance the model's 
classification accuracy for the dataset.

1 INTRODUCTION 

Over the past few years, image recognition and 
classification have emerged as pivotal areas of 
investigation within the realm of computer vision. 
Image classification, a cornerstone in computer 
vision, involves categorizing images into distinct 
classes based on their semantic attributes. It serves as 
the cornerstone for various advanced visual tasks, 
including but not limited to object detection, image 
segmentation, and object tracking. Image 
classification and recognition have extensive 
applications in many fields, such as face recognition, 
autonomous driving, intelligent video analysis, and 
image recognition in the medical field (Chauhan et 
al, 2018). CNN include input layers, convolutional 
layers, pooling layers, Dense layers, etc., which 
process raw pixel values or pixel values that have 
undergone simple preprocessing (such as centering 
and scaling), and are often used for image 
recognition and classification. Traditional network 
structures such as AlexNet and VGGNet have the 
problem of insufficient network structure depth, 
which means that when the network structure is 
deeper, the classification performance of the model 
does not meet expectations.  In the ILSVRC 2015 

classification task, Kaiming, Xiangyu, Shaoqing 
introduced a novel deep CNN framework, which is 
commonly referred to as the ResNet architecture (He 
et al, 2016). A 152 layer network structure was 
established on the ImageNet dataset and compared 
with traditional network structures such as VGGNet 
and GoogLeNet. The results showed that the 
established residual neural network had higher 
accuracy while maintaining lower network 
complexity, indicating a lower risk of overfitting.  

This article implements a method for recognizing 
and classifying butterfly or moth images in datasets 
based on ResNet network architecture. Expanding 
the application of CNN in image recognition and 
classification can enhance the precision and 
efficiency of butterfly classification, benefiting 
biologists in their assessments. This article uses a 50 
layer residual neural network for image feature 
extraction and recognition, while the Dense layer 
achieves the final classification of the 
image.  Moreover, a dropout layer was added to the 
model to randomly shut down neurons in the dense 
layer, this aids in further diminishing the potential 
for overfitting in the model. Employing Adam 
optimization functions within the network 
architecture enhances the model's learning 
efficiency. 
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The following content was written in the 
subsequent part of this article: Part 2 summarizes the 
relevant work in the field of deep learning, which is 
a literature review.  The third part introduces the 
established deep CNN model and provides a detailed 
description of its internal architecture and the 
optimization function Adam of the model.  In the 
fourth section, we elucidate the model's 
classification outcomes on the dataset and conduct a 
comprehensive performance assessment.  Section 5 
summarizes the main work of this article and 
proposes the shortcomings of the research. 

2 RELATED WORKS 

With the development of machine learning, related 
algorithms are facing new opportunities and 
challenges in computer vision.  In image 
recognition, the classification performance of deep 
learning algorithms for images is becoming 
increasingly accurate.  The following is a list of 
relevant developments: 

R. Chauhan, K.K. Ghanshala, R.C. Joshi, et al. 
developed two distinct CNN architectures for both 
the MNIST and CIFAR-10 datasets, exclusively 
relying on CPU-based computation (Chauhan et al, 
2018).  CNN performed well on the MNIST dataset, 
achieving an accuracy of 99.6% after 10 
epochs.  On the CIFAR-10 dataset, due to 
insufficient training epoch size, the accuracy is only 
80.17%.  Furthermore, a suggestion is put forth to 
augment the training epoch as a means to further 
enhance the model's accuracy.  

Deep learning in medicine helps to effectively 
diagnose epidemics. Boukaye, Bernard, Fana et al. 
used efficient CNN to effectively recognize and 
classify pathogen images of cholera and malaria in 
microscopic images, ultimately achieving an 
accuracy of 94% (Traore et al, 2018). And it is 
proposed that integrating pathogen image 
recognition methods from this microscope into a 
medical microscope can help diagnose and prevent 
crises caused by epidemics. HYU, SOYOUN, 
KYUNGYONG et al. based on ResNet deep CNN 
and recognition of chest X-ray images, can 
effectively diagnose cardiac hypertrophy (Yoo et al, 
2021). The accuracy of model recognition is close to 
80%. In addition, this work evaluated and compared 
the classification results obtained by four types of 
optimization functions SGD, Adam, AdaGrad, and 
RMSProp in neural networks. According to this 
work, when SGD is used as the optimizer in neural 

networks, the model performs best in diagnosing 
cardiac hypertrophy.  

