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Abstract: Alerts and associated trouble tickets provide extremely useful information for IT system maintenance. 

However, the continuously occurrence of thousands of tickets also leads to a big challenge for accurately and 

effectively dispatching them to skilled experts for quick problem-solving. To cope with such a challenge, this 

paper develops a convolution neural network-based expert recommendation approach for in-time alert 

processing. First, expert profile is built by extracting domain words from historical tickets, and is encoded 

into a sentence like problem description. Second, an attention-based convolution neural network (CNN) is 

developed not only to learn a unified representation for both problem description and expert profile but also 

measure the semantic similarity between them. Finally, an ordered expert list is outputted. We evaluate our 

approach on a real-world data set. Experimental results show that compared to the best baseline approach, our 

approach can not only improve 2.8% in terms of p@1 but also shorten 11.7% in terms of the mean number of 

steps to resolve (MSTR). 

1 INTRODUCTION 

Trouble tickets play a very important role in the 

complex IT system maintenance. When an event 

happens, or when special situations, errors, even 

faults occur during the IT service consumption, a 

trouble ticket, also called issue ticket, is generated, 

which records the detailed problem symptom. And 

then, the ticket management employed by the IT 

system automatically dispatches the ticket to domain 

experts for problem-solving. Once the problem is 

fixed, the ticket is closed. System maintenance staffs 

always attempt to quickly bring an abnormal service 

back to normal by assigning skilled and well-matched 

experts using the deployed expert recommendation 

module. However, several real-world situations, such 

as diverse troubles, vague problem descriptions 

written in a natural language way, huge size of tickets 

and low efficiency of manually assigning experts, 

pose great challenges on the expert recommendation 

module to avoid violating the signed Service Level 

Agreement (SLA) with users. Therefore, rapid 

problem-solving strongly depends on efficiently and 

accurately expert recommendation, which motivates 

us to focus on expert recommendation for trouble 

tickets. 

Typically, a trouble ticket contains at least five 

fields, including ‘problem description’, ‘problem 

type’, ‘expert name/id’, ‘resolution’ and ‘status’, as 

shown in Figure 1. The problem description presents 

the detailed symptom occurring at system runtime. 

Each ticket is assigned to a specific problem type 

belonging to the problem category. The expert name 

is used to identify a specific expert who attempts to 

solve the problem. The resolution records the detailed 

approaches to fix the problem. The status is setting to 

‘closed’ if the problem has been fixed, otherwise it is 

setting to ‘open’. The ticket resolving process is 

regarded as a ticket delivery sequence starting from 

an initial expert to the final resolver. Initially, an 

incoming ticket was assigned to an expert. If the 

problem is fixed, the ticket is closed. Otherwise, the 

ticket dispatching system delivers the ticket to 

another expert. Such a delivery process is repeated 

until the ticket is closed. The last expert who resolved 

it is called a resolver. 

Although a few studies (Shao Q, Shao Q, Agarwal 

S, Botezatu M. M., Xu J, Zhou W) have been reported 

to deal with ticket dispatching or expert 

recommendation, there are still many limitations in 

existing methods that deserve further investigation. 

The traditional machine learning technology, such as 

logistic regression (LR)( R. Qamili), decision tree 
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(DT) (R. Qamili) and support vector machine (SVM) 

(Agarwal S), has been applied to conduct ticket 

dispatching. An obvious advantage is that these 

approaches can directly work on trouble tickets with 

a little effort. However, the characteristics of ticket 

problem descriptions, such as unformatted, large 

vocabulary size and short texts, make expert 

recommendation suffer from low accuracy. The main 

reason lies in that the representation models, such as 

the n-gram (R. Kallis), TF-IDF (R. Qamili) and LDA 

(Zhou W), generally used by these approaches cannot 

characterize trouble tickets well. To solve this issue, 

several approaches based on the deep learning 

technology has been proposed and shown its potential 

in meeting the need of trouble ticket expert 

recommendation and improving recommendation 

performance. In this paper, to leverage the 

characteristics of tickets well to further improve 

recommendation accuracy, we propose a deep neural 

ranking model-based expert recommendation 

approach for trouble tickets by combining expert 

profiling, vector-based ticket representation, the 

attention-based convolution neural network. Further, 

we evaluate the effectiveness of our model on a real 

trouble ticket dataset. 

