Lighting Design and Energy Simulation of a Residential House

Yogesh Varshney¹¹, R. K. Viral¹¹² and Divya Asija¹¹

¹Amity School of Engineering And Technology, Amity University Uttar Pradesh Noida, India

Keywords: Simulation, Energy-Efficient, Dwelling, Insights, Modelling.

Abstract: Building Energy Simulation is a process for assessing and analyzing the building's energy performance. Building Energy Simulation (BES) helps in to designing energy-efficient and sustainable buildings. The main objective of BES is to predict the usage of energy in a building throughout its lifecycle. According to studies, the building consumes 40% of global energy, contributing to global warming and many other environmental causes. The lighting analysis of a single-family dwelling model is the main topic of the building energy simulation study. The goal is to employ first-form modeling to assess the energy usage and lighting system performance in a representative single-family home. The lighting study considers several variables, including fixture types, lighting settings, and the use of natural sunshine. The simulation model offers insights into trends in lighting energy usage, peak demand times, and potential energy-saving solutions. The study contributes to a better knowledge of lighting efficiency in single-family homes by evaluating the energy performance of the lighting system. The research findings can help with decision-making for improving lighting design, energy-efficient technology, and control methods to improve overall energy performance in residential buildings. This paper provides helpful insights for energy-efficient lighting design and decisionmaking in the residential sector by summarising the lighting study of a single-family house model using building energy simulation.

1 INTRODUCTION

Building Energy develops, engineers, builds, and runs projects as part of its vertically integrated renewable energy business. In 2010 in Milan, Italy, Building Energy was established. The corporation launched a venture in the solar sector with the goal of geographical and technological expansion [M. Neardey, 2019].

A simulation is an ongoing replica of how a system or process might work in the actual world. Models must be used in simulations; the model reflects the essential traits or behaviours of the chosen system or process, whilst the simulation depicts the model's development through time. Computers are frequently utilised to run the simulation [L. P Chung,2019].

Commercial, residential, and industrial buildings use more than three quads of energy,

according to U.S. Energy Information Administration (Washington, DC, USA). By the year 2020, all US energy usage [Tobias Maile, 2007]. Thus, lowering energy use and creating buildings that are energy efficient is important for the development of nations. "BES aids in the optimization of designers!" evaluate a building's energy efficiency before it is built and aids in the development of extremely energy-efficient structures and the advancement of sustainability. A smart building designer mustcombine the demands for thermal and visual comfort with the environmental conditions that may vary dramatically during the year, such as air temperature, humidity, sun radiation, wind speed, and direction, etc. By simulating the building's energy performance under these situations, it is possible to find the best conditions that may vary dramatically during the year, such as air temperature, humidity, sun radiation, wind speed, and direction, etc. By simulating the

^a https://orcid.org/0009-0005-0741-7129

^bhttps://orcid.org/0000-0001-7220-2742

^{clp}https://orcid.org/0000-0003-4978-4216

building's energy performance under these situations, it is possible to find the best design options, control setups, and energy-saving measures. This information aids decision-makers in making choices on equipment selection, building envelope design, etc. It also aids in assessing the financial viability of various design options, energy-saving measures, and equipment upgrades. and improve reduced utility costs, decreased maintenance & operating costs.

A BEM program's inputs include information on a building's geometry, building materials, lighting, HVAC, refrigeration, water heating, renewable generation system configurations, component efficiency, and control techniques. It also collects information on how the building is used, such as descriptions of the lighting, plug loads, and thermostat settings as well as occupancy schedules.

1.2 Basic Principles of Energy Simulation

The energy efficiency of a specific structure and the thermal comfort of its occupants are predicted by BES tools [Tobias Maile, 2007]. We are all aware that the accuracy of the results generated by any simulation programme depends on the input data i.e. Building orientation, internal equipments loads, HVAC systems and parts, climate information, operational plans, and timetables make up the majority of the input. A BEM program's inputs include configurations, component efficiencies, and control strategies., as shown in Figure 1 which describes the complete simulation engine [Tobias Maile, 2007]. BES programmes use qualified equations and methodologies to approximate their predictions.