Weather recognition stands as a pivotal 
application in the field of computer vision. Bin, 
Xuelong, Xiaoqiang et al. assigned multiple weather 
condition labels to each weather image in two 
datasets, and completed the multi label classification 
task based on a special CNN-RNN network model 
(Zhao et al, 2018). In this model, CNN is extended 
to a channel attention model. This model not only 
effectively identifies weather, but also explores the 
interrelationships within different weather conditions. 
This study has markedly enhanced the model's 
precision when contrasted with the conventional 
approach of treating weather recognition as a 
single-label classification task. Furthermore, we 
conducted a comparative analysis involving AlexNet, 
multi-label versions of VGGNet, ML-KNN, 
ML-ARAM, and various other network models 
using two distinct weather recognition datasets. 
Finally, it was found that the CNN-RNN performed 
best in multi label classification tasks on this dataset.  

3 CLASSIFIER MODEL 

3.1 CNN Model 

CNN typically consist of several layers. They 
include input layers, convolutional layers, pooling 
layers, and dense layers (commonly referred to as 
fully connected layers) and so on (Gu et al, 2018).  

Convolutional layers are adept at extracting 
pivotal features from the input image data. Within 
neural networks, these layers necessitate multiple 
convolutional kernels for computation. Each element 
within these kernels corresponds to the network's 
weight coefficients and bias vectors, taking 
inspiration from the feedforward neural networks 
found in biological organisms. The location on the 
output feature map of the convolutional layer, in 
relation to the pre-convolution input region, defines 
the portion where the features of the CNN perceive 
the input image. This region's size is contingent 
upon the dimensions of the convolutional kernel 
employed in the correlation operations of the 
convolutional layer, commonly referred to as the 
"receptive field. " (Gu et al, 2018).  

Pooling layer is used for downsampling 
convolutional layers, thereby reducing the number of 
data points. Two prevalent pooling techniques are 
frequently employed: average pooling and max 
pooling.  

Dense layer is used to classify the extracted 
features mentioned above (similar to the fully 
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connected layer in general neural networks) (Gu et 
al, 2018). Before entering the dense layer, the 3D 
data is elongated into a one-dimensional vector (i.e. 
the data is flattened). A dense layer, also known as a 
fully connected layer, signifies that each node within 
it is intricately linked to every node in the preceding 
layer. This layer's purpose is to amalgamate and 
synthesize the features that have been extracted from 
the preceding layers.  

3.2 Residual Neural Network 

Residual neural network is a classic deep CNN 
model. The ResNet50 network structure 
usedindicates that this CNN has 50 layers.  

The table 1 lists a basic network structure 
configuration of ResNet. Table 1 illustrates the 
network architecture of ResNet50, a deep CNN that 
serves as the primary model in this study (He et al, 
2016).  

Table 1: Basic ResNet50 Structure Configurations. 
Conv layer output size 50-layers number 

Stage1:Conv_1 112x112 7x7,64,stride2  
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The internal architecture of the entire network model 
established based on ResNet50 in this article is 
described in detail in Table 2. 

Table 2: Network Structure. 

Layer Size/Shape 
ResNet50 2048 

Flatten 2048 

Dense_1 512 

Dropout 512 

Dense_2 100 

 
ResNet with different depths has the following 

characteristics: At the initial stage, they all 

underwent the same process of convolutional layer 
conv1 and maximum pooling (max-pool).  

ResNet neural networks of different depths are 
all composed of stacked basic residual blocks, and 
the basic residual module of the 50 layer ResNet is 
labeled as Bottleneck, which includes three 
convolutions. The residual blocks stacked by ResNet 
in stage 2 are identical and there is no downsampling. 
The first residual block stacked in stages 3 to 5 in 
the ResNet model is different from the remaining 
residual blocks. Each stage (3-5 stages) 
downsampling the feature image size, and 
downsampling is sent at the first residual block in 
each stage, while the remaining residual blocks are 
not downsampling (with the same size).  

