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Abstract: This paper proposes a GRU network training prediction model to solve the problem of the difficulty of 

separating time series in Spark framework, so that the abnormal prediction model of Spark system can be 

realized in big data frameworks. Task is used to separate log data, SwissLog is used to transform it into a 

vector, and multiple attention mechanisms are used to deepen the repeated log series (X. Li, Li Xiaoyun). To 

begin with, this paper solves the problem that Spark log data workflows are difficult to separate due to multi-

thread output, and then log data cannot be converted into vectors. The robustness of structured data of log 

sequence conversion is further improved by optimizing and modifying SwissLog prefix tree and replacing it 

with Jaccard similarity algorithm, which improves anomaly prediction accuracy. To train the normal 

prediction model, the repeated time series is taken as the incremental dimension, and a GRU network with 

multiple attention mechanisms is used. As a result, the operation efficiency and model accuracy are improved, 

and equipment memory requirements are greatly reduced when training a large number of data sets. Based on 

the results presented in this paper, the GRU model for repetitive log sequences with multi-attention 

mechanism achieves the highest accuracy of 86.77% in the general public Spark data set from LogHub, and 

the accuracy and performance are 1.16 percent higher than the latest benchmark model LSTM, indicating that 

the proposed model can enhance anomaly detection accuracy and robustness effectively. 

1 INTRODUCTION 

The reliability of big data systems has become 

increasingly important as large-scale complex 

systems penetrate all aspects of social life. Reliability 

can be improved by analyzing tens of thousands of 

logs generated by big data systems. Detecting system 

anomalies can be achieved by mining, analyzing, and 

automatically identifying system logs. 

Log anomaly analysis mainly refers to the 

analysis of system-generated logs to detect possible 

abnormal behaviors. Log anomaly analysis can help 

improve the security and stability of the system, and 

avoid potential risks and losses by finding system 

problems early. For example, log anomaly analysis on 

the server can be used to detect abnormal behaviors 

such as unauthorized access behavior and malware 

attacks. In the security field, log anomaly analysis is 

also an important part of intrusion detection system. 

However, it is difficult for programmers to control the 

system manually because of the large amount of data 

and chaotic relations in the logs. With the 

popularization and application of large-scale complex 

systems, it is difficult for operators and programmers 

to quickly find the problems in the system through 

naked eye monitoring or simple keyword retrieval. 

However, finding problems through naked eye 

monitoring or simple keyword search requires a lot of 

learning costs, and the abnormal problems of a 

complex system often involve multiple problems. 

Therefore, how to make the system monitor itself 

according to the logs generated by the system to 

realize the observability of the system has become a 

very important research direction in the current 

industry development. 

Analyzing logs for anomalies refers primarily to 

detecting possible abnormal behavior in system logs. 

By detecting system problems early, log anomaly 

analysis can improve the security and stability of the 

system. Log anomaly analysis on the server, for 

instance, can be used to detect unauthorized access 

behavior and malware attacks. Log anomaly analysis 

is also an important part of intrusion detection 

systems in the security field. Due to the large amount 

of data and chaotic relationships in the logs, it is 

difficult for programmers to control the system 

manually. Large-scale complex systems are 

becoming increasingly popular, making it difficult for 
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operators and programmers to identify problems 

quickly with naked eye monitoring or simple 

keyword searches. However, finding problems 

through naked eye monitoring or simple keyword 

searches involves a lot of learning costs, and 

abnormal problems of complex systems often involve 

multiple problems. As a result, making the system 

monitor itself using the logs generated by the system 

in order to realize the observability of the system has 

become a very important research direction. 

2 RELATED WORK 

Currently, log anomaly detection is mostly based on 

rules. Check the log for violations of the known log 

patterns and rules, so that abnormal logs can be found. 

Sakhnini, S, et al. proposed a rule-based anomaly 

detection algorithm for processing Web server logs 

(Sakhnini, S., 2019). This rule-based anomaly 

detection algorithm was tested on two real Web 

server log files, and compared with other common 

anomaly detection algorithms based on machine 

learning and statistics. Its disadvantages include the 

need to define rules manually and its inability to 

handle uncertain logs. In order to detect abnormal 

logs, the number of occurrences and expected values 

are counted according to the statistical method. 

Accordingly, Hou, M., proposed a statistical anomaly 

detection method based on normal distribution 

models and Z-score statistics (Hou, M., 2019), 

which detects abnormal behavior by comparing the 

deviation between the observed and expected values. 

Behavioral analysis has the disadvantage that it 

cannot handle dynamically changing log types and 

distributions of data. It compares and analyzes logs 

according to the system's normal behavior pattern in 

order to detect abnormal behavior. As an example, N. 

