
An Anomaly Prediction of Spark Log Based on Self-Attention GRU

Network

Yanyu Gong, Xinjiang Chen, Xiaoli Zhang, Haotian Xu, Xue Zhang and Haifeng Wang*
Linyi University, Linyi, China

Keywords: Spark, Log Anomaly Prediction, Multiple Attention, GRU, Transformer.

Abstract: This paper proposes a GRU network training prediction model to solve the problem of the difficulty of

separating time series in Spark framework, so that the abnormal prediction model of Spark system can be

realized in big data frameworks. Task is used to separate log data, SwissLog is used to transform it into a

vector, and multiple attention mechanisms are used to deepen the repeated log series (X. Li, Li Xiaoyun). To

begin with, this paper solves the problem that Spark log data workflows are difficult to separate due to multi-

thread output, and then log data cannot be converted into vectors. The robustness of structured data of log

sequence conversion is further improved by optimizing and modifying SwissLog prefix tree and replacing it

with Jaccard similarity algorithm, which improves anomaly prediction accuracy. To train the normal

prediction model, the repeated time series is taken as the incremental dimension, and a GRU network with

multiple attention mechanisms is used. As a result, the operation efficiency and model accuracy are improved,

and equipment memory requirements are greatly reduced when training a large number of data sets. Based on

the results presented in this paper, the GRU model for repetitive log sequences with multi-attention

mechanism achieves the highest accuracy of 86.77% in the general public Spark data set from LogHub, and

the accuracy and performance are 1.16 percent higher than the latest benchmark model LSTM, indicating that

the proposed model can enhance anomaly detection accuracy and robustness effectively.

1 INTRODUCTION

The reliability of big data systems has become

increasingly important as large-scale complex

systems penetrate all aspects of social life. Reliability

can be improved by analyzing tens of thousands of

logs generated by big data systems. Detecting system

anomalies can be achieved by mining, analyzing, and

automatically identifying system logs.

Log anomaly analysis mainly refers to the

analysis of system-generated logs to detect possible

abnormal behaviors. Log anomaly analysis can help

improve the security and stability of the system, and

avoid potential risks and losses by finding system

problems early. For example, log anomaly analysis on

the server can be used to detect abnormal behaviors

such as unauthorized access behavior and malware

attacks. In the security field, log anomaly analysis is

also an important part of intrusion detection system.

However, it is difficult for programmers to control the

system manually because of the large amount of data

and chaotic relations in the logs. With the

popularization and application of large-scale complex

systems, it is difficult for operators and programmers

to quickly find the problems in the system through

naked eye monitoring or simple keyword retrieval.

However, finding problems through naked eye

monitoring or simple keyword search requires a lot of

learning costs, and the abnormal problems of a

complex system often involve multiple problems.

Therefore, how to make the system monitor itself

according to the logs generated by the system to

realize the observability of the system has become a

very important research direction in the current

industry development.

Analyzing logs for anomalies refers primarily to

detecting possible abnormal behavior in system logs.

By detecting system problems early, log anomaly

analysis can improve the security and stability of the

system. Log anomaly analysis on the server, for

instance, can be used to detect unauthorized access

behavior and malware attacks. Log anomaly analysis

is also an important part of intrusion detection

systems in the security field. Due to the large amount

of data and chaotic relationships in the logs, it is

difficult for programmers to control the system

manually. Large-scale complex systems are

becoming increasingly popular, making it difficult for

Gong, Y., Chen, X., Zhang, X., Xu, H., Zhang, X. and Wang, H.
An Anomaly Prediction of Spark Log Based on Self-Attention GRU Network.
DOI: 10.5220/0012285100003807
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2023), pages 415-421
ISBN: 978-989-758-677-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

415

operators and programmers to identify problems

quickly with naked eye monitoring or simple

keyword searches. However, finding problems

through naked eye monitoring or simple keyword

searches involves a lot of learning costs, and

abnormal problems of complex systems often involve

multiple problems. As a result, making the system

monitor itself using the logs generated by the system

in order to realize the observability of the system has

become a very important research direction.