 

 

Figure 1. An instance of the trouble tickets. 

In summary, our contributions are the followings: 

1) An expert profiling component is designed by 

making full use of ticket problem descriptions and 

resolutions to characterize expert’s professional 

knowledge with domain words, which is helpful to 

improve the efficiency and accuracy of ticket 

assignment. 

2) Two attention-based sentence models 

characterizing problem description and expert profile, 

respectively, are integrated into our recommendation 

approach and mapped into the same vector, which 

enables the semantic similarity measure between the 

problem description and the expert profile and benefit 

to improve the recommendation accuracy. 

The rest of the paper is organized as follows. In 

Section 2, a deep learning-based expert 

recommendation approach is proposed. The 

experiment settings are explained and the 

performance evaluation results are discussed in 

Section 3. At last, we conclude our work in Section 4. 

2 THE PROPOSED APPROACH 

2.1 Problem Formulation 

Assume that 𝒯 = {𝑡1, . . , 𝑡𝑖 , … , 𝑡𝑁} is a set of tickets 

from a given IT system, where each ticket can be 

represented by a quintuple, denoted as 𝑡 =<
𝑖𝑑, 𝑐, 𝜏, 𝑟, 𝑟𝑝(𝑘)>, 𝑡 ∈ 𝒯. The first component denotes 

the unique identifier of a ticket. The components 𝑐, 𝜏 

and 𝑟 are the problem type, the problem description 

and the problem resolution, respectively. We assume 

that the number of problem types is M. Resolutions 

from multiple experts involved in the ticket routing 

sequence are merged into the final problem resolution. 

The last component 𝑟𝑝(𝑘)  denotes a ticket routing 

sequence containing k ordered experts. We operate on 

historical tickets to output a set of instances, denoted 

as 𝐼 = {< 𝜏𝑖 , 𝑒𝑗 , 𝑠𝑖𝑗 >} , where 𝜏𝑖  is the problem 

description for the ith ticket, 𝑒𝑗  is the ith expert 

involving in its ticket routing sequence, and 𝑠𝑖𝑗 is a 

competency score of expert 𝑒𝑗 . If expert 𝑒𝑗  is a 

resolver for the ith ticket, 𝑠𝑖𝑗 = 1, otherwise 𝑠𝑖𝑗 = 0. 

Therefore, given the set 𝐼, our purpose is to construct 

a ranking model that calculates an optimal score 𝑠𝑖𝑗 

for each pair < 𝜏𝑖 , 𝑒𝑗 >, s.t. an expert with a strong 

competency has a high score. Formally, the expert 

recommendation task is to learn a ranking function 

from historical pairs, as shown in Equation (1), 

ℎ(𝑤, 𝜓(𝜏𝑖 , 𝑒𝑗)) → 𝑠𝑖𝑗               (1) 

where function 𝜓(∙)  maps a pair < 𝜏𝑖 , 𝑒𝑗 >  to a 

similarity vector, where each component reflects a 

certain type of similarity, e.g., lexical, syntactic, or 

semantic. The weight vector 𝑤 is a parameter of the 

ranking model and is learned during the training. 

2.2 Framework 

The overview of our expert recommendation 

approach is illustrated in Figure 2. Our approach 

consists of four components, including data 

preprocessing, expert profiling, vector-based 

representation, and convolution neural network based 

ranking model. Since problem descriptions record 

textual information, the data preprocessing 

component is essential to do some text preprocessing 

operations by applying the natural language 

techniques. And then, each problem description is 

represented as a sentence vector using the learned 

word vector from historical tickets. On the other hand, 

domain words are extracted from problem 

descriptions and resolutions to characterize expert 

profile. Each expert is also represented as a sentence 
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vector. Further, each ticket is transformed into at least 

one triplet containing a problem description vector, 

an expert profile vector and a competency score. 

Finally, an attention-based convolution neural 

network ranking model is trained on these triplets. 

When an incoming ticket arrives, the resulting 

ranking model outputs an ordered expert list for the 

ticket based on the matching score. Experts with the 

top-N competency score are recommended to resolve 

the incoming ticket one by one until it is resolved. 