Figure 1: General Flow of Simulation Engine.

Category	Purpose	Source
Geographical Location	precise load calculations depending on the external environment	Weather file
Geometry Plan Section Elevation Construction	Model geometrical attributes of buildings and any site specific features (shading, reflection of trees or building)	Architectural drawings
 Wall Roof Window Overhangs 	Calculating thermal load and daylighting using model building envelope attributes	 ECBC ISHRAE CBRI ASHRAE
Daylighting and lighting • Layout • Technology and Controls	 Visual Comfort Reducing LPD Integration with daylight 	 Lighting consultant Vendors ISLE/IES
Internal load Usage Schedule People, equipment, lighting	Accurately capture sources of internal heat gains within building	 Client Energy modeller Benchmar king Data Nameplat e Data
HVAC (type and controls) • Component Specification • Control strategy • Layout and distribution	 Sizing the system Design Optimization Comfort satisfaction 	 HVAC consultant ASHRAE/I SHRAE ARI ECBC

Table 1: Necessary data for Energy Modelling [Donald R. Wulfinghoff, 2010].

1.3 Algorithm for Conduction of Building Energy Simulation

Building Energy Simulation procedure includes a number of processes to forecast a building's energy performance and pinpoint prospective upgrades. This summarizes all stage summaries, i.e.

Step 1: Data Gathering: The initial phase in the energy modelling process is to gather comprehensive data regarding the architecture, systems, and operations of the building [Garg Vishal, 2010].

Step 2: Choosing a Software Tool Consider the following aspects while choosing the appropriate tool for your project [Garg Vishal, 2010].

Step 3: Developing the energy model: Beginning the development of the energy model requires the

collection of data and the selection of a software tool [Garg Vishal, 2010].

Step 4: Reviewing and analyzing the results should include looking at things like energy usage, peak loads, comfort levels, etc [Garg Vishal, 2010].

Step 5: Refine and optimize: If the simulation does not get the desired results, then adjust the simulation's settings and repeat the procedure to see how it affects the building model [Garg Vishal, 2010].

Table 2:	Application	and Limitation	of BES.
----------	-------------	----------------	---------

S.No.	Application	Limitation
1	Energy analysis of the entire building	Uncertainty in input data
2	Studies on daylighting and natural ventilation [Rawal Rajan,2010].	Making assumptions and simplifying complex situations
3	HVAC System Design [Martina Fischer, 2007]	Time Consumption
4	Retrofit Analysis	Complexity of modelling
5 5	Building Stock Study	Lack of data availability

2 LITERATURE REVIEW

Numerous case studies have been done to examine how well lighting uses energy in various building types, such as workplaces, homes, and educational facilities. These studies demonstrate how building energy simulation can be used to observe lighting energy use and guide the development of energysaving strategies.

Here, I am using the single-family house for lighting analysis which consists of some equipment like a dishwasher, heater, television, etc., and analyzes the usage of electricity using graphs and tables.

Table 3: Literature Review.

Author(s)	Details	Remarks	Year
Donald R.	Energy	Explain the	2010
Wulfinghoff,	Simulation	Building	
Rajan Awal,	provides a	Energy	
Vishal Garg	powerful tool	Simulation	
0	for evaluating	process and	
	the energy	develop an	
	performance	energy-	
	of buildings	efficient	
	and making	building.	
	informed	0	
	design		
	decisions. It		
	allows us to		
	explore		
	different		
	strategies and		
	technologies		
	to achieve		
	energy		
	efficiency and		
	sustainability		
	sustantionity		
Joseph J.	Energy	Describe the	2006
Romm	simulation	simulation of	2000
/	software	all different	
/	allows the	loads.	
	simulation of		
	building		
	systems		
	including		
OGH	HVAC,		
	lighting, and		
	renewable		
	energy		
	integration .		
Michael	simulation	Simulation	2007
E.Casper	software	help to make	
	allows for	changes in	
	detailed	building	
	analysis of	before	
	lighting	construction.	
	systems,		
	considering		
	factors such		
	as fixture		
	types etc .		
Dikshu C.	Energy	Energy Plus	2001
Kukreja	simulation	was	
	software	developed by	
	enables	the US	
	designer to	Department	
	evaluate	of Energy.	
	different		
	lighting		
	design		
	options and		
	optimize		