Feng et al. propose a method for detecting abnormal 

events in large-scale logs based on deep 

reinforcement learning (N. Feng, 2020). Under the 

condition of ensuring that the correct rate is achieved, 

this method uses deep reinforcement learning 

algorithm to make decisions and minimize the false 

alarm rate. It is suitable for dynamically adjusting 

systems and services, but it requires manually 

defining behavior patterns and feature extraction 

techniques. LogST is a practical log-based anomaly 

detection method proposed by Mingyang Zhang and 

others (L. Forgor, 2019). Using the SBERT model, 

a GRU model for anomaly detection is constructed by 

considering the word order relationship in log events. 

The detection accuracy of LogST is stable when there 

are sufficient normal logs and a small number of 

normal logs are marked. For multi-task log output like 

Spark, it is difficult to separate logical time series; 

Traditional prediction models lack special methods 

for handling repeated sequences. 

On stable log data, log-based anomaly detection 

has achieved satisfactory results. As a result of these 

studies, the algorithm's performance has improved 

greatly, making anomaly detection more accurate. 

Research has been limited to optimizing the 

algorithm and improving the accuracy of the model, 

ignoring the fact that logs are often output in parallel 

by multiple threads and workflows in real systems. As 

a result, logs cannot be used directly for anomaly 

analysis. This paper focuses on how to separate and 

convert log data into time series with actual logical 

relationships for log process analysis. 

 

 

Figure 1. Master design drawing. 

3 THIS MODEL 

Log anomaly prediction based on machine learning is 

divided into two parts: log parsing and anomaly 

detection. The unstructured log is transformed into 

structured log, the log template is extracted, and 

finally the log time series vector is resolved. The 

second part of this paper uses machine learning to 

extract the characteristics of log time series and build 

a model to identify abnormal log events. Based on the 

existing log data, the model can learn the normal log 

event pattern and identify abnormal events. 

According to figure 1, this paper analyzes log data 

using SwissLog log parsing and sentiment 

embedding; Secondly, a Spark log is separated from 

the workflow and transformed into a time series using 

Task as a benchmark (Z. Liu, 2021). A model is 
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constructed to identify abnormal log events based on 

a Transformer-GRU network model. 

3.1 Log Parsing Module of SwissLog 

SwissLog extracts multiple templates by tagging, 

lexicography, and clustering historical log data using 

a novel log parsing method. Instead of event IDs, 

these templates are saved as natural sentences. Use a 

sliding window to construct a log sequence called 

"session" by linking these log statements with the 

same identifier. The log sequence is then converted 

into semantic and time information. 

Generally, log statements are readable, and most 

of the words can be found in dictionaries. To parse 

logs, you can use a dictionary-based method. By 

using this method, the log statement is divided into a 

combination of valid and invalid words. In the case of 

a dictionary, a word divided from the log that exists 

in the dictionary is a valid word. A valid word in a log 

can be formed by the collection of valid words. 

"Launching container container _ 144800611297 _ 

0138 _ 01 _ 0000-10 for on host meso-slave-18", the 

log will be divided into seven words, namely, 

launching, container, and container _ 144800611297 

_ 018. Figure 2 shows the results of searching these 

tags in the dictionary to get a set of valid words 

{"launching", "container", "for", "on" and "host"}. 

 

Figure 2. Log Word Segmentation Process. 

The occurrence times of words in the valid word 

set should be recorded. Merging the two logs into one 

template is only possible if the valid words and their 

occurrence times are identical in both logs. The public 

part of the log is the constant part, while the variable 

part is the variable part of the log of the same 

template. Using the longest common subsequence 

algorithm, replace the variable part with *. Let's say 

there are two log statements in a cluster, A and B. As 

follows: 

Table 1. A and B log words. 

Journal Log statement 

A 

{"Launching"、"container"、

"container_1448006111297_0138_01_000010"、"for"、

"on"、"host"、"mesos-slave-18"} 

B 

{"Launching"、"container"、

"container_1448006111297_0138_01_000010"、"for"、

"on"、"host"、"mesos-slave-18"} 

 

Since A and B have the longest common 

subsequence ("launching", "container", "for", "on", 

and "host", the shielding result is "launching 

container * of for on host *".The variable contains 

only valid words. In e4, the variable part is admin, and 

in e5, the variable part is root. Due to the fact that 

these two words are valid words, they will be divided 

into two different templates. SwissLog solves this 

problem using a prefix tree. However, the prefix tree 

can only solve the problem that two different 

templates are divided into different templates because 

of different suffix effective words, not in actual 

situations (Binlong Zhang, Fuhong Tang).  

The following two templates are displayed: 

Table 2. Log template. 