2 RELATED WORK

Currently, log anomaly detection is mostly based on

rules. Check the log for violations of the known log

patterns and rules, so that abnormal logs can be found.

Sakhnini, S, et al. proposed a rule-based anomaly

detection algorithm for processing Web server logs

(Sakhnini, S., 2019). This rule-based anomaly

detection algorithm was tested on two real Web

server log files, and compared with other common

anomaly detection algorithms based on machine

learning and statistics. Its disadvantages include the

need to define rules manually and its inability to

handle uncertain logs. In order to detect abnormal

logs, the number of occurrences and expected values

are counted according to the statistical method.

Accordingly, Hou, M., proposed a statistical anomaly

detection method based on normal distribution

models and Z-score statistics (Hou, M., 2019),

which detects abnormal behavior by comparing the

deviation between the observed and expected values.

Behavioral analysis has the disadvantage that it

cannot handle dynamically changing log types and

distributions of data. It compares and analyzes logs

according to the system's normal behavior pattern in

order to detect abnormal behavior. As an example, N.

Feng et al. propose a method for detecting abnormal

events in large-scale logs based on deep

reinforcement learning (N. Feng, 2020). Under the

condition of ensuring that the correct rate is achieved,

this method uses deep reinforcement learning

algorithm to make decisions and minimize the false

alarm rate. It is suitable for dynamically adjusting

systems and services, but it requires manually

defining behavior patterns and feature extraction

techniques. LogST is a practical log-based anomaly

detection method proposed by Mingyang Zhang and

others (L. Forgor, 2019). Using the SBERT model,

a GRU model for anomaly detection is constructed by

considering the word order relationship in log events.

The detection accuracy of LogST is stable when there

are sufficient normal logs and a small number of

normal logs are marked. For multi-task log output like

Spark, it is difficult to separate logical time series;

Traditional prediction models lack special methods

for handling repeated sequences.

On stable log data, log-based anomaly detection

has achieved satisfactory results. As a result of these

studies, the algorithm's performance has improved

greatly, making anomaly detection more accurate.

Research has been limited to optimizing the

algorithm and improving the accuracy of the model,

ignoring the fact that logs are often output in parallel

by multiple threads and workflows in real systems. As

a result, logs cannot be used directly for anomaly

analysis. This paper focuses on how to separate and

convert log data into time series with actual logical

relationships for log process analysis.

Figure 1. Master design drawing.

3 THIS MODEL

Log anomaly prediction based on machine learning is

divided into two parts: log parsing and anomaly

detection. The unstructured log is transformed into

structured log, the log template is extracted, and

finally the log time series vector is resolved. The

second part of this paper uses machine learning to

extract the characteristics of log time series and build

a model to identify abnormal log events. Based on the

existing log data, the model can learn the normal log

event pattern and identify abnormal events.

According to figure 1, this paper analyzes log data

using SwissLog log parsing and sentiment

embedding; Secondly, a Spark log is separated from

the workflow and transformed into a time series using

Task as a benchmark (Z. Liu, 2021). A model is

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

416

constructed to identify abnormal log events based on

a Transformer-GRU network model.

3.1 Log Parsing Module of SwissLog

SwissLog extracts multiple templates by tagging,

lexicography, and clustering historical log data using

a novel log parsing method. Instead of event IDs,

these templates are saved as natural sentences. Use a

sliding window to construct a log sequence called

"session" by linking these log statements with the

same identifier. The log sequence is then converted

into semantic and time information.

Generally, log statements are readable, and most

of the words can be found in dictionaries. To parse

logs, you can use a dictionary-based method. By

using this method, the log statement is divided into a

combination of valid and invalid words. In the case of

a dictionary, a word divided from the log that exists

in the dictionary is a valid word. A valid word in a log

can be formed by the collection of valid words.