	energy		
	performance		
	while		
	maintaining		
	visual		
	comfort .		
Drury B.	Building	Building	2003
Crawley	Energy	energy	
2	Simulation	simulation is	
	provides a	the compass	
	powerful tool	that points	
	for evaluating	architects and	
	the energy	engineers	
	performance	towards a	
	of buildings	greener, more	
	and making	sustainable	
	informed	future.	
	design		
	decisions. It		
	allow us to		
	explore		
	different		
	strategies and		
	technologies		
	to achieve		
	energy		
	efficiency and		
	sustainability.		
Subrato	When	Simulation	2005
Chandra	evaluating	software	
	energy	serves as the	
	retrofit	financial and	
	options,	environmental	
	energy	compass for	- Lin
	simulation	energy	
	software	retrofits,	
	provides the	pointing us in	
	valuable tool	the direction	
	for assessing	of cost	
	in the	savings and	
	potential	sustainability.	
	energy		
	savings and		
	payback		
	periods of		
	various		
1			

3 BUILDING ENERGY SIMULATION TOOLS

Computer programmes for simulating building energy use can be thoroughly analyzed using computer-based simulation software, which is designed to do this. Buildings typically employ about one-third of their total head space for lighting and improving the thermal conditions of the homes. Designers today require technologies that provide answers to highly specific questions very early in the design process. Software for simulating energy can help designers think through certain options. Additionally, designers can replicate the cost of energy in existing buildings under their current conditions and provide the thermal behavior of buildings prior to their construction. The following variable can also be calculated using software tools in addition to energy consumption modelling [Dikshu C. Kukreja,2001].

3.1 Energy Plus

Energy Plus (Version 2.1) creates a "new generation" simulation engine, seen in Figure2, by combining the best elements of the DOE-2 and BLAST energy simulation engines. Users of the programme Energy Plus may simulate the energy use of a whole building as well as model their own water and energy use. It is a text-based programme that runs on a console and reads input and output. A variety of tools are included with it, including IDF-Editor, which has a straightforward spreadsheet-like user interface for producing input files. It is a straightforward data-in, data-out programme, but it has a few graphical user interfaces to make it simpler to use. The American Department of Energy is funding the initiative[Subrato Chandra, 2005].

Energy Plus is based on an integrated (loads and systems modeling) methodology, which yields better estimates of many outcome factors, such as thermal comfort and more precise predictions of temperature in spaces. The preferred heat-balanced-based methodology of AHSRAE is used in the load calculations [Tobias Maile, 2007].

Energy Plus is based on an integrated (loads and systems modeling) methodology, which yields better estimates of many outcome factors, such as thermal comfort and more precise predictions of temperature in spaces. The preferred heat-balanced-based methodology of AHSRAE is used in the load calculations [Tobias Maile, 2007].

Figure 2: The Program Structure of Energy Plus [Tobias Maile, 2007].

Due to streamlined management schemes and idealized HVAC components, Although there are significant limitations during building operation, Energy Plus enables the flexibility and capability to be used throughout the whole life cycle of a structure.

3.2 eQuest

One of the most often utilised energy modelling tools throughout the early stages of design is eQuest. Its full name, rapid Energy Simulation Tool, inspired its moniker, and it truly is a very rapid way to do energy simulations. James J. Hirsch & Associates created the programme with assistance from the US Department of Energy. [Subrato Chandra, 2005].