The residual block model in the ResNet network 
model is shown in Fig.1: 

 
Figure 1: The residual block model (Picture credit: 
Original). 

The Fig.1 shows a block proposed for deep networks, 
called the "bottomleneck" block, with the main 
purpose of dimensionality reduction. Firstly, a 1x1 
convolution is used to reduce the 256 dimensional 
channel to 64 channels, and finally, a 1x1 
convolution of 256 channels is used to recover, such 
as ResNet-50.  

3.3 Dropout to Reduce Overfitting 

While learning different features from the dataset, 
neural networks also learn noise from the dataset. 
This results in good performance of the network on 
the training set, but poor performance on new data 
(test set), which is known as overfitting. To solve the 
overfitting problem, we add a dropout layer to the 
network structure. In this article, a dropout layer is 
added to the ResNet network structure to prevent 
overfitting from occurring (Srivastava et al, 2014).  

In neural networks, dropout refers to the random 
deletion of some nodes in the input layer and hidden 
layer with probability p, and all forward and 
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backward connections to the deleted nodes will be 
temporarily deleted, thereby creating a new network 
architecture. The probability parameter of keeping 
hidden nodes in the network is set to 0.5. Within 
each training batch, a substantial reduction in 
overfitting can be achieved by introducing a random 
node dropout mechanism in specific hidden layers. 
This strategy effectively mitigates interdependencies 
among feature detectors, where individual detectors 
are less reliant on the output of other detectors for 
their function.  

3.4 Adam Optimizer 

The Adam optimizer, as referenced in, represents a 
modification of the gradient descent algorithm 
utilized for weight updates within neural networks 
(Zhang, 2018). It integrates principles from both the 
Stochastic Gradient Descent Algorithm (SGD) and 
the Adaptive Learning Rate Algorithm, offering the 
advantage of expedited convergence and reduced 
training duration (Mehta, 2019).  The Adam 
optimizer calculates the independent adaptive 
learning rate for each parameter without the need for 
manual adjustment of the learning rate, making it 
widely used in practice.  

Neural network optimization in deep learning. 
The Adam optimizer is a dynamic optimization 
algorithm capable of fine-tuning the learning rate by 
leveraging past gradient information. This approach 
amalgamates concepts from two distinct 
optimization algorithms, RMSProp and Momentum, 
and normalizes parameter updates to ensure that 
each parameter update has a similar magnitude, 
thereby improving training effectiveness (Zou et al, 
2019). The Adam optimizer excels in numerous 
practical applications, particularly when employed 
to train deep neural networks on extensive datasets 
(Mehta, 2019).  

The main function of the Adam optimizer is to 
update neural network parameters based on gradient 
information, thereby minimizing the loss function. 
Specifically, its main functions include: 

The Adam optimizer possesses the ability to 
dynamically fine-tune the learning rate by drawing 
insights from historical gradient information (Zhang, 
2018). This adaptive learning rate mechanism allows 
for the application of a larger learning rate during 
the initial training phases, facilitating rapid 
convergence. As the training progresses into its later 
stages, a smaller learning rate is employed to refine 
the search for the minimum of the loss function, 
enhancing accuracy.  

The Adam optimizer can adjust momentum 
parameters to balance the impact of the previous 
gradient and the current gradient on parameter 
updates, thereby avoiding premature trapping in 
local minima.  

The Adam optimizer normalizes the updates of 
parameters, so that each parameter update has a 
similar magnitude, thereby improving the training 
effect.  

The Adam optimizer combines the idea of L2 
regularization to regularize parameters during 
updates, thereby preventing neural networks from 
overfitting training data.  

Overall, the Adam optimizer can quickly and 
accurately minimize the loss function, improving the 
training effectiveness and generalization ability of 
deep neural networks.  

4 RESULTS 

4.1 Dataset 

The dataset used in this article is used to identify the 
species of butterflies and moths.  The dataset 
contains a total of 100 category labels for butterflies 
or moths, and each image has a size of 224×224 
pixels (50176 pixels) as input to the neural network. 
The training set consists of 12594 images, divided 
into 100 sub directories, each corresponding to a 
species. The test dataset comprises 500 images, 
organized into 100 subdirectories, each containing 5 
test images per category. Additionally, within the 
same dataset, there are 5 validation images per 
category, yielding the same overall count of 500 
images. Fig.2 visually presents a selection of images 
from this dataset.  