Journal Log template 

T1 
Block <*> stored as bytes in memory 

(estimated size <*>, free <*>) 

T2 
Block <*> stored as values in memory 

(estimated size <*>, free <*>) 

 

Basically, there is no difference in the actual 

business level between log templates T1 and T2 when 

it comes to storing data in memory. Because the 

effective words are in the middle, log templates T1 

and T2 cannot solve this kind of merging problem. 

The paper proposes a Jaccard similarity 

template merging algorithm based on information 

entropy to solve the above problems (T. Kongsin, 

2020). To implement the attention mechanism, the 

algorithm introduces the activation function tanh, 
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focuses on the important suffix information, and 

merges the secondary log templates. For processing, 

two log templates that reach the similarity threshold 

are merged into one log template (O. Ertl, 2022). 

The Jaccard similarity index measures the similarity 

between two sets. In Jaccard similarity, two sets are 

intersected and their union ratio is considered. The 

definition of Jaccard similarity is as shown in 

Formula 1 assuming it is a valid word in the 

corresponding position of two log templates. 

Jaccard(T1𝑘, T2𝑘) =
|T1𝑘 ∩ T2𝑘| 

|T1𝑘 ∪ T2𝑘|
         (1) 

The formula for calculating the similarity of two 

log templates is shown in Formula 3, where s is the 

similarity (0~1) of input templates T1 and T2, and 

Jaccard((𝑡1, 𝑡2)𝑘) is used to calculate the similarity 

of each corresponding position of the log template. In 

the absence of a template string at that position, return 

Formula 2 directly and finally use tanh activation will 

be used to multiply and quadrature (U. Srinivasarao, 

2022). 

𝑆(𝑇1, 𝑇2)𝑘 =
𝑀𝑎𝑥(𝐿𝑒𝑛(𝑇1),𝐿𝑒𝑛(𝑇2))−1

𝑀𝑎𝑥(𝐿𝑒𝑛(𝑇1),𝐿𝑒𝑛(𝑇2))
      (2) 

𝑆(𝑇1, 𝑇2) = ∏ (tanh(Jaccard(𝑡1, 𝑡2)𝑘)𝑛
𝑘=1 )   (3) 

 

When that similarity 𝑆(T1,T2) of the two log 

template of t1 and t2 reaches a threshold value, the 

two log templates are merged into one log template, 

whereby t1 and t2 can be used as a unified log 

template; When the similarity s between pairwise is 

greater than the threshold, the unified log template is 

taken from the template with the highest pairwise 

direct similarity sum. 

3.2 Word2vector Spark Processing and 
Workflow Module 

Log Workflow abstracts log data into an event stream, 

which is processed, filtered, and transformed in time. 

Many steps are involved in this process, such as 

collection, storage, cleaning, conversion, and 

analysis. Machine learning can be applied to log 

workflows if each log is converted into a vector. 

The log anomaly prediction model is based on 

one workflow because log data generated by each 

application system is often output in parallel. A log 

file, however, is often composed of several 

workflows. Due to this, it is very important to deal 

with multiple mixed workflows in a way that makes 

them conform to the characteristics of time series. 

The Spark workflow model separates Spark mixed 

log sequence data. 

 

Based on the data set structure of Log Hub Spark 

in Figure 3, the highlighted part accounts for the 

majority of all logs. According to the figure, Spark 

generally reports errors due to running calculation 

code and data errors in Task code. The following 

table illustrates how a Task life cycle can often be 

viewed as a time series: 

 
17/06/09 20:10:45 INFO executor.Executor: Running task 1.0 in stage 0.0 (TID 0) 

17/06/09 20:10:45 INFO executor.Executor: Running task 2.0 in stage 0.0 (TID 2) 

17/06/09 20:10:45 INFO broadcast.TorrentBroadcast: Started reading broadcast 

variable 9 

17/06/09 20:10:45 INFO storage.MemoryStore: Block broadcast_9_piece0 stored as 

bytes in memory (estimated size 5.2 KB, free 5.2 KB) 

17/06/09 20:10:45 INFO broadcast.TorrentBroadcast: Reading broadcast variable 9 

took 160 ms 

17/06/09 20:10:46 INFO storage.MemoryStore: Block broadcast_9 stored as values in 

memory (estimated size 8.8 KB, free 14.0 KB) 

... 

... 

... 

17/06/09 20:10:48 INFO executor.Executor: Finished task 2.0 in stage 0.0 (TID 3). 

2703 bytes result sent to driver 

17/06/09 20:10:48 INFO executor.Executor: Finished task 1.0 in stage 0.0 (TID 1). 