The so-called Schematic Design (SDW) and Design Development Wizards (DDW) are two of the design wizards offered by eQUEST. Both depict recognisable design phases, albeit the amount of detail in each varies greatly. Data entry may be made simpler by using the default parameters of both wizards.

Figure 3: Wizards in eQUEST.

As depict in Figure 3, It is possible to switch between less-detailed wizards and more-detailed explanations of the structure. The detailed mode, which allows all accessible parameters to be set and modified in accordance with definitions found in the DOE-2 engine, is the fundamental idea behind eQUEST. Another feature of this tool is the Energy-Efficiency Measures, which permit quick differentiation of particular input parameters (such as capacity values of a coil). Almost all of the parameters that are provided in the wizard can be changed using this tool although it can only be used in SDW or DDW mode, is a comparable wizard.

It offers two options for importing CAD programme building geometry data. Both are based on gbXML, one on DWG format. Figure 4 depicts both of them.

Figure 4: Data exchange capabilities of eQUEST.

3.3 Open Studio

Open Studio is an open-source "collection of software tools to support whole building energy modeling using Energy Plus and advanced daylight analysis using Radiance." The National Renewable Energy Laboratory, a division of the United States Department of Energy, produced the project [Subrato Chandra, 2005]. Both a Command Line Interface (CLI) and a Software Development Kit (SDK) are components of the Open Studio SDK. The application programming interface (API) provided by the Open Studio SDK theoretically allows access to the Energy Plus modelling engine [Drury B. Crawley, 2003]. This interface offers a variety of advantages, including a robust, version-controlled interface, space typology abstractions that make it simpler for end users to model buildings, and language bindings in Ruby, Python, and C-Sharp that make it more accessible to users acquainted with these languages. Support for large-scale analysis, such as design optimisation, model input calibration, building stock analysis to identify buildings that are suitable for particular programmes, or prototype analysis to create typical savings figures, is one area of concentration for the Open Studio project.

T 11	4 D ' CI	·1.1:	с <u>і</u>					
Table	e 4: Review of b	unding energy so	itware tools.			• Timest	Compli	availability
Tools	Characteristi	Merits	Demerits			eps: Pre-	ance with	of user
10015	cs					defined	energy	support and
Ener	• Inputs:	Compr	• Compl			• Weath	codes and	community
gy	Extensive	ehensive	exity			er Data:	standards	
Plus	summary	modelling	• Steep			Pre-selected	• Econo	
	Output	Hourly	learning			• HVAC	mic analysis	
	s: Text,	time step	curve			: Template	and life-	
	IDF/IDD	analysis	• Comm			driven	cycle cost	
	• GUIs:	Climat	and-line			• User	optimization	
	Use 3rd	e-specific	interface			Customizati	• Detaile	
	party GUIs	simulation	• Comp			on: Limited	d energy	
	• Algorit	Parame	utational			 Copyri 	consumptio	
	hms:	tric	resource			ght:	n	
	Surface heat	simulations	requiremen			Proprietary	breakdown	
	balance.	Detaile	ts			• Langu	• Reporti	
	Zone air	d Detaile	15			age: English	ng and	
	heat	component					results	
	halance	modelling					visualizatio	
	• Timest	Thorm					n	
	ens: 1 to 60	• Interni			Ope	• Inputs:	Graphi	Learni
	minutes	anclusis			n	Customizab	cal interface	ng curve
	Weath				Stud	le	• Integra	• Plugin
	• weath	• Kenew			io	Output	tion with	dependenci
	er Data:	able energy			/	s [.] Versatile	Energy Plus	es for
	Hourly of	integration				• GUIs:	• Compo	certain
	sub-nouny	• Open-				Graphical	nent-based	features
	• User	source and		7			modeling	• Limite
	Customizati	extensible			_	hms:	Darama	d Linne
	OII: EMIS	Large user	/			Scripting	tric	availability
SC	(Energy	community	rechr	JO		Timost	simulations	of pre-
	Managemen					• Timest	• Whole	defined
	t System),					ep. Plexible	• Whole-	templates
	External					• weath	onorgy	
						Er data:	simulation	d user
	• Copyri					Extensive		community
	ght: Open					• HVAC	• HVAC	and support
	source					: Detailed	design and	compared
	• Langu					• User	ontimization	to larger
	age: Fortran					customizati		software
eQU	• Inputs:	• Templa	• Limite			on:	• Daying	platforms
EST	Template	te-based	d flexibility			Extensible	nung and	plationins
	based	interface	• Relian			• Langua	snading	
	Output	Whole-	ce on pre-			ge:	anarysis	
	s:	building	defined			Ruby	• Reporti	
	Standardize	energy	templates				ng and	
	d	simulation	• User				results	
	• GUIs:	• HVAC	interface				visualizatio	
	Template	system	may not be				n 	
	based	analysis and	intuitive for				• Workfl	
	Algorit	optimization	complex				ow	
	hms:	• Parame	simulations				automation	
	Calculation	tric	• Limite					
	based	simulations	d					