 

 

Figure 2. Overview of the proposed Approach. 

2.3 Vector-Based Ticket 
Representation 

A proper ticket representation approach is crucial to 

the task of expert recommendation. Recently, the 

word vector technology (Zhou W), also known as 

word embedding, has been successfully applied in the 

domain of text representation and has been 

demonstrated that it has a good effect in charactering 

text semantic information. We argue that deriving an 

effective representation for problem descriptions 

plays an importance role in automating IT service 

management. Thus, in this paper, the word vector 

technology is also applied to ticket representation. 

Assume that V is the word vocabulary of tickets. 

Let w ∈ ℝd  be a d-dimensional word vector to 

represent any word from ticket problem descriptions 

or resolutions, and w belongs to a word vector matrix 

W ∈ ℝd×|V| . Further, a ticket is represented as a 

sentence combining its problem description and 

resolution. Using the word vector matrix, each ticket 

is mapped to their vector representation. Assume that 

ticket 𝑡 contains 𝑙 words. The sentence for ticket 𝑡 is 

represented as a matrix s ∈ ℝd×𝑙 = [w1, … , w𝑙].  
 

Although there are some publicly pre-trained 

word vector models, such as word2vec (Aggarwal V), 

FastText (Athiwaratkun), and Bert. However, due to 

the wide existence of non-dictionary words in tickets, 

these pre-trained word vector models cannot be 

applied to our work. According to the common 

experience that a minimal size of the corpora required 

for learning word vectors should be at least in the 

order of hundreds of thousands, we use sufficient 

historical tickets in our database as text corpora to 

learn and extend the existing word vectors applicable 

to IT service management. 

2.4 Expert Profile and Representation 

Expert profiling is a critical factor impacting the 

efficiency and accuracy of ticket assignment. Here, 

we use the professional knowledge or skills owned by 

experts to characterize expert profile, where the 

professional knowledge indicates his/her expertise to 

resolve the ticket. For a given ticket, it is difficult to 

determine whether an expert’s profile matches with 

the ticket problem description. Thus, we represent 

each expert profile as a group of domain words 

extracted from problem descriptions and resolutions 

to indicate general interests and activities of an 

expert, defined as Definition 1. 

Definition 1 (Expert Profile). A expert profile of 

expert 𝑒𝑖  is represented as a set of words,  𝑒𝑝𝑖 =
{𝑑𝑤𝑟

𝑖|𝑟=1,..,𝐾}, where {𝑑𝑤1
𝑖 , … , 𝑑𝑤𝑟

𝑖 , … , 𝑑𝑤𝐾
𝑖 } denotes 

the set of K domain words describing general interests 

and activities of expert 𝑒𝑖.  

Different with the traditional way, we attempt to 

automatically extract domain words from historical 

tickets without human intervention. Using historical 

tickets resolved by an expert, we think that those 

words frequently occurring in problem descriptions 

and resolutions of those tickets have a higher 

probability to be domain words of the expert. For any 

expert, we extract the same number of words to 

characterize the expert.  

We find tickets solved by a given expert from 

historical tickets, and then candidate domain words 

are fetched from these tickets. Domain words are 

usually nouns or verbs provided by system 

administrators or obtained from related documents 

like the catalog taxonomy of system management. 

After fetching candidate domain words, we measure 

the importance of each word using the idea similar to 

TF-IDF. For a candidate word w, we first measure its 

frequency of appearing in tickets solved by expert 𝑒𝑗, 

denoted as 𝑡𝑓(w). The higher 𝑡𝑓(w), the higher the 

possibility that the word is a terminology is. Second, 

we measure its expert frequency, denoted as 𝑒𝑓(w), 

which represents the number of experts that have ever 

solved the tickets containing the word. Third, we 

measure its inverse expert frequency, denoted as 

𝑖𝑒𝑓(w). The higher the value of  𝑖𝑒𝑓(w), the higher 

the differentiation of the word among experts is. Last, 
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we take these two factors into consideration to get the 

importance of the word, and sort all candidate domain 

words by the importance in a descending order and 

then select the most important top-K words as the 

domain words. 

To accurately measure the semantic similarity 

between a ticket and an expert, we make the expert 

representation consistent with ticket representation. 