2703 bytes result sent to driver 

Using Task as a workflow separation standard, 

however, often includes other redundant logs, 

including other Tasks coupled with the target Task, 

which is a time series. It is necessary to set a threshold 

or degree of completion to terminate the workflow 

based on Running task 1.0 as the workflow start and 

Finished task 1.0 as the workflow end. When 

separating a workflow, if the separated workflow log 

includes Warnings, Error levels, or abnormal errors, 

then mark the workflow as abnormal, otherwise mark 

it as normal. 

 

 

Figure 3. LOGHUB SPARK data set structure. 
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Figure 4. Architecture diagram of anomaly detection model. 

3.3 GRU Anomaly Detection Module of 
Self-Attention Mechanism 

By combining the powerful global feature extraction 

capabilities of Transformer and the powerful 

sequence feature extraction abilities of circular 

models, this paper proposes a Transformer-GRU (T-

GRU), which combines the GRU and Transformer 

structures, and applies it to log a nomaly detection 

(Haoyi Zhou, Shitao Wang). In this paper, it is 

compared with LSTM, LSTM, and GRU. As a result 

of the model, good results have been achieved. 

As shown in the diagram below, the model 

architecture is as follows: 

SwissLog parsing and workflow time series 

conversion are followed by mapping the log data into 

a continuous vector representation, and the output 

encodes each layer's position information (G. 

Mengrong, 2022). 

Each position is represented by a special encoding 

vector in Positional Encoding. A sine and a cosine 

coding vector is made up of sine and cosine functions, 

and each position is a unique coding vector. As a 

result, the Transformer model is able to recognize 

words or symbols in different positions and determine 

their positional relationship (J. -H. Wang, 2022). 

       GRU acts as a decoder to decode and output, and 

the output is linearly transformed to produce the final 

results based on the encoded information input into 

Transformer Encoder according to the time window 

for encoding (S. Dutta, N. Dhingra). 

4 EXPERIMENT AND RESULT 

ANALYSIS 

4.1 Experimental Environment and 
Data Set 

Python version 3.9 is used to program the code in this 

paper, based on PytorchV1.10.1 deep learning 

framework. A GTX 3090Ti graphics card was used in 

an experimental environment with Ubuntu22 as the 

operating system. 

       Specifically, the Spark data set provided in 

LogHub is aggregated and collected in a laboratory 

environment that contains 32 physical computers and 

comes from the common public data set of LogHub 

intelligent log analysis. At the machine level, log data 

is aggregated, and it exceeds 2 GB in size. As the data 

set has not been manually processed, it contains raw 

data, including abnormal application records. As 

shown in Table 1, this specific data set contains the 

following information: 

Table 3. LogHub Spark Data Set. 

Dataset 
Number of Abnormal 

workflows 

Number of normal 

workflows 

Training 

set 
- 820895 

Test set 3745 204969 
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4.2 Experimental Parameter Setting 

This paper embeds the 64-dimensional word2vector 

vector initialization word, and all weight parameters 

are initialized uniformly. Adam is selected as the 

optimizer for the hidden layer with a dimension of 64. 

Use a learning rate of 0.001, a random inactivation 

parameter of 0.01, and a batch size of 256. A random 

initialization of 100 times was performed, and the 

results of the average of those 100 times were taken 

as the final results. Multiple dimensions are used to 

evaluate the effectiveness and robustness of the 

experimental results, including accuracy, recall, and 

F1 value. 

4.3 Experimental Structure Analysis 

In Table 2, experimental results demonstrate that the 

performance of this method is superior to that of other 

comparable models, providing evidence for its 

effectiveness. Using two network models to capture 

semantic data from multiple directions, this paper 

successfully reduces the gradient of model training 

data by analyzing the SwissLog log and separating 

the log workflow. This also improves the training 

effect and efficiency, and eliminates the problem of 

overfitting. 

Table 4. Comparison of experimental effects 

Model name Accuracy/% Recall rate/% F1 value 

LSTM 85.61 78.54 84.51 

GRU 

TransformerGRU 

84.10 

86.77 

76.91 

81.39 

82.86 

86.01 

5 CONCLUSION 

Several studies have been conducted on the text 

classification of traditional texts, but little research 

has been conducted on the text classification of 

update logs. Update logs contain a great deal of 

functional and security information, so they are 

valuable for future security research and topic 

annotation. In order to improve SwissLog's parsing 

logs based on the characteristics of updating logs, we 

propose a new TransformerGRU network model and 

develop a new workflow for log serialization 

preprocessing that is more efficient and accurate. 

Furthermore, the self-attention model is used to 

balance different log key data sets with a high degree 

of quality, which further enhances the classification 

effect. Experiments have demonstrated that this 

method is highly accurate and efficient for classifying 

objects. 
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