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The author termed Pal type interpolation problems as PTIP. In this paper the regularity of (0,1) — PTIP and

(0,2) — PTIP, with addition of two non-zero complex nodes +{ or two real nodes +1 at value nodes for pairs

of considered polynomials is evaluated.

1 INTRODUCTION

L. G. Pal 1975, introduced a new kind of
Interpolation on zeros of two different Polynomials.
It involves of finding a polynomial of degree (m +
n — 1), that has prescribed values at m pairwise
distinct nodes and prescribed values for rth
derivative at n pairwise distinct nodes. These nodes
are called value nodes and derivative nodes
respectively.

Let 1,, be the set of polynomials of degree less than
or equal to n with complex coefficients. Let A(z) €
7, and B(z) € m,,, then for a given positive integer
r the problem of (0,7) — PTIP on the pair {A(z),
B(z)}, is to determine a polynomial P(z) € Ty 1m_1,
which assumes arbitrary prescribed values at the
zeros of A(z) and arbitrary prescribed values of the
rt" derivative at the zeros of B(z). The problem is
regular if and only if any P(z) satisfying
P(y;) = 0; where A(y;)=0; i=1,2,..,n,

P™M(z) = 0; where B(z)=0; j=12,..,m,
vanishes identically. Here the zeros of A(z), B(z) are
assumed to be simple.
(De Bruin and Sharma 2003) observed regularity of
(0, my, ...,mq) — PTIP on the zeros of (z" — af),
(z"—af), ., (@" —ap) with 0 < ap < a; <, ..., <
ag.

(De Bruin 2005) explored necessary and sufficient
condition for regularity of (0,7) — PTIP with respect
to exchanging value-nodes and derivative-nodes.

(De Bruin and Dikshit 2005) examined regularity of
(0,7) — PTIP on the pair {(z™ - 1)(z - ), (z" —
1)}, where m and n are given positive integers and {
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is not a zero of the polynomial (z™ — 1). They
determined largest domain for ¢, which ensures
regularity of the problem. They observed that
(0,7) — PTIP on the pair {(z™ —1)(z— ), (" —
1)}, for positive integers m and n are not regular, if
r > m + 1. For the case, r < m + 1 and on the basis
of relationship between the positive integers m and n,
they explored (0,7) — on some different pairs and
found those problems are regular under certain
conditions.

(Dikshit 2003) considered PTIP involving
Mobius transform of zeros of (z™* + 1) and (z" —
1) with one or two extra derivative nodes.

(De Bruin 2005) investigated regularity of
(0,m) —PTIP on zeros of the pair
W'D (2),w\”(2)}, where & be a complex number

with a2, a™, 2™, a™™ = 1;n,m = 1.

The method of considering non-uniformly
distributed nodes on unit disk is generalized, by
involving the Mébius transform of zeros of (z2" —
p*™) on the circle |z| = p’ (Mandoli and Pathak
2008).

(0,1) — PTIP are found to be regular for
following pairs, where a,,(z) € &,, and b, (z) € &,
with simple zeros, A,,(z) and B,,(z) are the sets of
zeros of the polynomials a,,(z) and b,(2)
respectively such that B,(z) € 4,,(z) (Modi et al
2012)

o {an(2),(z—b,(2)}.
o {z—-0an(2),by(2)}.
o {an(2),(z—-0)(z—0)ba(2)} 5 # 45
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¢ [L@IL @-Wh@);

pairwise distinct.

o {an(@),Y®)b(2)}; ¥(t) Em(t 22) bea
polynomial with simple zeros.

o {(z—-&an(2), (z = {)bn(2)}.

The author (Pathak and Tiwari 2019, Pathak and
Tiwari 2018) revisited regularity of Pal type Birkhoff
interpolation and have introduced a new class of
PTIP. Also, the author (Pathak and Tiwari 2018,
Pathak and Tiwari 2020) examined the regularity of
‘incomplete’ type PTIP on non-uniformly distributed
nodes by omitting real and complex nodes and
studied ‘Incomplete’ type PTIP on zeros of
polynomials with complex coefficients.

