
Convolution Neural Network-Based Expert Recommendation for

Alert Processing

Haidong Huang1, Liming Wang1, Rao Fu2*, Jing Yu1, Ding Yuan2 and Danqi Li2
1State Grid Jiangsu Electric Power CO., LTD. Nanjing, China

2Xuzhou Supply Company, State Grid Jiangsu Electric Power CO., LTD. Xuzhou, China

Keywords: Trouble Ticket, Expert Recommendation, Expert Profile, Convolution Neural Network.

Abstract: Alerts and associated trouble tickets provide extremely useful information for IT system maintenance.

However, the continuously occurrence of thousands of tickets also leads to a big challenge for accurately and

effectively dispatching them to skilled experts for quick problem-solving. To cope with such a challenge, this

paper develops a convolution neural network-based expert recommendation approach for in-time alert

processing. First, expert profile is built by extracting domain words from historical tickets, and is encoded

into a sentence like problem description. Second, an attention-based convolution neural network (CNN) is

developed not only to learn a unified representation for both problem description and expert profile but also

measure the semantic similarity between them. Finally, an ordered expert list is outputted. We evaluate our

approach on a real-world data set. Experimental results show that compared to the best baseline approach, our

approach can not only improve 2.8% in terms of p@1 but also shorten 11.7% in terms of the mean number of

steps to resolve (MSTR).

1 INTRODUCTION

Trouble tickets play a very important role in the

complex IT system maintenance. When an event

happens, or when special situations, errors, even

faults occur during the IT service consumption, a

trouble ticket, also called issue ticket, is generated,

which records the detailed problem symptom. And

then, the ticket management employed by the IT

system automatically dispatches the ticket to domain

experts for problem-solving. Once the problem is

fixed, the ticket is closed. System maintenance staffs

always attempt to quickly bring an abnormal service

back to normal by assigning skilled and well-matched

experts using the deployed expert recommendation

module. However, several real-world situations, such

as diverse troubles, vague problem descriptions

written in a natural language way, huge size of tickets

and low efficiency of manually assigning experts,

pose great challenges on the expert recommendation

module to avoid violating the signed Service Level

Agreement (SLA) with users. Therefore, rapid

problem-solving strongly depends on efficiently and

accurately expert recommendation, which motivates

us to focus on expert recommendation for trouble

tickets.

Typically, a trouble ticket contains at least five

fields, including ‘problem description’, ‘problem

type’, ‘expert name/id’, ‘resolution’ and ‘status’, as

shown in Figure 1. The problem description presents

the detailed symptom occurring at system runtime.

Each ticket is assigned to a specific problem type

belonging to the problem category. The expert name

is used to identify a specific expert who attempts to

solve the problem. The resolution records the detailed

approaches to fix the problem. The status is setting to

‘closed’ if the problem has been fixed, otherwise it is

setting to ‘open’. The ticket resolving process is

regarded as a ticket delivery sequence starting from

an initial expert to the final resolver. Initially, an

incoming ticket was assigned to an expert. If the

problem is fixed, the ticket is closed. Otherwise, the

ticket dispatching system delivers the ticket to

another expert. Such a delivery process is repeated

until the ticket is closed. The last expert who resolved

it is called a resolver.

Although a few studies (Shao Q, Shao Q, Agarwal

S, Botezatu M. M., Xu J, Zhou W) have been reported

to deal with ticket dispatching or expert

recommendation, there are still many limitations in

existing methods that deserve further investigation.

The traditional machine learning technology, such as

logistic regression (LR)(R. Qamili), decision tree

Huang, H., Wang, L., Fu, R., Yu, J., Yuan, D. and Li, D.
Convolution Neural Network-Based Expert Recommendation for Alert Processing.
DOI: 10.5220/0012284900003807
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2023), pages 401-408
ISBN: 978-989-758-677-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

401

(DT) (R. Qamili) and support vector machine (SVM)

(Agarwal S), has been applied to conduct ticket

dispatching. An obvious advantage is that these

approaches can directly work on trouble tickets with

a little effort. However, the characteristics of ticket

problem descriptions, such as unformatted, large

vocabulary size and short texts, make expert

recommendation suffer from low accuracy. The main

reason lies in that the representation models, such as

the n-gram (R. Kallis), TF-IDF (R. Qamili) and LDA

(Zhou W), generally used by these approaches cannot

characterize trouble tickets well. To solve this issue,

several approaches based on the deep learning

technology has been proposed and shown its potential

in meeting the need of trouble ticket expert

recommendation and improving recommendation

performance. In this paper, to leverage the

characteristics of tickets well to further improve

recommendation accuracy, we propose a deep neural

ranking model-based expert recommendation

approach for trouble tickets by combining expert

profiling, vector-based ticket representation, the

attention-based convolution neural network. Further,

we evaluate the effectiveness of our model on a real

trouble ticket dataset.

