
Cross Project Software Attack Location Method Based on Context

Awareness

Guangdong Shen
Quanzhou University of Information Engineering, Quanzhou, China

Keywords: Context Awareness, Cross Project Software, Attack Location Method.

Abstract: Conventional software attack localization methods mainly focus on project defect prediction. Although the

prediction is consistent with the actual demand, the tag data of the source project has a high similarity problem,

which affects the accuracy of attack localization. Therefore, a context aware cross project software attack

localization method is designed. Extract the tag features of cross project software attack domain, and eliminate

the high similarity data in the tag data. Based on context awareness, a cross project software attack location

model is constructed to determine the statement priority order of software attacks. Measure the cost of wrong

positioning of cross project software attacks, avoid wrong positioning problems, and achieve accurate

positioning of cross project software attacks. The simulation experiment verifies that the positioning method

has higher accuracy and can be applied in real life.

1 INTRODUCTION

In the process of software use, a software project

contains many small sub modules, and there are

different degrees of coupling between the sub

modules, making software attacks more and more

difficult to find (Roth S - Lartillot O). Once software

attacks are found, it also takes developers a lot of

troubleshooting time, which brings a lot of

inconvenience to software development. During the

use of cross project software, the data distribution

between different projects is quite different. Basically,

the torque is used to select the project with the highest

similarity of the target project as the source project,

and the data distribution difference between projects

is reduced through domain adaptation (Wang J -

Ahuja N). However, this method has a serious class

imbalance problem, which has a certain impact on the

positioning process. Even if the majority of classes

and a few classes reach a balanced state through down

sampling, the cost sensitive weight factor of the

positioning model will still have a certain deviation,

leading to the decline of the final attack positioning

accuracy.

In the process of cross project software running,

the software history warehouse uses version

advantages to control the software SVN or GIT to

conduct data mining of software project history

versions, and develops the history mining program

(Lu J- Timochkina T V)of electronic software

projects through problem tracking. Extract the data

module according to the history mining program, and

set the granularity, file, code modification, class or

package of the data module based on the requirements

of the actual scene. In this process, each data module

is composed of metrics and tags. It analyzes the

software code development process and measures the

data characteristics of software attacks (Ioannou C -

Xian X). After obtaining the tag of the data module,

build a software attack location dataset. This location

dataset uses normalization processing. For a new

software project, measure and extract the label

features in it to ensure the accuracy of the entire attack

location process. Therefore, this paper uses context

awareness to design a cross project software attack

location method.

2 DESIGN OF CROSS PROJECT

SOFTWARE ATTACK

LOCATION METHOD BASED

ON CONTEXT AWARENESS

2.1 Extract Cross Project Software
Attack Domain Tag Features

In the process of cross project software attack, this

paper finds the project with the highest similarity as

Shen, G.
Cross Project Software Attack Location Method Based on Context Awareness.
DOI: 10.5220/0012285000003807
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2023), pages 409-414
ISBN: 978-989-758-677-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

409

the source project data set Xy={xy1, xy2,., xyn}, and

its corresponding tag set is Yy={yy1, yy2,., yyn}. In

this paper, xyi is used to represent the ith sub module

in Xy; Ny represents the number of submodules (Lu

K D)in source project Xy. The target project data is

represented as Xm={xm1, xm2,., xmn}. The overall

structure of the software consists of four parts. After

intermediate code conversion, the tag characteristics

of the software attack domain are obtained. The

midamble conversion is shown in Figure 1 below.

.Java

.Class

Baf

Grimp Jimple

optimize

optimize

optimize

javac

Figure 1. Schematic Diagram of Middle Code Conversion.

As shown in Figure 1,. Java,. Class, Baf, Grimp,

and Jimple are the intermediate structures of the

software. Grimp and Jimple belong to a module and

are respectively equipped with mapping functions

(Yin X-Osman M)of feature mapping subnetworks. In

order to extract the label characteristics of different

sub modules, this paper constructs an intermediate

code according to the source project and the target

project. The corresponding label of the intermediate

code construction is:

(1)l y mx X X    (1)

In formula (1), lx is the domain label feature;

is a construction parameter. In each iteration, random

initialization is performed again, and mX mix to

generate a new sub module. When =At 0, lx = mX .

At this time, the sub module constructed is the target

project. By locating the attack of the target project,

the high similarity data in the tag data is eliminated,

so as to improve the accuracy of attack location.