v of buildin ft. ara taala Table 4. Davia

Table 5: Site and Source Energy Data.

4 RESULTS AND ANALYSIS

The file which is used for simulation whose name is single-family house, I referred the file from Energy Plus Software basics file [Joseph J. Romm, 2006].

In this section, we will analyze only the lighting load case in an input IDF file whose name is Single Family House.

In this house, we define building construction, geometry, schedule, etc. Here, we use the refrigerator, dishwasher, fans, etc. In this file, we define many parameters but discuss only parameters responsible for lighting load. In this simulation, we use the weather file of New Delhi which is available on the Energy Plus official website.

Now, we edit the input IDF file of the building by clicking the edit IDF Editor. After editing the file, click on simulate button and the simulation screen is pop- up on the screen.

Now, we use pictures and graphs of data which we get after simulation in HTML form from HTML file as shown in Tables 5,6,7 and Figure 5,6,7.

Here, Table 5 as well as Figure 5 shows the data which come after the simulation of the domestic building which explains how much site and source energy is used in this domestic building.

Total site energy in a building refers to the complete energy consumption encompassing all energy sources and end uses associated with the building and its operations. It includes the energy used for heating, cooling, lighting, plug loads, and other building systems.

Net site energy in a building refers to the energy consumed by the building from external sources, minus any energy generated on-site through renewable or alternative energy systems. It represents the actual energy that needs to be supplied from external sources to meet the building's energy demands.

Net source energy in a building refers to the total energy consumed by the building, accounting for both the energy consumed on-site and the energy required for the production, transmission, and distribution of the energy from primary sources.

Total source energy in a building is the total amount of energy used during the course of the building's full life cycle, including the energy utilized inside the structure as well as the energy needed for the extraction, processing, and delivery of all energy sources.

This data explain the total energy usage of total site energy, net site energy, total source energy, and net source energy in this domestic building.

		0.				
	Total	Energy Per	Energy Per			
	Energy	Total	Conditioned			
	[kBtu]	Building	Building Area			
		Area	[kBtu/ft2]			
		[kBtu/ft2]				
Total	4118.24	1.15	1.73			
Site						
Energy						
0.7						
Net Site	4118.24	1.15	1.73			
Energy						
Total	13042.48	3.66	5.49			
Source						
Energy						
Net	13042.48	3.66	5.49			
Source						
Energy						

Figure 5: Relation b/w Site and Source Energy.

Table 6: Interior Lighting Load Data.

	Zone Name	Lighti ng Power Densit y [Btu/h -ft2]	Total Power [Btu/h]	Full Load Hour s/We ek [hr]	Cons umpt ion [kW h]
LIVI NG HAR DWI RED	LIVI NG_ UNIT 1	0.3335	792.7 3	58.88	60.58

LIG					
HTI					
NG1					
LIVI					
NG					
PLU C N	TINT				
UG	NG				
HTI	INU_	0.151	360.4		
NG1	1	7	9	58.88	27.55
Interi		-	-		
or					
Light					
ing		0.242	1153.		
Total		6	22		88.13
	INT	FERIOR	LIGH	FING L	LOAD
1400					
1200		1153,22			
1000		T			
1000		792 73			
800		172,75			
600	26				
400	3) L.	360,49			
400			140		
200			100	88 88.1	3
2	0,252	5	J0,	00 2735	19
0					

Figure 6: Interior Lighting Load.