Figure 1. An instance of the trouble tickets.

In summary, our contributions are the followings:

1) An expert profiling component is designed by

making full use of ticket problem descriptions and

resolutions to characterize expert’s professional

knowledge with domain words, which is helpful to

improve the efficiency and accuracy of ticket

assignment.

2) Two attention-based sentence models

characterizing problem description and expert profile,

respectively, are integrated into our recommendation

approach and mapped into the same vector, which

enables the semantic similarity measure between the

problem description and the expert profile and benefit

to improve the recommendation accuracy.

The rest of the paper is organized as follows. In

Section 2, a deep learning-based expert

recommendation approach is proposed. The

experiment settings are explained and the

performance evaluation results are discussed in

Section 3. At last, we conclude our work in Section 4.

2 THE PROPOSED APPROACH

2.1 Problem Formulation

Assume that 𝒯 = {𝑡1, . . , 𝑡𝑖 , … , 𝑡𝑁} is a set of tickets

from a given IT system, where each ticket can be

represented by a quintuple, denoted as 𝑡 =<
𝑖𝑑, 𝑐, 𝜏, 𝑟, 𝑟𝑝(𝑘)>, 𝑡 ∈ 𝒯. The first component denotes

the unique identifier of a ticket. The components 𝑐, 𝜏

and 𝑟 are the problem type, the problem description

and the problem resolution, respectively. We assume

that the number of problem types is M. Resolutions

from multiple experts involved in the ticket routing

sequence are merged into the final problem resolution.

The last component 𝑟𝑝(𝑘) denotes a ticket routing

sequence containing k ordered experts. We operate on

historical tickets to output a set of instances, denoted

as 𝐼 = {< 𝜏𝑖 , 𝑒𝑗 , 𝑠𝑖𝑗 >} , where 𝜏𝑖 is the problem

description for the ith ticket, 𝑒𝑗 is the ith expert

involving in its ticket routing sequence, and 𝑠𝑖𝑗 is a

competency score of expert 𝑒𝑗 . If expert 𝑒𝑗 is a

resolver for the ith ticket, 𝑠𝑖𝑗 = 1, otherwise 𝑠𝑖𝑗 = 0.

Therefore, given the set 𝐼, our purpose is to construct

a ranking model that calculates an optimal score 𝑠𝑖𝑗

for each pair < 𝜏𝑖 , 𝑒𝑗 >, s.t. an expert with a strong

competency has a high score. Formally, the expert

recommendation task is to learn a ranking function

from historical pairs, as shown in Equation (1),

ℎ(𝑤, 𝜓(𝜏𝑖 , 𝑒𝑗)) → 𝑠𝑖𝑗 (1)

where function 𝜓(∙) maps a pair < 𝜏𝑖 , 𝑒𝑗 > to a

similarity vector, where each component reflects a

certain type of similarity, e.g., lexical, syntactic, or

semantic. The weight vector 𝑤 is a parameter of the

ranking model and is learned during the training.

2.2 Framework

The overview of our expert recommendation

approach is illustrated in Figure 2. Our approach

consists of four components, including data

preprocessing, expert profiling, vector-based

representation, and convolution neural network based

ranking model. Since problem descriptions record

textual information, the data preprocessing

component is essential to do some text preprocessing

operations by applying the natural language

techniques. And then, each problem description is

represented as a sentence vector using the learned

word vector from historical tickets. On the other hand,

domain words are extracted from problem

descriptions and resolutions to characterize expert

profile. Each expert is also represented as a sentence

GUI is failing with “Unable to Logon: RT11844:

Security exception: [CLI Driver] SQL30081N. A

communication error has been detected.

Communication protocol being used: “TCP/IP”.

Communication API being used: “SOCKETS”.

Location where the error was detected”.