2.2 Building Cross Project Software
Attack Location Model Based on
Context Awareness

According to the criterion of "whether to run

software", this paper divides the software attack

localization process into static localization and

dynamic localization. Based on the grammar structure,

referential semantics and operational semantics of the

program language, the software organization

structure is statically analyzed, and the program

entities that violate the context constraints are

recorded as software attacks, thus screening the attack

problems in cross project software (Djellali C - Li Y).

At the same time, complete cross project software

data is constructed to obtain the running

characteristics of the software, and then dynamic

attack nodes are checked according to the dynamic

execution path to eliminate potential positioning

errors. This article is based on lx in combination with

context awareness technology, a software attack

location model is built, as shown in Figure 2 below.

Software entity's own

information

Information between

software entities
data acquisition

Execute variable

slicing

Extract data chain

relationships
Get Execution Path

association

analysis

information

content

Cluster

Weighting

 Generate the priority order of the check statement,

 with the highest order being checked first

Context information

data handling

positioning error

Figure 2. Schematic diagram of context aware software

attack location model.

As shown in Figure 2, this paper takes the

information of software entities themselves and

between software entities as the necessary indicators

for data collection, extracts the data link relationship

of software projects according to the context

information, and analyzes the positioning

environment (Seddik M T-Jamonnak S) according to

the statement priority order. Considering all software

execution paths, the set of statements that the

positioning model plays a role in variables in cross

project software sub modules in the process of static

positioning is combined with the dynamic positioning

variables that formulate software execution paths to

form a set of static and dynamic slice tables, as shown

in Table 1 below.

As shown in Table 1, in the process of static

positioning, this paper senses the variable with

inconsistent input and the context statement that acts

on the location of the attack node, removes the

statement with inconsistent input, and retains the

statement with consistent input (Wan G). In the

process of dynamic positioning, the given input value

and the variable value generate statements to get the

location of the software project being attacked

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

410

according to the characteristics of the attack node.

Table 1. Static and dynamic slice table.

Statement

line

number

Data dependency

information

Source

software

Static slice

with line

number=7

Dynamic

slicing with

input x=8

1

Bat converts

bytecode into

analyzable Jimple

intx,y,z,m; intx,y,z,m; intx,y,z,m;

2

Jimple three

address wireless

representation

x=read(); x=read(); x=read();

3

Analysis and

optimization

transformation

y=6; y=6; y=6;

4 optimize Jimple if(x＞6) if(x＞6) if(x＞6)

5
Gremp Generate

bytecode
z=3*x; z=3*x; z=3*x;

6
Baf Generate

bytecode
else z=y-3; else z=y-3; /

7
Optimized class

files+attributes
m=x+y+z; m=x+y+z; m=x+y+z;

8
Interpreter instant

compilation
intx,y,z; / intx,y,z;

9 Adaptive Engine y=6*x; y=6*x; y=6*x;

10 precompile z=y+6; z=y+6; /

2.3 Measuring the Cost of Mislocation
of Cross Project Software Attacks

In the process of troubleshooting the location of

software attacks, this paper uses the "cumulative

number of statements checked" as the cost of

measuring the error location of cross project software

attacks. The number of check statements ranges from

i to j, and i represents the faulty node located after the

software attack node is checked for i suspicious

statements under ideal conditions; J indicates the

faulty node located after the software attack node is

checked for j suspicious statements in the worst case.

This article combines lx and mX to determine the

error positioning feature, the formula is as follows:
~ ~

(1)m m lX X x    (2)

In formula (2),
~

mX work features for errors.

After extracting the error location feature and

checking several statements in the same order, it is

concluded that the cost of software attack error

location is:
~

() /d mf X i j v  (3)

In equation (3), df is the cost of locating software

attack errors; v is the total number of lines of

executable code. This paper measures the cost of

software error location by the ratio of the average

number of statements to be checked to the total

number of lines of executable code, df the smaller the

value is, the less likely the error location is, and the

greater the possibility of locating the attack node is,

which plays an important role in improving the

accuracy of software attack location.

3 SIMULATION EXPERIMENT

In order to verify whether the software attack location

method designed in this paper can be applied to real

life, this paper has built a simulation platform to

simulate and analyze the above methods. The final

experimental results are determined by the values of

SingleErr and AverErr. The traditional cross project

software attack localization methods are used to

compare with the cross project software attack

localization method based on context awareness

designed in this paper, and determine the localization

effect of the two methods. The experimental

preparation process and the final experimental results

are shown below.