"Launching container container _ 144800611297 _

0138 _ 01 _ 0000-10 for on host meso-slave-18", the

log will be divided into seven words, namely,

launching, container, and container _ 144800611297

_ 018. Figure 2 shows the results of searching these

tags in the dictionary to get a set of valid words

{"launching", "container", "for", "on" and "host"}.

Figure 2. Log Word Segmentation Process.

The occurrence times of words in the valid word

set should be recorded. Merging the two logs into one

template is only possible if the valid words and their

occurrence times are identical in both logs. The public

part of the log is the constant part, while the variable

part is the variable part of the log of the same

template. Using the longest common subsequence

algorithm, replace the variable part with *. Let's say

there are two log statements in a cluster, A and B. As

follows:

Table 1. A and B log words.

Journal Log statement

A

{"Launching"、"container"、

"container_1448006111297_0138_01_000010"、"for"、

"on"、"host"、"mesos-slave-18"}

B

{"Launching"、"container"、

"container_1448006111297_0138_01_000010"、"for"、

"on"、"host"、"mesos-slave-18"}

Since A and B have the longest common

subsequence ("launching", "container", "for", "on",

and "host", the shielding result is "launching

container * of for on host *".The variable contains

only valid words. In e4, the variable part is admin, and

in e5, the variable part is root. Due to the fact that

these two words are valid words, they will be divided

into two different templates. SwissLog solves this

problem using a prefix tree. However, the prefix tree

can only solve the problem that two different

templates are divided into different templates because

of different suffix effective words, not in actual

situations (Binlong Zhang, Fuhong Tang).

The following two templates are displayed:

Table 2. Log template.

Journal Log template

T1
Block <*> stored as bytes in memory

(estimated size <*>, free <*>)

T2
Block <*> stored as values in memory

(estimated size <*>, free <*>)

Basically, there is no difference in the actual

business level between log templates T1 and T2 when

it comes to storing data in memory. Because the

effective words are in the middle, log templates T1

and T2 cannot solve this kind of merging problem.

The paper proposes a Jaccard similarity

template merging algorithm based on information

entropy to solve the above problems (T. Kongsin,

2020). To implement the attention mechanism, the

algorithm introduces the activation function tanh,

An Anomaly Prediction of Spark Log Based on Self-Attention GRU Network

417

focuses on the important suffix information, and

merges the secondary log templates. For processing,

two log templates that reach the similarity threshold

are merged into one log template (O. Ertl, 2022).

The Jaccard similarity index measures the similarity

between two sets. In Jaccard similarity, two sets are

intersected and their union ratio is considered. The

definition of Jaccard similarity is as shown in

Formula 1 assuming it is a valid word in the

corresponding position of two log templates.

Jaccard(T1𝑘, T2𝑘) =
|T1𝑘 ∩ T2𝑘|

|T1𝑘 ∪ T2𝑘|
 (1)

The formula for calculating the similarity of two

log templates is shown in Formula 3, where s is the

similarity (0~1) of input templates T1 and T2, and

Jaccard((𝑡1, 𝑡2)𝑘) is used to calculate the similarity

of each corresponding position of the log template. In

the absence of a template string at that position, return

Formula 2 directly and finally use tanh activation will

be used to multiply and quadrature (U. Srinivasarao,

2022).

𝑆(𝑇1, 𝑇2)𝑘 =
𝑀𝑎𝑥(𝐿𝑒𝑛(𝑇1),𝐿𝑒𝑛(𝑇2))−1

𝑀𝑎𝑥(𝐿𝑒𝑛(𝑇1),𝐿𝑒𝑛(𝑇2))
 (2)

𝑆(𝑇1, 𝑇2) = ∏ (tanh(Jaccard(𝑡1, 𝑡2)𝑘)𝑛
𝑘=1) (3)

When that similarity 𝑆(T1,T2) of the two log

template of t1 and t2 reaches a threshold value, the

two log templates are merged into one log template,

whereby t1 and t2 can be used as a unified log

template; When the similarity s between pairwise is

greater than the threshold, the unified log template is

taken from the template with the highest pairwise

direct similarity sum.