Mary/

OSG021
stopped transition on g2 and g4 and recycled WAS on e8/

e9/ec/ed, then restarted transition. But still does not work.

Jose/

SMGNA054

There seems to be some authorization issue. DDF on

DB2B stopped with a mode force then restarted
Andrew/

SSAPHWOA023

the 2 threads that I canceled are stuck in DB2 and not

rolling back so they will continue to hold the locks they

have. DB2B was recycled under 5 minutes. The problem

has been solved, ticket is closed.

…

Problem Description
Resolutions

…
Experts

Problem Type
Status

DB2Security

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

402

vector. Further, each ticket is transformed into at least

one triplet containing a problem description vector,

an expert profile vector and a competency score.

Finally, an attention-based convolution neural

network ranking model is trained on these triplets.

When an incoming ticket arrives, the resulting

ranking model outputs an ordered expert list for the

ticket based on the matching score. Experts with the

top-N competency score are recommended to resolve

the incoming ticket one by one until it is resolved.

Figure 2. Overview of the proposed Approach.

2.3 Vector-Based Ticket
Representation

A proper ticket representation approach is crucial to

the task of expert recommendation. Recently, the

word vector technology (Zhou W), also known as

word embedding, has been successfully applied in the

domain of text representation and has been

demonstrated that it has a good effect in charactering

text semantic information. We argue that deriving an

effective representation for problem descriptions

plays an importance role in automating IT service

management. Thus, in this paper, the word vector

technology is also applied to ticket representation.

Assume that V is the word vocabulary of tickets.

Let w ∈ ℝd be a d-dimensional word vector to

represent any word from ticket problem descriptions

or resolutions, and w belongs to a word vector matrix

W ∈ ℝd×|V| . Further, a ticket is represented as a

sentence combining its problem description and

resolution. Using the word vector matrix, each ticket

is mapped to their vector representation. Assume that

ticket 𝑡 contains 𝑙 words. The sentence for ticket 𝑡 is

represented as a matrix s ∈ ℝd×𝑙 = [w1, … , w𝑙].

Although there are some publicly pre-trained

word vector models, such as word2vec (Aggarwal V),

FastText (Athiwaratkun), and Bert. However, due to

the wide existence of non-dictionary words in tickets,

these pre-trained word vector models cannot be

applied to our work. According to the common

experience that a minimal size of the corpora required

for learning word vectors should be at least in the

order of hundreds of thousands, we use sufficient

historical tickets in our database as text corpora to

learn and extend the existing word vectors applicable

to IT service management.

2.4 Expert Profile and Representation

Expert profiling is a critical factor impacting the

efficiency and accuracy of ticket assignment. Here,

we use the professional knowledge or skills owned by

experts to characterize expert profile, where the

professional knowledge indicates his/her expertise to

resolve the ticket. For a given ticket, it is difficult to

determine whether an expert’s profile matches with

the ticket problem description. Thus, we represent

each expert profile as a group of domain words

extracted from problem descriptions and resolutions

to indicate general interests and activities of an

expert, defined as Definition 1.

Definition 1 (Expert Profile). A expert profile of

expert 𝑒𝑖 is represented as a set of words, 𝑒𝑝𝑖 =
{𝑑𝑤𝑟

𝑖|𝑟=1,..,𝐾}, where {𝑑𝑤1
𝑖 , … , 𝑑𝑤𝑟

𝑖 , … , 𝑑𝑤𝐾
𝑖 } denotes

the set of K domain words describing general interests

and activities of expert 𝑒𝑖.

Different with the traditional way, we attempt to

automatically extract domain words from historical

tickets without human intervention. Using historical

tickets resolved by an expert, we think that those

words frequently occurring in problem descriptions

and resolutions of those tickets have a higher

probability to be domain words of the expert. For any

expert, we extract the same number of words to

characterize the expert.

We find tickets solved by a given expert from

historical tickets, and then candidate domain words

are fetched from these tickets. Domain words are

usually nouns or verbs provided by system

administrators or obtained from related documents

like the catalog taxonomy of system management.