 
Figure 2: Some samples of datasets (Picture credit:  
Original). 
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4.2 The Loss Function  

The loss function is a non negative function that 
quantifies the dissimilarity between the predicted 
outcome, denoted as f(x), produced by a neural 
network, and the ground truth value, Y. Smaller 
values of the loss function correspond to improved 
predictive performance, indicating better model 
results.  

In this research, the employed loss function is the 
softmax loss function, and its mathematical 
representation is as follows:                     L൫Yหfሺxሻ൯=-

1
n log

efYi∑ efjc
j=1

             (1)
n

i=1

 

From a standard form, the softmax loss function 
should be classified as logarithmic loss. In 
supervised learning, due to its widespread use, it 
forms a separate category. The softmax loss function 
can be seen as a natural extension of the logistic 
regression model, especially applicable in the 
context of multi-class classification tasks. It 
frequently finds application as the preferred loss 
function in CNN models. At its core, the softmax 
loss function serves the purpose of mapping an 
arbitrary real vector 'x' of dimension 'k' to another 
real vector of the same dimension 'k'. This mapping 
operation ensures that each element in the resulting 
output vector falls within the range of (0,1), that is, 
the softmax loss function outputs the prediction 
probability of each category. The softmax loss 
function, renowned for its capacity to facilitate 
inter-class separability, finds extensive application in 
a spectrum of tasks including classification, 
segmentation, face recognition, automatic image 
annotation, and face verification. Notably, it excels 
in optimizing inter-class distances, yet its 
performance in optimizing intra-class distances is 
comparatively less pronounced.  

The softmax loss function is renowned for its 
ability to facilitate inter-class separability and is 
frequently employed in tackling feature separation 
challenges within the realms of multi-classification 
and image annotation tasks. In CNN-based 
classification scenarios, the softmax loss function is 
typically designated as the primary loss function. 
Nevertheless, the features derived from the softmax 
loss function often lack the requisite level of 
distinctiveness. As a remedy, it is common practice 
to complement it with contrast loss or center loss 
techniques to augment discriminative capabilities.  

The graphical representation in Fig.3 illustrates 
the outcomes of the loss function within this 
research. With the prolonged duration of training, 

there is a consistent reduction in the model's loss 
function for both the training and validation datasets. 
This decline signifies an enhancement in the model's 
classification performance over time.  

 
Figure 3: Loss function of the model (Picture credit: 
Original). 

4.3 Accuracy 

The precision of a neural network pertains to the 
ratio of accurately predicted samples to the total 
number of samples in the testing dataset. This is 
mathematically expressed as:                         Accuracy=

TP+TN
TP+TN+FP+FN                ሺ2ሻ 

The accuracy of this article is shown in Fig.4. As 
the training cycle increases, the model's performance 
steadily enhances on both the training and validation 
datasets, signifying a continuous improvement in the 
network's efficacy. The accuracy of neural networks 
represents the degree of prediction accuracy in the 
results of the positive sample. Ultimately, the 
network model's accuracy on the test set culminated 
at 94.3%.  

 
Figure 4: Accuracy of the model(Picture credit: Original). 

4.4 Performance Measurement Results 

Precision pertains to the likelihood of being a 
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positive sample within the set of all predicted 
positive samples and is represented as      Precision=

TP
TP+FP                         ሺ3ሻ 

Recall, denoted as the likelihood of being 
classified as a positive sample among the true 
positive instances, is mathematically articulated as         Recall=

TP
TP+FN                        ሺ4ሻ 

F1-score, also known as BalancedScore, 
represents the harmonic mean between accuracy and 
recall. The F1 score, a statistical metric ranging from 
0 to 1, serves as a measure to assess the accuracy of 
outcomes produced by a binary model. The F1 score 
provides a comprehensive evaluation of the 
classification accuracy achieved by neural network 
models, considering both the precision of 
classification results and the recall rate of dataset 
samples. A heightened F1 score indicates enhanced 
resilience in the constructed network architecture.  