An expert is represented as a sentence combining its 

domain words. Using the same word vector matrix 𝑊 

used in the ticket presentation, each expert is mapped 

to their vector representation. Assume that expert 

profile contains 𝐾 words. The sentence for expert 𝑒 is 

represented as a sentence matrix q ∈ ℝd×𝐾 =
[w1, … , w𝐾]. 

2.5 CNN-Based Ranking Model 

In this section, we build an attention-based CNN 

ranking model to recommend experts, as shown in 

Figure 3. Our model consists of two parts. The first 

part consists of two attention-based sentence models 

for mapping the trouble ticket problem and the expert 

profile to their vector representation, respectively. 

The second part is an expert ranking model that ranks 

experts by learning the semantic similarity score 

between the problem description and the expert 

profile. We will describe these two parts in the 

following texts. Generally, an incoming ticket can be 

resolved by multiple experts with different 

competency values. Thus, our model will recommend 

all the candidates in the order that an expert with a 

high competency ranks first. 

In the embedding layer, the input is sentences 𝑠 

and 𝑞, treated as sequences of words that represent a 

ticket problem description and an expert capacity 

respectively, where each word is drawn from a word 

vocabulary 𝑉 . Words are represented by d-

dimensional vectors w ∈ ℝ𝑑. Input sentences 𝑠 and 𝑞 

are represented by matrices 𝑆 ∈
ℝ𝑑×|𝑡𝑠| =( w1, … , w|𝑡𝑠| ) and 𝑄 ∈

ℝ𝑑×|𝑡𝑞|=(w1, … , w|𝑡𝑞|), respectively, where 𝑡𝑠 and 𝑡𝑞 

are the number of words. To make our model focus 

on domain words, we introduce the attention 

mechanism. Note that although a sentence 

representing the expertise profile is generated by 

combining those domain words, expert’s expertise 

differs from expert to expert. Thus, it is reasonable to 

pay close attention to domain words related to query 

topics. Specifically, an attention coefficient matrix 

𝐴 = ℝ|𝑡𝑠|×|𝑡𝑞|  is generated by calculating the 

similarity between two matrices 𝑆  and 𝑄 . For any 

𝐴𝑖,𝑗 ∈ 𝐴 , A𝑖,𝑗 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆𝑖 , 𝑄𝑗)  is a coefficient 

matrix, where 𝑆𝑖 and 𝑄𝑗 denote the ith and jth word 

vector in S and  Q respectively, and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥, 𝑦) 

is a transformation function used to calculate the 

attention coefficient. There are several alternative 

approaches for the transformation function. Here, the 

coefficient matrix calculation is defined as (2), where 

| ∙ | denotes Euclidean distance between two words. 

 

         𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆𝑖 , 𝑄𝑗) =
1

1+|𝑺𝑖−𝑸𝑗|
=

1

√∑ (𝑺𝑘,𝑖−𝑸𝑘,𝑗)2𝑑
𝑘=1

                 (2) 

 

 

Figure 3. Overview of the CNN-based Ranking Model. 

Further, the attention coefficient matrix 𝐴  is 

transformed into an attention feature matrix with the 

same dimension as sentence matrices, and then is 

used together with the original sentence matrices as 

inputs to the convolution operation. The attention 

feature matrix enables the convolution operation to 

learn domain words. The attention feature matrices 

𝑆𝑎  and 𝑄𝑎  can be calculated by Equation (3) and 

Equation (4), respectively, where the weight matrices 

𝑊𝑠 ∈ ℝ𝑑×|𝑡𝑠|  and 𝑊𝑞 ∈ ℝ𝑑×|𝑡𝑞|  are parameters 

learned during the training process. We randomly 

initialize them. 

𝑆𝑎 = 𝑊𝑠. 𝐴𝑇                                (3) 

𝑄𝑎 = 𝑊𝑞 . 𝐴                                (4) 

The convolutional layer aims to obtain interesting 

patterns of word sequences as ticket features and 

expert capability features. We apply a one-

dimensional convolution operation on the sentence 

vector 𝑠 ∈ ℝ|𝑠|  and the convolution kernel 𝑓 ∈ ℝ|ℎ| 

in a wide convolution manner. The one-dimensional 

convolution operation is taken in each h-size window 

of sentence 𝑠 to obtain another sequence 𝑐: 

 

𝑐𝑗 = (𝑠 ∗ 𝑓)=𝑠𝑗−ℎ+1
𝑇 ∙ 𝑓 = ∑ 𝑠𝑘𝑓𝑘

𝑗+ℎ−1
𝑘=𝑗         (5) 
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where each row vector 𝑐j ∈ ℝ|s|+h−1  in 𝐶  results 

from a convolutional operation between jth row 

vector in S and jth row vector in 𝐹. 