After fetching candidate domain words, we measure

the importance of each word using the idea similar to

TF-IDF. For a candidate word w, we first measure its

frequency of appearing in tickets solved by expert 𝑒𝑗,

denoted as 𝑡𝑓(w). The higher 𝑡𝑓(w), the higher the

possibility that the word is a terminology is. Second,

we measure its expert frequency, denoted as 𝑒𝑓(w),

which represents the number of experts that have ever

solved the tickets containing the word. Third, we

measure its inverse expert frequency, denoted as

𝑖𝑒𝑓(w). The higher the value of 𝑖𝑒𝑓(w), the higher

the differentiation of the word among experts is. Last,

Expert

profile

Expert Profiling

Domain Word

Extraction

Expert Profile

Problem

Descriptions

Problem

Descriptions

and

Resolutions

Historical Ticket Data

Data Preprocessing

Vector-based

Representation

Triplets <Summary, Expert,

Competency Score / ?>

An Incoming

Ticket t

Convolution Neural Network

based Ranking Model

Matching score

Ranked

Expert List

Convolution Neural Network-Based Expert Recommendation for Alert Processing

403

we take these two factors into consideration to get the

importance of the word, and sort all candidate domain

words by the importance in a descending order and

then select the most important top-K words as the

domain words.

To accurately measure the semantic similarity

between a ticket and an expert, we make the expert

representation consistent with ticket representation.

An expert is represented as a sentence combining its

domain words. Using the same word vector matrix 𝑊

used in the ticket presentation, each expert is mapped

to their vector representation. Assume that expert

profile contains 𝐾 words. The sentence for expert 𝑒 is

represented as a sentence matrix q ∈ ℝd×𝐾 =
[w1, … , w𝐾].

2.5 CNN-Based Ranking Model

In this section, we build an attention-based CNN

ranking model to recommend experts, as shown in

Figure 3. Our model consists of two parts. The first

part consists of two attention-based sentence models

for mapping the trouble ticket problem and the expert

profile to their vector representation, respectively.

The second part is an expert ranking model that ranks

experts by learning the semantic similarity score

between the problem description and the expert

profile. We will describe these two parts in the

following texts. Generally, an incoming ticket can be

resolved by multiple experts with different

competency values. Thus, our model will recommend

all the candidates in the order that an expert with a

high competency ranks first.

In the embedding layer, the input is sentences 𝑠

and 𝑞, treated as sequences of words that represent a

ticket problem description and an expert capacity

respectively, where each word is drawn from a word

vocabulary 𝑉 . Words are represented by d-

dimensional vectors w ∈ ℝ𝑑. Input sentences 𝑠 and 𝑞

are represented by matrices 𝑆 ∈
ℝ𝑑×|𝑡𝑠| =(w1, … , w|𝑡𝑠|) and 𝑄 ∈

ℝ𝑑×|𝑡𝑞|=(w1, … , w|𝑡𝑞|), respectively, where 𝑡𝑠 and 𝑡𝑞

are the number of words. To make our model focus

on domain words, we introduce the attention

mechanism. Note that although a sentence

representing the expertise profile is generated by

combining those domain words, expert’s expertise

differs from expert to expert. Thus, it is reasonable to

pay close attention to domain words related to query

topics. Specifically, an attention coefficient matrix

𝐴 = ℝ|𝑡𝑠|×|𝑡𝑞| is generated by calculating the

similarity between two matrices 𝑆 and 𝑄 . For any

𝐴𝑖,𝑗 ∈ 𝐴 , A𝑖,𝑗 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆𝑖 , 𝑄𝑗) is a coefficient

matrix, where 𝑆𝑖 and 𝑄𝑗 denote the ith and jth word

vector in S and Q respectively, and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥, 𝑦)

is a transformation function used to calculate the

attention coefficient. There are several alternative

approaches for the transformation function. Here, the

coefficient matrix calculation is defined as (2), where

| ∙ | denotes Euclidean distance between two words.

 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆𝑖 , 𝑄𝑗) =
1

1+|𝑺𝑖−𝑸𝑗|
=

1

√∑ (𝑺𝑘,𝑖−𝑸𝑘,𝑗)2𝑑
𝑘=1

 (2)

Figure 3. Overview of the CNN-based Ranking Model.

Further, the attention coefficient matrix 𝐴 is

transformed into an attention feature matrix with the

same dimension as sentence matrices, and then is

used together with the original sentence matrices as

inputs to the convolution operation. The attention

feature matrix enables the convolution operation to

learn domain words. The attention feature matrices

𝑆𝑎 and 𝑄𝑎 can be calculated by Equation (3) and

Equation (4), respectively, where the weight matrices

𝑊𝑠 ∈ ℝ𝑑×|𝑡𝑠| and 𝑊𝑞 ∈ ℝ𝑑×|𝑡𝑞| are parameters

learned during the training process. We randomly

initialize them.