3.2 Word2vector Spark Processing and
Workflow Module

Log Workflow abstracts log data into an event stream,

which is processed, filtered, and transformed in time.

Many steps are involved in this process, such as

collection, storage, cleaning, conversion, and

analysis. Machine learning can be applied to log

workflows if each log is converted into a vector.

The log anomaly prediction model is based on

one workflow because log data generated by each

application system is often output in parallel. A log

file, however, is often composed of several

workflows. Due to this, it is very important to deal

with multiple mixed workflows in a way that makes

them conform to the characteristics of time series.

The Spark workflow model separates Spark mixed

log sequence data.

Based on the data set structure of Log Hub Spark

in Figure 3, the highlighted part accounts for the

majority of all logs. According to the figure, Spark

generally reports errors due to running calculation

code and data errors in Task code. The following

table illustrates how a Task life cycle can often be

viewed as a time series:

17/06/09 20:10:45 INFO executor.Executor: Running task 1.0 in stage 0.0 (TID 0)

17/06/09 20:10:45 INFO executor.Executor: Running task 2.0 in stage 0.0 (TID 2)

17/06/09 20:10:45 INFO broadcast.TorrentBroadcast: Started reading broadcast

variable 9

17/06/09 20:10:45 INFO storage.MemoryStore: Block broadcast_9_piece0 stored as

bytes in memory (estimated size 5.2 KB, free 5.2 KB)

17/06/09 20:10:45 INFO broadcast.TorrentBroadcast: Reading broadcast variable 9

took 160 ms

17/06/09 20:10:46 INFO storage.MemoryStore: Block broadcast_9 stored as values in

memory (estimated size 8.8 KB, free 14.0 KB)

...

...

...

17/06/09 20:10:48 INFO executor.Executor: Finished task 2.0 in stage 0.0 (TID 3).

2703 bytes result sent to driver

17/06/09 20:10:48 INFO executor.Executor: Finished task 1.0 in stage 0.0 (TID 1).

2703 bytes result sent to driver

Using Task as a workflow separation standard,

however, often includes other redundant logs,

including other Tasks coupled with the target Task,

which is a time series. It is necessary to set a threshold

or degree of completion to terminate the workflow

based on Running task 1.0 as the workflow start and

Finished task 1.0 as the workflow end. When

separating a workflow, if the separated workflow log

includes Warnings, Error levels, or abnormal errors,

then mark the workflow as abnormal, otherwise mark

it as normal.

Figure 3. LOGHUB SPARK data set structure.

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

418

Figure 4. Architecture diagram of anomaly detection model.

3.3 GRU Anomaly Detection Module of
Self-Attention Mechanism

By combining the powerful global feature extraction

capabilities of Transformer and the powerful

sequence feature extraction abilities of circular

models, this paper proposes a Transformer-GRU (T-

GRU), which combines the GRU and Transformer

structures, and applies it to log a nomaly detection

(Haoyi Zhou, Shitao Wang). In this paper, it is

compared with LSTM, LSTM, and GRU. As a result

of the model, good results have been achieved.

As shown in the diagram below, the model

architecture is as follows:

SwissLog parsing and workflow time series

conversion are followed by mapping the log data into

a continuous vector representation, and the output

encodes each layer's position information (G.

Mengrong, 2022).

Each position is represented by a special encoding

vector in Positional Encoding. A sine and a cosine

coding vector is made up of sine and cosine functions,

and each position is a unique coding vector. As a

result, the Transformer model is able to recognize

words or symbols in different positions and determine

their positional relationship (J. -H. Wang, 2022).