In practice, a set of filters, packed as 𝐹 ∈ ℝ𝑑×ℎ, 

that work in parallel are applied in a deep learning 

model, producing multiple feature maps 𝐶 ∈
ℝ𝑑×|𝑠|+ℎ−1 . A nonlinear feature of the text is 

extracted using a Rectified Linear Unit (ReLU) as an 

activation function after each convolutional layer. 

The folding layer aims to capture the association 

information of features between adjacent rows and 

reduce the dimension of features, which sums up 

every two rows in the feature map component-wise. 

The pooling layer aims to extract the most 

representative feature from sentences to reduce the 

representation. We use the k-max pooling strategy to 

select the top k features from all features according to 

the sentence input length, and to keep the order 

information of features, which can effectively 

preserve the strength of recurring word features, 

especially for words that may be repeated in problem 

descriptions and solutions. 

Using the fully connected layer, we fetch the 

resulting representation vectors 𝑋𝑠  and 𝑋𝑞  of the 

same dimension for processing tickets and expert 

profiles. 

The second part starts from using these two 

vectors to be feed into the expert ranking model in 

order to recommend experts. First, the similarity 

between a ticket and an expert is calculated using 

Equation (6) as the expert matching score. 

𝑠𝑖𝑚(𝑥𝑠, 𝑥𝑞) = 𝑥𝑠
𝑇𝑀𝑠𝑥𝑞           (6) 

where 𝑀𝑠 ∈ ℝ𝑑×𝑑 is a similarity matrix, it acts as a 

model of noisy channel approach for machine 

learning, which has been commonly adopted as a 

scoring model in information retrieval and question 

answer. The similarity matrix M is a parameter of the 

network and is optimized during the training. And 

then, the joint vector is passed through a three-layer, 

full connection, feed-forward neural network, which 

allows rich interactions between a sentence pair from 

one of the three components. The joint layer is 

responsible for connecting these two eigenvector and 

the similarity matrix using Equation (7).  

𝑥𝑗𝑜𝑖𝑛 = (𝑥𝑠
𝑇; 𝑥𝑠𝑖𝑚; 𝑥𝑞

𝑇)               (7) 

The output of the hidden layer is calculated using 

α(𝑤ℎ ∙ 𝑥 + 𝑏), where 𝑤ℎ is the weight vector of the 

hidden layer, and α(∙)  is a nonlinear activation 

function. Here, the ReLU function is used as the 

activation function. Finally, the neurons output by the 

hidden layer are passed through the softmax layer to 

get the resulting probability as the expert 

recommendation score, as shown in Equation (8), 

where 𝜃𝑘  represents the weight vector of the kth 

problem area. 

𝑠𝑐𝑜𝑟𝑒(𝑥𝑠 , 𝑥𝑞) = 𝑝(𝑦 = 𝑗|𝑥𝑗𝑜𝑖𝑛) =
𝑒

𝑥𝑗𝑜𝑖𝑛
𝑇 𝜃𝑗

∑ 𝑒
𝑥𝑗𝑜𝑖𝑛

𝑇 𝜃𝑘𝐾
𝑘=1

   (8) 

Our model is trained to minimize the binary cross-

function, as shown in Equation (9). 

𝐿 = −log ∏ 𝑝(𝑦𝑖|𝑠𝑖 , 𝑞𝑖) = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑎𝑖 + (1 − 𝑦𝑖)log (1 − 𝑎𝑖)𝑁
𝑖=1

𝑁
𝑖=1   (9) 

where 𝑦𝑖  and 𝑎𝑖  are the ground truth and the 

prediction result for the ith pair of ticket and expert. 