𝑆𝑎 = 𝑊𝑠. 𝐴𝑇 (3)

𝑄𝑎 = 𝑊𝑞 . 𝐴 (4)

The convolutional layer aims to obtain interesting

patterns of word sequences as ticket features and

expert capability features. We apply a one-

dimensional convolution operation on the sentence

vector 𝑠 ∈ ℝ|𝑠| and the convolution kernel 𝑓 ∈ ℝ|ℎ|

in a wide convolution manner. The one-dimensional

convolution operation is taken in each h-size window

of sentence 𝑠 to obtain another sequence 𝑐:

𝑐𝑗 = (𝑠 ∗ 𝑓)=𝑠𝑗−ℎ+1
𝑇 ∙ 𝑓 = ∑ 𝑠𝑘𝑓𝑘

𝑗+ℎ−1
𝑘=𝑗 (5)

Sentence

matrix

Ws Wq

Attention coefficient
matrix A

Ticket description Expert capacity

k-max

Pooling

Folding

Wide

convolution

Fully

connected

clean full free space present

Xs

high space use full disk home

Softmax

Hidden layer

Join layer

Metric

Learning

Xq

M

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

404

where each row vector 𝑐j ∈ ℝ|s|+h−1 in 𝐶 results

from a convolutional operation between jth row

vector in S and jth row vector in 𝐹.

In practice, a set of filters, packed as 𝐹 ∈ ℝ𝑑×ℎ,

that work in parallel are applied in a deep learning

model, producing multiple feature maps 𝐶 ∈
ℝ𝑑×|𝑠|+ℎ−1 . A nonlinear feature of the text is

extracted using a Rectified Linear Unit (ReLU) as an

activation function after each convolutional layer.

The folding layer aims to capture the association

information of features between adjacent rows and

reduce the dimension of features, which sums up

every two rows in the feature map component-wise.

The pooling layer aims to extract the most

representative feature from sentences to reduce the

representation. We use the k-max pooling strategy to

select the top k features from all features according to

the sentence input length, and to keep the order

information of features, which can effectively

preserve the strength of recurring word features,

especially for words that may be repeated in problem

descriptions and solutions.

Using the fully connected layer, we fetch the

resulting representation vectors 𝑋𝑠 and 𝑋𝑞 of the

same dimension for processing tickets and expert

profiles.

The second part starts from using these two

vectors to be feed into the expert ranking model in

order to recommend experts. First, the similarity

between a ticket and an expert is calculated using

Equation (6) as the expert matching score.

𝑠𝑖𝑚(𝑥𝑠, 𝑥𝑞) = 𝑥𝑠
𝑇𝑀𝑠𝑥𝑞 (6)

where 𝑀𝑠 ∈ ℝ𝑑×𝑑 is a similarity matrix, it acts as a

model of noisy channel approach for machine

learning, which has been commonly adopted as a

scoring model in information retrieval and question

answer. The similarity matrix M is a parameter of the

network and is optimized during the training. And

then, the joint vector is passed through a three-layer,

full connection, feed-forward neural network, which

allows rich interactions between a sentence pair from

one of the three components. The joint layer is

responsible for connecting these two eigenvector and

the similarity matrix using Equation (7).

𝑥𝑗𝑜𝑖𝑛 = (𝑥𝑠
𝑇; 𝑥𝑠𝑖𝑚; 𝑥𝑞

𝑇) (7)

The output of the hidden layer is calculated using

α(𝑤ℎ ∙ 𝑥 + 𝑏), where 𝑤ℎ is the weight vector of the

hidden layer, and α(∙) is a nonlinear activation

function. Here, the ReLU function is used as the

activation function. Finally, the neurons output by the

hidden layer are passed through the softmax layer to

get the resulting probability as the expert

recommendation score, as shown in Equation (8),

where 𝜃𝑘 represents the weight vector of the kth

problem area.