Table 3 presents the classification outcomes of 
the model developed in this study for a set of 100 
distinct butterfly and moth species. Specifically, the 
table showcases the model's classification results for 
the top 10 butterfly and moth categories, listed 
alphabetically.  

Table 3: Classification Results on the Test Set. 

Category Precision Recall F1-score 

ADONIS 0.65 1.00 0.79 
AFRICAN GIANT SW

ALLOWTAIL 1.00 1.00 1.00 

AN 88 1.00 1.00 0.90 

APPOLLO 1.00 1.00 1.00 

ARCIGERA FLOWER 
MOTH 0.80 1.00 0.91 

ATALA 1.00 1.00 1.00 

ATLAS MOTH 1.00 1.00 1.00 
BANDED ORANGE 

 HELICONIAN 1.00 1.00 1.00 

BANDED PEACOCK 1.00 1.00 1.00 

Accuracy / / 0.94 

Macro average 0.95 0.94 0.94 

Weighted average 0.95 0.90 0.90 
 

In table 3, CNN's classification performance in t
he ADONIS, AMERICAN SNOOT, AN 88, AR
CIGERA FLOWER MOTH categories is not acc
urate enough, and there are no errors in the clas
sification results of the other butterfly or moth c
ategories.  

5 CONCLUSIONS 

This article presents a novel approach to image 
recognition and classification based on ResNet 
network structure. This method is used to distinguish 
100 species of butterflies or moths in the dataset. 
After 10 training epochs, the CNN architecture 
demonstrated an impressive 94.3% classification 
accuracy on the test set, underscoring its proficiency 
in accurately classifying butterfly or moth datasets. 
Because of the limited training epochs executed on 
the CPU, the model's performance in terms of 
classification accuracy on the test set fell short of 
optimal outcomes. Therefore, augmenting the 
epochs can be contemplated as a means to enhance 
the model's classification accuracy on the given 
dataset. Before inputting data, denoising the image 
data using corresponding preprocessing algorithms 
can help convolutional layers extract image features 
more effectively.  

REFERENCES 

R. Chauhan, K. K. Ghanshala, and R. C. Joshi, 
"Convolutional neural Network (CNN) for image 
detection and recognition," 2018 First International 
Conference on Secure Cyber Computing and 
Communication (ICSCCC), 2018, pp. 278-282. 

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual 
learning for image recognition," Proceedings of the 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2016, pp. 770-778. 

B.B. Traore, B. Kamsu-Foguem, and F. Tangara, "Deep 
convolution neural network for image recognition," 
Ecological Informatics, vol. 48, pp. 257-268, 2018. 

H. Yoo, S. Han, and K. Chung, "Diagnosis support model 
of cardiomegaly based on CNN using ResNet and 
explainable feature map," in IEEE Access, vol. 9, pp. 
55802-55813, 2021, doi: 10.1109/ACCESS. 
2021.3068597. 

Zhao, X. Li, X. Lu, and Z. Wang, "A CNN–RNN 
architecture for multi-label weather recognition," 
Neurocomputing, vol. 322, pp. 47-57, 2018. 

J. Gu et al., "Recent advances in convolutional neural 
networks," Pattern Recognition, vol. 77, pp. 354-377, 
2018. 

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, I. 
Salakhutdinov, and R. Salakhutdinov, "Dropout: a 
simple way to prevent neural networks from 
overfitting," The journal of machine learning research, 
vol. 15, no. 1, pp. 1929-1958, 2014. 

Z. Zhang, "Improved adam optimizer for deep neural 
networks," 2018 IEEE/ACM 26th international 
symposium on quality of service (IWQoS), 2018, pp. 
1-2. 

DAML 2023 - International Conference on Data Analysis and Machine Learning

216



S. Mehta, C. Paunwala, and B. Vaidya, "CNN based traffic 
sign classification using adam optimizer," in 2019 
international conference on intelligent computing and 
control systems (ICCS), 2019, pp. 1293-1298. 

F. Zou, L. Shen, Z. Jie, and W. Liu, "A sufficient condition 
for convergences of adam and rmsprop," Proceedings 
of the IEEE/CVF Conference on computer vision and 
pattern recognition(CVPR), 2019, pp. 11127-11135. 

Butterfly and Moth Image Recognition Based on Residual Neural Network

217