 GRU acts as a decoder to decode and output, and

the output is linearly transformed to produce the final

results based on the encoded information input into

Transformer Encoder according to the time window

for encoding (S. Dutta, N. Dhingra).

4 EXPERIMENT AND RESULT

ANALYSIS

4.1 Experimental Environment and
Data Set

Python version 3.9 is used to program the code in this

paper, based on PytorchV1.10.1 deep learning

framework. A GTX 3090Ti graphics card was used in

an experimental environment with Ubuntu22 as the

operating system.

 Specifically, the Spark data set provided in

LogHub is aggregated and collected in a laboratory

environment that contains 32 physical computers and

comes from the common public data set of LogHub

intelligent log analysis. At the machine level, log data

is aggregated, and it exceeds 2 GB in size. As the data

set has not been manually processed, it contains raw

data, including abnormal application records. As

shown in Table 1, this specific data set contains the

following information:

Table 3. LogHub Spark Data Set.

Dataset
Number of Abnormal

workflows

Number of normal

workflows

Training

set
- 820895

Test set 3745 204969

An Anomaly Prediction of Spark Log Based on Self-Attention GRU Network

419

4.2 Experimental Parameter Setting

This paper embeds the 64-dimensional word2vector

vector initialization word, and all weight parameters

are initialized uniformly. Adam is selected as the

optimizer for the hidden layer with a dimension of 64.

Use a learning rate of 0.001, a random inactivation

parameter of 0.01, and a batch size of 256. A random

initialization of 100 times was performed, and the

results of the average of those 100 times were taken

as the final results. Multiple dimensions are used to

evaluate the effectiveness and robustness of the

experimental results, including accuracy, recall, and

F1 value.

4.3 Experimental Structure Analysis

In Table 2, experimental results demonstrate that the

performance of this method is superior to that of other

comparable models, providing evidence for its

effectiveness. Using two network models to capture

semantic data from multiple directions, this paper

successfully reduces the gradient of model training

data by analyzing the SwissLog log and separating

the log workflow. This also improves the training

effect and efficiency, and eliminates the problem of

overfitting.

Table 4. Comparison of experimental effects

Model name Accuracy/% Recall rate/% F1 value

LSTM 85.61 78.54 84.51

GRU

TransformerGRU

84.10

86.77

76.91

81.39

82.86

86.01

5 CONCLUSION

Several studies have been conducted on the text

classification of traditional texts, but little research

has been conducted on the text classification of

update logs. Update logs contain a great deal of

functional and security information, so they are

valuable for future security research and topic

annotation. In order to improve SwissLog's parsing

logs based on the characteristics of updating logs, we

propose a new TransformerGRU network model and

develop a new workflow for log serialization

preprocessing that is more efficient and accurate.

Furthermore, the self-attention model is used to

balance different log key data sets with a high degree

of quality, which further enhances the classification

effect. Experiments have demonstrated that this

method is highly accurate and efficient for classifying

objects.

ACKNOWLEDGEMENTS

This project is supported by Shan dong Province

Science and Technology Small and Medium

Enterprises Innovation Ability Enhancement Project

of China (No. 2023TSGC0449)

REFERENCES

X. Li, P. Chen, L. Jing, Z. He and G. Yu, "SwissLog:

Robust and Unified Deep Learning Based Log Anomaly

Detection for Diverse Faults", 2020 IEEE 31st

International Symposium on Software Reliability

Engineering (ISSRE), Coimbra, Portugal, 2020, pp. 92-

103.

Li, Xiaoyun and Chen, Pengfei and Jing, Linxiao and He,

Zilong and Yu, Guangba, "SwissLog: Robust Anomaly

Detection and Localization for Interleaved Unstructured

Logs", 2022 IEEE Transactions on Dependable and

Secure Computing, Coimbra, Portugal, 2022.

Sakhnini, S., & Alazab, M. (2019). Rule-Based Anomaly

Detection Algorithm for Web Server Log Files. IEEE

Access, 7, 24478-24486.