¢, are

2 MAIN RESULTS

The author considered the polynomials a,,(z) € m,
and b, (z) € m,, with simple zeros. 4,,(z) and B, (z)
are the sets of zeros of the polynomials a,,(z) and
b, (z) respectively such that B,,(z) € A,,(2). Section
2.1 deals with (0,1) — PTIP, while section 2.2 deals
with (0,2) — PTIP.

(0,1) — PTIP with two Additional Value Nodes

Theorem 2.1: Let m,n > 1, then (0,1) — PTIP on

{(z* - (z)am(Z)' b(2)}; £¢ & An(2), Bn(2)
A, (2) is regular.

Proof: Here, we have total (m + n + 2) interpolation
points.

We need to determine a polynomial P(z) € Tp4n41
with

Py)=0;y,€4,(2);i=12..,m,
P(£0) =0; £{ & Ap(2),
P’(Zj) =0;z €By(2);j=12,..,n
Let P(z) = (z2 — (®)a,,(2)Q(z) ; where Q(z) €

Tp_1-
Thus P(z) € Tpinsn-
The posed problem will be regular, if P(z) = 0.
Since P'(Zj) =0, we get
(57 - en()0 () + Q) -
{B)am(z) + 2zjan(z)] = 0.
As z; € By(z) € Apm(2), we have
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(7 = ¢*)am(z)e(z) = 0.

Since +{ & A,,(z) and a,,(z) has simple zeros, the
polynomial and its derivative cannot vanish
simultaneously at the same point, we have

Q(z) =o.
Since z; has n values, we get
Q(2) = Cqy(2) (2.1)

According to our assumption Q(z) € m,_; and
therefore on account of equation (2.1), we get

Q(z) =0.

Corollary 2.1: Let m,n = 1, then (0,1) — PTIP on
{(z% = Dan(2),b,(2)}; £1 & A,y (2), B,(2) S
A (2) is regular.

(0,2) — PTIP with two Additional Value Nodes

Theorem 2.2: Let m,n > 1, then (0,2) — PTIP on
{(z% = () an(2),b,(2)}; +{ € Ap(2), By(2) S

A, (2) is regular.

Proof: Here, we have total (m + n + 2) interpolation
points.

We need to determine a polynomial P(z) € Ty 041
with
Py)=0;y €An(2);i=12,..,m,
P(£0) =0; £ & An(2),
P"(z)=0;2 €B,(2);j=12,..,n.
Let P(z) = (z? - (®a,,(2)Q(z); where Q(z) €
nn_l.
Thus P(2) € Myinss-
The posed problem will be regular, if P(z) = 0.

Since P”(zj) = 0, we get

(2 = ¢*)an(z)Q" (2)
+2[(z7 - ¢*)an(z)
+2zja,,(2)]Q'(2)
+[(77 = ¢*)am(z) + 4zjam(2)
+ Zam(zj)]Q(zj) =0.

As zj € B,(2) € Ay (2) and ap,(2) has simple zero,
the polynomial and its derivative cannot vanish
simultaneously at the same point, we have
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2(2f = ¢*)am(2)Q' (%)
+{(# = ¢*)an(z)

+4zja,(2)}0(z) = 0.

Since Q(z) Em,—y and z; has n values, the
differential equation is given by
2(2% = {)am(2)Q'(2) +{(z* — {Han(2) +
4zay (2)}Q(2) = C1by(2),

1ay,(z) 2z
Q”*&%@+w 2

by, (2)
(22 = {Map(2)’

c
for some constant C = 71

}Q(Z) (2.2)

=C

Integrating factor of differential equation (2.2) is
given by

0(z) =exp [ {2 QZZ; + 22(2)} dz,

9(2) = (2 - (2){(1;71(2)}5-
Setn(z) = {am(z)}%

Solution of differential equation (2.2) is given by

(2@ =cf (tgp(?zb);;(t)(t)

( (z* . =2 (2) =
t2-32)n(0)bp(t)
f (t2-3%)an (©) dt,

(z% - n(2)Q(2) = Cfn(;)b(,gr) i,

C[EP0dt =0= ¢ =0,

Hence,

Q@) =0.

Corollary 2.2: Let m,n > 1, then (0,2) — PTIP on

{(@* = Dan(2), bp(2)}; £1 € Ap(2), Bu(2) S
A (2) is regular.
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