𝑠𝑐𝑜𝑟𝑒(𝑥𝑠 , 𝑥𝑞) = 𝑝(𝑦 = 𝑗|𝑥𝑗𝑜𝑖𝑛) =
𝑒

𝑥𝑗𝑜𝑖𝑛
𝑇 𝜃𝑗

∑ 𝑒
𝑥𝑗𝑜𝑖𝑛

𝑇 𝜃𝑘𝐾
𝑘=1

 (8)

Our model is trained to minimize the binary cross-

function, as shown in Equation (9).

𝐿 = −log ∏ 𝑝(𝑦𝑖|𝑠𝑖 , 𝑞𝑖) = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑎𝑖 + (1 − 𝑦𝑖)log (1 − 𝑎𝑖)𝑁
𝑖=1

𝑁
𝑖=1 (9)

where 𝑦𝑖 and 𝑎𝑖 are the ground truth and the

prediction result for the ith pair of ticket and expert.

The parameters in the neural network are trained by

the mini-batch gradient descent approach, and the

sample size of each epoch is optimized during the

experiment. In order to mitigate the over-fitting issue,

we augment the cost function with L2-norm

regularization to constrain the parameters, and

employ the dropout strategy in the full-connection

layer to prevent feature co-adaption by dropping out

a portion of hidden units during the forward phrase.

2.6 Ranking-Based Expert
Recommendation

For an incoming ticket t and a set of experts D, ticket-

expert pairs {< 𝑡, 𝑒𝑖 > |1 ≤ 𝑖 ≤ 𝐷} are built and feed

into the ranking model. The expert recommendation

scores for these pairs are outputted using the trained

ranking model, and experts are sorted based on their

competency scores in a descending order. A

straightforward recommendation policy is to

recommend an expert who has not been

recommended from the ordered expert list each time

until the ticket is resolved.

3 EXPERIMENTS

3.1 Experiment Settings

The ticket dataset used in our experiments was

collected from an account of a large IT service

provider, which contains over 479079 tickets

belonging to 95 problem types and 582 system

maintenance experts. Statistically, the average

number of tickets resolved by an expert is close to

823. 10% of tickets in the dataset are randomly

selected to generate the testing dataset, while the rest

is used as the training dataset. After that, the natural

language processing technique is used to remove stop

words and build part-of-speech tags for ticket

problem descriptions and resolutions. The nouns,

adjectives and verbs are kept as the signature term

candidates and are concatenated into a sentence by

keeping the word order in its original texts. Further,

Convolution Neural Network-Based Expert Recommendation for Alert Processing

405

for each ticket in the training data, it is divided into

several instances with the form < 𝑡𝑖 , 𝑒𝑗 , 𝑠𝑖𝑗 >, where

ti denotes a ticket represented by a sentence, 𝑒𝑗 is an

expert involved in the ticket routing sequence and

represented by a sentence of domain words, and 𝑠𝑖𝑗

denotes whether expert ej solves ticket τi or not,

𝑠𝑖𝑗 = 1 if expert 𝑒𝑗 is a resolver, otherwise 𝑠𝑖𝑗 = 0.

For each ticket in the testing data, it is transformed

into one instance with the form < 𝑡𝑖 , 𝑒𝑗 , ? > by only

considering the resolver of this ticket.

Two common metrics in expert recommendation

are used to evaluate our approach, and they are

precision@α and Mean Steps to Resolve (MSTR)

(Shao Q, Xu J, Xu J). Precision@α (short for p@α)

(Miao G, Aggarwal V) relates to precision, where α

is a position parameter. For example, p@1 denotes

the probability that the first recommended expert is a

resolver, which is a natural way to indicate the

recommendation quality of the retrieved top-N

experts. Besides performance, we also use MSTR to

evaluate efficiency by measuring the mean steps of

resolving a ticket. Obviously, we prefer to a lower

MSTR for an efficient recommendation. Assume that

𝑇 is a set of tickets, ∀𝑡𝑖 ∈ 𝑇, expert 𝑒𝑖 is the resolver

of ticket 𝑡𝑖 and 𝐸𝐿𝑖𝑠𝑡(𝑡𝑖) denotes a ordered expert

list recommended by any expert recommendation

algorithm. MSTR can be calculated as:

𝑀𝑆𝑇𝑅(𝑇) =
∑ 𝐼(𝑡𝑖)×𝑘𝑖𝑡𝑖∈𝑇

|𝑇|
 (10)

where I(ti) = 1 if EList(ti) contains expert ei and ki

denotes the position of expert ei in the list, otherwise

I(ti) = 0.