Table 7.	Exterior	Lighting	Load Data
radic /.	LAIGHOI	Lighting	Loau Data.

	Tota 1 Watt s	Full Load Hours/We ek [hr]	Consumpti on [kWh]
EXTERIOR- LIGHTS_UNI T1	43.2 4	84	16.09

Figure 7: Exterior Lighting Load.

5 CONCLUSION

The lighting case analysis showed that building energy simulation is a useful tool for assessing and improving the energy performance of buildings. Energy simulation software was used in the lighting case analysis to provide a thorough evaluation of the energy usage, effectiveness, and effects of the lighting system on the entire facility.

The investigation emphasized how crucial it is to take lighting design and control strategies into account early on in the building design process. It was possible to determine the most energy-efficient lighting systems while preserving the desired illumination quality and occupant comfort by modelling various scenarios.

In conclusion, the building energy simulation carried out by the software Energy Plus using graphs depicting the lighting loads in residential structures offers important insights into the patterns of lighting energy use. This analysis provides a solid basis for making judgements on lighting design, energyefficient lighting systems, and methods for improving the efficiency of energy use in residential buildings. We can design sustainable and energy-efficient structures using the simulation.

REFERENCES

- Building Energy. (2021, September 12). Wikipedia. https://en.wikipedia.org/wiki/Building_Energy
- Wikipedia Contributors. (2019, January 26). Simulation. Wikipedia; Wikimedia Foundation. https://en.wikipedia.org/wiki/Simulation
- Gao, Hao & Koch, Christian & Wu, Yupeng. (2019). Building Information Modelling based Building Energy Modelling: A review. Applied Energy. 238. 320-343. 10.1016/j.apenergy.2019.01.032.
- Maile, Tobias & Fischer, Martin &Bazjanac, Vladimir. (2007). Building Energy Performance Simulation Tools –a Life-Cycle and Interoperable Perspective. Facil. Eng. (CIFE) Working Pap.. 107.
- EnErgyConsErvation Building CodE tip shEEt Building lighting dEsign E Source Technology Atlas Series Lighting Energy Efficiency Manual -Donald R.
- Wulfinghoff Alliance to Save Energy USAID ECO-III Project International Resources Group. (n.d.). Retrieved October 8, 2023, from https://kredl.karnataka.gov.in/storage/pdf files/EC/Building%20Lighting%20Design.pdf
- filipeboni. (2023, April 3). How to Conduct Energy Modeling: A Comprehensive Guide For Building Professionals. UGREEN. https://ugreen.io/how-to conduct-energy-modeling-a-comprehensive-guide-for building-professionals/
- IEA SHC // Task 21 // IEA SHC // Task 21. (n.d.). Task21.Iea-Shc.org. Retrieved October 8, 2023, from https://task21.iea-shc.org/
- Building EQ. (n.d.). Www.ashrae.org. Retrieved October 8, 2023, from https://www.ashrae.org/technical resources/building-eq
- Tronchin, L., & Fabbri, K. (2008). Energy performance building evaluation in Mediterranean countries: Comparison between software simulations and operating rating simulation. *Energy and Buildings*, 40(7), 1176 1187. https://doi.org/10.1016/j.enbuild.2007.10.012
- Energy and Thermal Performance Tools Archtoolbox. (n.d.). Www.archtoolbox.com. Retrieved October 8, 2023, from https://www.archtoolbox.com/energy-and-thermal performance-tools/ *OpenStudio*. (n.d.). Openstudio.net. https://openstudio.net/