Table 2. Cross project software information collection table.

item gather

import Cross project software source project data X, label

set Y corresponding to original project data X,

target project data set Z

export Category labels for the target project dataset Xm

Step1 Standardize data between cross project software

source projects and target projects

Step2 Using SMOTE to handle class imbalance in attack

localization data in the original project

Step3 Analyze the supervision loss and classification loss

of attack localization models based on context

aware output features

Step4 Analyze the adaptive loss of cross project software

attack localization based on context aware output

features

Step5 Iterative training is conducted on the software

attack localization model, and the trained data is

marked with k as collected data for cross project

software

Step6 Using context awareness to locate attacks on target

software

3.1 Experiment Preparation

This experiment is a simulation experiment. The

simulation environment uses Matlab 2012a to

construct a 1000m wireless sensor network×in a

1000m area, 1000 attack nodes are randomly

generated in the area, of which 200 are beacon nodes

and 800 are attack nodes. In the experimental

environment, the node communication radius is 250m.

After building the simulation environment, this paper

selects a cross project software as the basic program.

The source program is public class Compare {public

static void main (String () args) {This article compiles

the source code of cross project software in. Java,

Cross Project Software Attack Location Method Based on Context Awareness

411

converts it into bytecode. Class, and then combines

the Jimple middle layer to represent the dependency

of software attack location, so as to collect cross

project software information. See Table 2 below.

As shown in Table 2, this paper sets the source

project data of cross project software as X, the tag

corresponding to the original project data as Y, and

the target project data as Z. According to the context

aware software characteristics, cluster analysis is

performed on the entire software attack location

environment to determine the actual distance between

RSS vectors of any two attack nodes in the source

project data in the simulation signal space. As shown

in Figure 3 below.

-100
-75

-80

-85

-90 -100
-80

-60

-40

-80

-60

-40

R
S

S
3

(d
B

m
)

RSS2（dBm） RSS1（dBm）

Figure 3. Distance between RSS vectors of two attack nodes

in signal space.

As shown in Figure 3, the RSS vector is a key

indicator to show the distance between the software

attack node and the beacon node. When the attack

node attacks the beacon node, it determines the

location of the attack node by analyzing the RSS

vector, so as to achieve accurate positioning of the

software attack. The black dot in the figure is the

active range of beacon nodes, and the nodes are

relatively dense; The gray dots in the figure are the

active range of attack nodes, which are scattered. It

can be seen from the figure that the attacking node is

moving towards the beacon node. By locating the

attacking node, the attacking node can quickly block

the attack of the attacking node on the beacon node,

thus completing a software attack location. The

positioning process is shown in Figure 4 below.

begin

Normal communication of WSN network

RSS data collection

Using context aware analysis of RSS values in signal space

Calculate the distance D of the attacking node

D＞T？

Assuming software attack G does not exist

end

YesNo

Assuming G attack exists

Figure 4. Cross project software attack location flow chart.

As shown in Figure 4, in this experiment, the

maximum number of iterations of the location model

is set to 100, and the propagation path loss factor of

the attack node and beacon node is 4.T is the

prefabrication of attack location. After the start of

attack location, when D>T, the software attack is in

the existing state. By locating the attack node at this

time and eliminating the non-existent software attack,

the accuracy of the entire attack can be ensured. In

order to further analyze the effect of attack location,

this paper sets _AverDist TA Value, the formula is

as follows:

 1 1

()

_

n m

ij ij

i j

d x

AverDist TA
n

 






 (4)

In equation (4), _AverDist TA is the average

space distance of the software attack node; ijd is the

ranging distance between attack node i and beacon

node j; ijx is the decision vector in task allocation; n

is a constant. _AverDist TA under certain

conditions, the positioning error of a single attack

node is calculated as follows:
^ ^

() ()
100%

n n n n

a

x x y y
SingleErr

R

  
 

 (5)

In formula (5), SingleErr positioning error for

single attack node;
^

nx is the average value of the nth

attack node location; nx is the location value of the nth

attack node;
^

ny is the average localization value of

the nth beacon node; ny is the positioning value of the

nth beacon node; aR is the communication radius.

The formula for calculating the average positioning

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

412

error of cross project software attacks is as follows:
^ ^

1
() ()

100%

i

n n n nn

a

x x y y
AverErr

nR


  

 


 (6)

In formula (6), AverErr is the average

positioning error of cross project software attacks.

Stay _AverDist TA when the value is fixed,

analyze separately SingleErr value vs AverErr

value to determine the true effect of software attack

location.