Hou, M., Jin, R., & Zhou, S. (2019). A statistical approach

for anomaly detection in web log data. Journal of

Network and Computer Applications, 131, 52-59.

N. Feng, Y. Zhang, Y. Chen, Detecting Anomalies in Large

Scale Logs via Deep Reinforcement Learning. In IEEE

Transactions on Information Forensics and Security,

vol. 15, pp. 2020,1185-1198.

L. Forgor, W. Brown-Acquaye, J. K. Arthur and S. Owoo,

"Security of Data on E-waste equipment to Africa: The

Case of Ghana, " 2019 International Conference on

Communications, Signal Processing and Networks

(ICCSPN), Accra, Ghana, 2019, pp. 1-5.

Z. Liu et al., "Swin Transformer: Hierarchical Vision

Transformer using Shifted Windows," 2021 IEEE/CVF

International Conference on Computer Vision (ICCV),

Montreal, QC, Canada, 2021, pp. 9992-10002.

Transformer-Encoder-GRU (T-E-GRU) for Chinese

Sentiment Analysis on Chinese Comment Text by

Binlong Zhang, Wei Zhou, 2021, 211-234.

Fuhong Tang and Kwankamol Nongpong. Chinese

sentiment analysis based on lightweight character-level

bert. In 2021 13th International Conference on Kno

wledge and Smart Technology (KST), pages, 2021 27–

32.

T. Kongsin and S. Klongboonjit, "Machine Component

Clustering with Mixing Technique of DSM, Jaccard

Distance Coefficient and k-Means Algorithm" 2020

IEEE 7th International Conference on Industrial

Engineering and Applications (ICIEA), Bangkok,

Thailand, 2020, pp. 251-255.

O. Ertl, "ProbMinHash – A Class of Locality-Sensitive

Hash Algorithms for the (Probability) Jaccard

Similarity, " in IEEE Transactions on Knowledge and

Data Engineering, vol. 34, no. 7, 2022, pp.3491-3506.

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

420

U. Srinivasarao, R. Karthikeyan, P. K. Sarangi and B. S.

Panigrahi, "Enhanced Movie Recommendation and

Sentiment Analysis Model Achieved by Similarity

Method through Cosine and Jaccard Similarity

algorithms, " 2022 International Conference on

Computing, Communication, and Intelligent Systems

(ICCCIS), Greater Noida, India, 2022, pp. 214-218..

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang,

Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:

Beyond efficient transformer for long sequence time-

series forecasting. arXiv preprint arXiv:

2020,2012.07436.

Shitao Wang, Jiangfeng Li, and Defeng Hu. Bigru-multi-

head self-attention network for chinese sentiment

classification. In Journal of Physics: Conference Series,

volume 1827, 2021, page 012169.

G. Mengrong and L. Hongjian, "Research on temperature

prediction of subway transformer based on LSTM, "

2022 IEEE International Conference on Artificial

Intelligence and Computer Applications (ICAICA),

Dalian, China, 2022, pp. 555-558.

J. -H. Wang, M. Norouzi and S. M. Tsai, "Multimodal

Content Veracity Assessment with Bidirectional

Transformers and Self-Attention-based Bi-GRU

Networks, " 2022 IEEE Eighth International Conference

on Multimedia Big Data (BigMM), Naples, Italy, 2022.

S. Dutta and S. Ganapathy, "Multimodal Transformer with

Learnable Frontend and Self Attention for Emotion

Recognition" ICASSP 2022 - 2022 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), Singapore, Singapore, 2022, pp. 6917-6921.

N. Dhingra, F. Ritter and A. Kunz, "BGT-Net: Bidirectional

GRU Transformer Network for Scene Graph

Generation, " 2021 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW),

Nashville, TN, USA, 2021, pp. 2150-2159.

An Anomaly Prediction of Spark Log Based on Self-Attention GRU Network

421