Further, the four state-of-the-art approaches are

considered for comparison, including logistic

regression (LR) (R. Qamili), support vector machine

(SVM) (Agarwal S), STAR (Zhou W) and ABCNN-

1 (Yin W).

All recommendation models are implemented

using Python. For convenience, we name our model

as CNN-ATT. The testing machine is Windows 10

equipped with Intel Xeon E5-2699 V4 2.3GHz CPU

and 256GB RAM. We evaluate all models on the

testing data set using the above mentioned metrics.

3.2 Results

First, we evaluate the impact of different

representation models on recommendation

performance and efficiency. We compare four

common representation models, including TF-IDF,

Word2Vec, FastText and Bert, and present the results

in Table 1. We can see that the distributed

representation achieves a good performance.

Specifically, the algorithm using Bert performs better

than the algorithms using any other text

representation model in terms of P@1 and MSTR.

Our expert recommendation algorithm with a

combination of Bert and the deep learning technology

has a great improvement on P@1 over 22.1% and

6.95% compared to TF-IDF and Word2Vec,

respectively. The results using FastText are similar to

Word2Vec. On the other hand, our algorithm also has

an obvious efficiency improvement in terms of

MSTR, over 15.97% and 9.0% compared to TF-IDF

and Word2Vec, respectively. The main reason lies in

that the Bert model trained from historical tickets can

characterize the distribution of features automatically

and represent the tickets well, while the traditional

approaches highly depend on manual feature

engineering and may miss important features.

Second, we evaluate the impact of sentence length

on expert recommendation performance and

efficiency. We measure the distribution of the number

of words appearing in problem description and

characterizing expert profile from the historical

tickets, respectively. As for the length of problem

description, we can find that about 77% tickets

contain 25 to 100 words, and the maximum length is

197. As for the length of sentence representing expert

profile, we can find that about 68% tickets contain 10

to 120 domain words, and the maximum length is

237. Hence, we evaluate our algorithm by varying the

sentence length, and the results are shown in Figure

4, where the length of sentence model for problem

description varies from 20 to 100 while the length of

sentence model for expert profile varies from 10 to

120. We can observe that the recommendation

performance is optimal when the length of sentence

models for problem description and expert profile is

50 and 100, respectively, which means that the longer

length of sentence models do not always result in a

good recommendation performance, but spends more

computing time.

Table 1. Results from the model using different

presentation approaches.

Representation P@1 MSTR

TF-IDF 0.7160 3.13

Word2Vec 0.8175 2.89

FastText 0.8104 2.95

Bert 0.8743 2.63

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

406

Figure 4. The impact of the sentence length on

recommendation performance.

Table 2. Overall performance comparison.

Approaches P@1 MSTR

LR 0.6672 4.53

SVM 0.6895 4.12

STAR 0.8459 3.01

ABCNN-1 0.8464 2.98

CNN-w/o-ATT(ours) 0.8497 2.97

CNN-ATT(ours) 0.8743 2.63

Automating expert recommendation can be tackled

by applying different approaches. Here, we compare

several alternative algorithms from aspects of the

traditional machine learning and deep learning

technique in terms of p@1 and MSTR. Overall

performance results are shown in Table 2. We have

some interesting observations. First, compared to

traditional machine learning approaches, the

approaches based on the deep learning technology

perform better, which means that our CNN ranking

model-based solution is effective by making full use

of the semantic information from ticket problem

texts. Second, the approach using the attention

mechanism performs better than the others without it,

which means that the attention mechanism can help

our model identify key words in problem descriptions

and expert profiles and improve the recommendation

performance. Of course, we also see that the optimal

precision of the initial expert recommendation is

87.43%, which means that our approach dispatches a

trouble ticket to the following expert in the ordered

recommendation list until the ticket is resolved.

4 CONCLUSION

To quickly and accurately dispatch trouble tickets

from complex IT systems to skilled expert for

problem-solving, a deep learning-based expert

recommendation approach is proposed in this paper.