3.2 Experimental Results

Under the above experimental conditions,

AverDist_The value range of TA is 500~5000, and the

SingleErr and AverErr values are calculated using

equation (5-6) to determine the software attack

location effect. The traditional cross project software

attack localization method is used to compare the

SingleErr and AverErr values with the context aware

cross project software attack localization method

designed in this paper. The smaller the SingleErr and

AverErr values, the higher the accuracy of attack

location; The more stable the SingleErr and AverErr

values, the better the performance of attack location.

The specific experimental results are shown in Table

3 below.

Table 3. Experimental Results.

AverDist_TA Traditional Cross Project

Software Attack Localization

Method

The context-aware based cross

project software attack

localization method designed in

this article

SingleErr/% AverErr/% SingleErr/% AverErr/%

500 0.236 1.246 0.128 0.263

1000 5.432 1.252 0.136 0.262

1500 10.314 1.768 0.143 0.264

2000 6.462 1.232 0.152 0.265

2500 8.828 1.045 0.167 0.261

3000 9.324 1.536 0.174 0.266

3500 10.478 1.912 0.182 0.263

4000 2.136 1.248 0.193 0.263

4500 12.242 2.267 0.195 0.262

5000 15.368 1.343 0.195 0.263

As shown in Table 3, this experiment uses

SingleErr and AverErr values to determine the

software attack location effect.500~5000 AverDist

randomly selected_TA value, as the basic index of the

experiment. When other conditions are consistent,

using the traditional cross project software attack

location method, the SingleErr value fluctuates in the

range of 0.236%~12.242%, and the error fluctuation

range is large, even 10% difference between the upper

and lower, which seriously affects the attack location

effect. In comparison, the AverErr value of the

traditional method is relatively stable. However, in

the range where the SingleErr value is unstable, the

AverErr value is also unstable, leading to a decline in

the overall level of software attack localization,

which needs further processing. After using the

context aware cross project software attack

localization method designed in this paper, both the

SingleErr value and AverErr value are in a relatively

stable fluctuation range, and the SingleErr value is in

AverDist_When TA>4500, it maintains a stable

0.195%, which can ensure the accuracy of software

attack location.

4 CONCLUSION

In recent years, with the rapid development of

Internet technology, people's functional requirements

for software continue to grow, resulting in

increasingly complex software functions. Enterprises

use software technology for network management or

services, and users use various software for online

payment or payment, shopping, which greatly

facilitates people's living environment. In the era of

high computing power of computers, various

software with complex functions spur the computing

power of computers, which can execute more code

and make the scale of software code increase

continuously. The continuous increase of software

functions has also brought a series of problems. In

cross project software, the data distribution between

projects is quite different, and there are certain

drawbacks in attack localization. Therefore, this

paper uses context awareness to design a cross project

software attack location method. From the aspects of

extracting features, building models, and measuring

costs, the positioning accuracy of software attack

nodes is improved in a real sense, providing basic

support for software development and use.

REFERENCES

Roth S, Tomasin S, Maso M, et al. Localization Attack by

Precoder Feedback Overhearing in 5G Networks and

Countermeasures (J). IEEE Transactions on Wireless

Communications, 2021, PP(99):1-1.

https://doi.org/10.1109/TWC.2021.3055851

Suma V. Detection of Localization Error in a WSN under

Sybil Attack using Advanced DV-Hop Methodology (J).

IRO Journal on Sustainable Wireless Systems, 2021,

3(2):87-96. https://doi.org/10.36548/jsws.2021.2.003

Lartillot O, Nymoen K, Cmara G S, et al. Computational

localization of attack regions through a direct

observation of the audio waveform(J). The Journal of

Cross Project Software Attack Location Method Based on Context Awareness

413

the Acoustical Society of America, 2021, 149(1):723-

736. https://doi.org/10.1121/10.0003374

Wang J, Liu J. Location Hijacking Attack in Software-

Defined Space-Air-Ground Integrated Vehicular

Network (J). IEEE Internet of Things Journal, 2021,

PP(99):1-1.

https://doi.org/10.1109/JIOT.2021.3062886

Kim H, Yoon S, Kim S, et al. Attack Graph Based Intrusion

Tolerance Method in Software-Defined Networks (J).