The parameters in the neural network are trained by 

the mini-batch gradient descent approach, and the 

sample size of each epoch is optimized during the 

experiment. In order to mitigate the over-fitting issue, 

we augment the cost function with L2-norm 

regularization to constrain the parameters, and 

employ the dropout strategy in the full-connection 

layer to prevent feature co-adaption by dropping out 

a portion of hidden units during the forward phrase. 

2.6 Ranking-Based Expert 
Recommendation 

For an incoming ticket t and a set of experts D, ticket-

expert pairs {< 𝑡, 𝑒𝑖 > |1 ≤ 𝑖 ≤ 𝐷} are built and feed 

into the ranking model. The expert recommendation 

scores for these pairs are outputted using the trained 

ranking model, and experts are sorted based on their 

competency scores in a descending order. A 

straightforward recommendation policy is to 

recommend an expert who has not been 

recommended from the ordered expert list each time 

until the ticket is resolved.  

3 EXPERIMENTS 

3.1 Experiment Settings 

The ticket dataset used in our experiments was 

collected from an account of a large IT service 

provider, which contains over 479079 tickets 

belonging to 95 problem types and 582 system 

maintenance experts. Statistically, the average 

number of tickets resolved by an expert is close to 

823. 10% of tickets in the dataset are randomly 

selected to generate the testing dataset, while the rest 

is used as the training dataset. After that, the natural 

language processing technique is used to remove stop 

words and build part-of-speech tags for ticket 

problem descriptions and resolutions. The nouns, 

adjectives and verbs are kept as the signature term 

candidates and are concatenated into a sentence by 

keeping the word order in its original texts. Further, 
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for each ticket in the training data, it is divided into 

several instances with the form < 𝑡𝑖 , 𝑒𝑗 , 𝑠𝑖𝑗 >, where 

ti denotes a ticket represented by a sentence, 𝑒𝑗 is an 

expert involved in the ticket routing sequence and 

represented by a sentence of domain words, and 𝑠𝑖𝑗 

denotes whether expert ej  solves ticket τi  or not, 

𝑠𝑖𝑗 = 1 if expert 𝑒𝑗  is a resolver, otherwise 𝑠𝑖𝑗 = 0. 

For each ticket in the testing data, it is transformed 

into one instance with the form < 𝑡𝑖 , 𝑒𝑗 , ? > by only 

considering the resolver of this ticket. 

Two common metrics in expert recommendation 

are used to evaluate our approach, and they are 

precision@α  and Mean Steps to Resolve (MSTR) 

(Shao Q, Xu J, Xu J). Precision@α (short for p@α) 

(Miao G, Aggarwal V) relates to precision, where  α 

is a position parameter. For example, p@1 denotes 

the probability that the first recommended expert is a 

resolver, which is a natural way to indicate the 

recommendation quality of the retrieved top-N 

experts. Besides performance, we also use MSTR to 

evaluate efficiency by measuring the mean steps of 

resolving a ticket. Obviously, we prefer to a lower 

MSTR for an efficient recommendation. Assume that 

𝑇 is a set of tickets, ∀𝑡𝑖 ∈ 𝑇, expert 𝑒𝑖 is the resolver 

of ticket 𝑡𝑖  and 𝐸𝐿𝑖𝑠𝑡(𝑡𝑖)  denotes a ordered expert 

list recommended by any expert recommendation 

algorithm. MSTR can be calculated as: 

𝑀𝑆𝑇𝑅(𝑇) =
∑ 𝐼(𝑡𝑖)×𝑘𝑖𝑡𝑖∈𝑇

|𝑇|
              (10) 

where I(ti) = 1 if EList(ti) contains expert ei and ki 

denotes the position of expert ei in the list, otherwise 

I(ti) = 0. 

Further, the four state-of-the-art approaches are 

considered for comparison, including logistic 

regression (LR) (R. Qamili), support vector machine 

(SVM) (Agarwal S), STAR (Zhou W) and ABCNN-

1 (Yin W).  

All recommendation models are implemented 

using Python. For convenience, we name our model 

as CNN-ATT. The testing machine is Windows 10 

equipped with Intel Xeon E5-2699 V4 2.3GHz CPU 

and 256GB RAM. We evaluate all models on the 

testing data set using the above mentioned metrics. 