The Journal of Korean Institute of Communications and

Information Sciences, 2021, 46(6):983-992.

https://doi.org/10.7840/kics.2021.46.6.983

Ahuja N, Singal G, Mukhopadhyay D, et al. Automated

DDOS attack detection in software defined networking

(J). Journal of Network and Computer Applications,

2021, 187(6):103108.

https://doi.org/10.1016/j.jnca.2021.103108

Lu J, Wu Y, Pei J, et al. MIAR: A Context-Aware Approach

for App Review Intention Mining (J). International

Journal of Software Engineering and Knowledge

Engineering, 2022, 32(11n12):1689-1708.

https://doi.org/10.1142/S0218194022500796

Weathersby A, Washington M. Extracting network based

attack narratives through use of the cyber kill chain: A

replication study (J). it - Information Technology, 2022,

64(1-2):29-42. https://doi.org/10.1515/itit-2021-0059

Timochkina T V, Tatarnikova T M, Poymanova E D. Neural

networks application to network attack discovery (J).

Izvestiâ vysših učebnyh zavedenij Priborostroenie,

2021, 64(5):357-363. https://doi.org/10.17586/0021-

3454-2021-64-5-357-363

Ioannou C, Vassiliou V. Network Attack Classification in

IoT Using Support Vector Machines (J). Journal of

Sensor and Actuator Networks, 2021, 10(3):58.

https://doi.org/10.3390/jsan10030058

Ma W. Research on network vulnerability assessment based

on attack graph and security metrics (J). Journal of

Physics: Conference Series, 2021, 1774(1):012070

(7pp). https://doi.org/10.1088/1742-

6596/1774/1/012070

Xian X, Wu T, Liu Y , et al. Towards link inference attack

against network structure perturbation(J). Knowledge-

Based Systems, 2021, 218(2):106674.

https://doi.org/10.1016/j.knosys.2020.106674

Lu K D , Zeng G Q , Luo X , et al. Evolutionary Deep Belief

Network for Cyber-Attack Detection in Industrial

Automation and Control System(J). IEEE Transactions

on Industrial Informatics, 2021, PP(99):1-1.

https://doi.org/10.1109/TII.2021.3053304

Yin X, Zhu Y, Hu J. A Sub-grid-oriented Privacy-

Preserving Microservice Framework based on Deep

Neural Network for False Data Injection Attack

Detection in Smart Grids (J). IEEE Transactions on

Industrial Informatics, 2021, PP(99):1-1.

https://doi.org/10.1109/TII.2021.3102332

Alaaraji Z, Ahmad S, Abdullah R S. Propose Vulnerability

Metrics to Measure Network Secure using Attack

Graph (J). International Journal of Advanced Computer

Science and Applications, 2021, 12(5):2021.

https://doi.org/10.14569/IJACSA.2021.0120508

Osman M, He J, Mokbal F, et al. Artificial Neural Network

Model for Decreased Rank Attack Detection in RPL

Based on IoT Networks(J). International Journal of

Network Security, 2021, 23(3):497-504.

https://doi.org/10.6633/IJNS.202105

Djellali C, Adda M. An Enhanced Deep Learning Model to

Network Attack Detection, by using Parameter Tuning,

Hidden Markov Model and Neural Network (J).

Journal of Ubiquitous Systems and Pervasive Networks,

2021, 15(1):35-41.

https://doi.org/10.5383/JUSPN.15.01.005

Yin R R, Yuan H L, Zhu H H, et al. Model and Analyze the

Cascading Failure of Scale-free Network Considering

the Selective Forwarding Attack (J). IEEE Access, 2021,

PP(99):1-1.

https://doi.org/10.1109/ACCESS.2021.3063928

Li Y, Li X. Research on Multi-Target Network Security

Assessment with Attack Graph Expert System Model

(J). Scientific Programming, 2021, 2021(3):1-11.

https://doi.org/10.1155/2021/9921731

Seddik M T , Kadri O , Bouarouguene C , et al. Detection

of Flooding Attack on OBS Network Using Ant Colony

Optimization and Machine Learning(J). Computación y

Sistemas, 2021, 25(2):423–433.

https://doi.org/10.13053/CyS-25-2-3939

Zuo E, Aysa A, Muhammat M, et al. Context aware

semantic adaptation network for cross domain implicit

sentiment classification (J). Scientific Reports, 2021,

11(1):1-14. https://doi.org/10.1038/s41598-021-01385-

1

Jamonnak S, Zhao Y, Huang X, et al. Geo-Context Aware

Study of Vision-Based Autonomous Driving Models

and Spatial Video Data(J). IEEE transactions on

visualization and computer graphics, 2022,

28(1):1019-1029.

https://doi.org/10.1109/TVCG.2021.3114853

Wan G, Dong X, Dong Q, et al. Context-aware scheduling

and control architecture for cyber-physical production

systems (J). Journal of Manufacturing Systems, 2022,

62(4):550-560.

https://doi.org/10.1016/j.jmsy.2022.01.008

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

414