3.2 Results 

First, we evaluate the impact of different 

representation models on recommendation 

performance and efficiency. We compare four 

common representation models, including TF-IDF, 

Word2Vec, FastText and Bert, and present the results 

in Table 1. We can see that the distributed 

representation achieves a good performance. 

Specifically, the algorithm using Bert performs better 

than the algorithms using any other text 

representation model in terms of P@1 and MSTR. 

Our expert recommendation algorithm with a 

combination of Bert and the deep learning technology 

has a great improvement on P@1 over 22.1% and 

6.95% compared to TF-IDF and Word2Vec, 

respectively. The results using FastText are similar to 

Word2Vec. On the other hand, our algorithm also has 

an obvious efficiency improvement in terms of 

MSTR, over 15.97% and 9.0% compared to TF-IDF 

and Word2Vec, respectively. The main reason lies in 

that the Bert model trained from historical tickets can 

characterize the distribution of features automatically 

and represent the tickets well, while the traditional 

approaches highly depend on manual feature 

engineering and may miss important features.  

Second, we evaluate the impact of sentence length 

on expert recommendation performance and 

efficiency. We measure the distribution of the number 

of words appearing in problem description and 

characterizing expert profile from the historical 

tickets, respectively. As for the length of problem 

description, we can find that about 77% tickets 

contain 25 to 100 words, and the maximum length is 

197. As for the length of sentence representing expert 

profile, we can find that about 68% tickets contain 10 

to 120 domain words, and the maximum length is 

237. Hence, we evaluate our algorithm by varying the 

sentence length, and the results are shown in Figure 

4, where the length of sentence model for problem 

description varies from 20 to 100 while the length of 

sentence model for expert profile varies from 10 to 

120. We can observe that the recommendation 

performance is optimal when the length of sentence 

models for problem description and expert profile is 

50 and 100, respectively, which means that the longer 

length of sentence models do not always result in a 

good recommendation performance, but spends more 

computing time. 

Table 1. Results from the model using different 

presentation approaches. 

Representation P@1 MSTR 

TF-IDF 0.7160 3.13 

Word2Vec 0.8175 2.89 

FastText 0.8104 2.95 

Bert 0.8743 2.63 
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Figure 4. The impact of the sentence length on 

recommendation performance. 

Table 2. Overall performance comparison. 

Approaches P@1 MSTR 

LR 0.6672 4.53 

SVM 0.6895 4.12 

STAR 0.8459 3.01 

ABCNN-1 0.8464 2.98 

CNN-w/o-ATT(ours) 0.8497 2.97 

CNN-ATT(ours) 0.8743 2.63 

 

Automating expert recommendation can be tackled 

by applying different approaches. Here, we compare 

several alternative algorithms from aspects of the 

traditional machine learning and deep learning 

technique in terms of p@1 and MSTR. Overall 

performance results are shown in Table 2. We have 

some interesting observations. First, compared to 

traditional machine learning approaches, the 

approaches based on the deep learning technology 

perform better, which means that our CNN ranking 

model-based solution is effective by making full use 

of the semantic information from ticket problem 

texts. Second, the approach using the attention 

mechanism performs better than the others without it, 

which means that the attention mechanism can help 

our model identify key words in problem descriptions 

and expert profiles and improve the recommendation 

performance. Of course, we also see that the optimal 

precision of the initial expert recommendation is 

87.43%, which means that our approach dispatches a 

trouble ticket to the following expert in the ordered 

recommendation list until the ticket is resolved. 

4 CONCLUSION 

To quickly and accurately dispatch trouble tickets 

from complex IT systems to skilled expert for 

problem-solving, a deep learning-based expert 

recommendation approach is proposed in this paper. 

Our approach takes both problem description and 

resolution into consideration to characterize expert 

profile and build recommendation model. The unified 

distributed representation is first applied to 

characterize both problem description and expert 

profile. And then, an attention-based convolution 

neural network is built to learn a ranked expert 

recommendation model by taking two sentence 

models as inputs. For an incoming ticket, an expert 

list is recommended to dispatch the trouble ticket. The 

experimental results on real-world tickets show that 

our approach performs better than both the traditional 

machine learning-based approaches and the 

convolution neural network-based approaches in 

terms of p@1 and MSTR. 
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