Our approach takes both problem description and

resolution into consideration to characterize expert

profile and build recommendation model. The unified

distributed representation is first applied to

characterize both problem description and expert

profile. And then, an attention-based convolution

neural network is built to learn a ranked expert

recommendation model by taking two sentence

models as inputs. For an incoming ticket, an expert

list is recommended to dispatch the trouble ticket. The

experimental results on real-world tickets show that

our approach performs better than both the traditional

machine learning-based approaches and the

convolution neural network-based approaches in

terms of p@1 and MSTR.

ACKNOWLEDGMENTS

The work was supported in part by State Grid Jiangsu

Electric Power CO., LTD (J2022014).

REFERENCES

Shao Q, Chen Y, Tao S, Yan X, Anerousis N. EasyTicket:

a ticket routing recommendation engine for enterprise

problem resolution(C). Proceedings of the VLDB

Endowment. 2008, 1(2):1436-1439.

https://doi.org/10.14778/1454159.1454193

Shao Q, Chen Y, Tao S, Yan X, Anerousis N. Efficient

ticket routing by resolution sequence mining(C).

Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining.

2008, pp. 605-613.

https://doi.org/10.1145/1401890.1401964

Yin W, Schütze, Hinrich, Xiang B, et al. ABCNN:

Attention-Based Convolutional Neural Network for

Modeling Sentence Pairs (J).Transactions of the

Association for Computational Linguistics, 2016, 4:259-

272. https://doi.org/10.1162/tacl_a_00097.

Agarwal S, Sindhgatta R, Sengupta B. SmartDispatch:

enabling efficient ticket dispatch in an IT service

environment(C). Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining. 2012, pp. 1393-1401.

https://doi.org/10.1145/2339 530.2339744

Botezatu, M. M., Bogojeska, J., Giurgiu, I., Voelzer, H., &

Wiesmann, D. Multi-View Incident Ticket Clustering

for Optimal Ticket Dispatching(C). Proceedings of the

21th ACM SIGKDD international Conference on

Knowledge Discovery and Data Mining. 2015, 1711-

1720. https://doi.org/10.1145/2783258.2788607

R. Qamili, S. Shabani and J. Schneider, An Intelligent

Framework for Issue Ticketing System Based on

Machine Learning(C), Proceedings of 2018 IEEE 22nd

International Enterprise Distributed Object Computing

Convolution Neural Network-Based Expert Recommendation for Alert Processing

407

Workshop (EDOCW), Stockholm, 2018, pp. 79-86.

https://doi.org/10.1109/EDOCW.2018.00022

R. Kallis, A. Di Sorbo, G. Canfora and S. Panichella, Ticket

Tagger: Machine Learning Driven Issue

Classification(C), Proceedings of IEEE International

Conference on Software Maintenance and Evolution

(ICSME), Cleveland, OH, USA, 2019, pp. 406-409.

https://doi.org/10.1109/ICSME.2019.00070

Zhou W, Tang L, Li T, Shwartz L, Grabarnik GY.

Resolution recommendation for event tickets in service

management(C). Proceedings of 2015 IFIP/IEEE

International Symposium on Integrated Network

Management (IM) 2015 May 11, pp. 287-295.

https://doi.org/10.1109/INM.2015.7140303

Xu J, Zhang H, Zhou W, et al. Signature based trouble ticket

classification (J). Future Generation Computer Systems,

2018, 78:41-58.

https://doi.org/10.1016/j.future.2017.07.054

Zhou W, Li T, Shwartz L, Grabarnik GY. Recommending

ticket resolution using feature adaptation(C).

Proceedings of 11th International Conference on

Network and Service Management (CNSM), 2015 Nov

9 (pp. 15-21). IEEE.

https://doi.org/10.1109/CNSM.2015.7367333

Zhou W, Xue W, Baral R, et al. STAR: A System for Ticket

Analysis and Resolution(C)// Proceedings of the 23th

ACM SIGKDD international conference on Knowledge

Discovery and Data Mining. ACM, 2017, pp 2181-

2190. https://doi.org/10.1145/3097983.3098190

Athiwaratkun, Ben, A. G. Wilson, and A. Anandkumar.

Probabilistic FastText for Multi-Sense Word

Embeddings(C). In Proceedings of the 56th Annual

Meeting of the Association for Computational

Linguistics. 2018, pp.1-11.

https://doi.org/10.18653/v1/P18-1001

Xu J, He R. Expert recommendation for trouble ticket

routing (J). Data & Knowledge Engineering, 2018,

116(JUL.):205-218.

https://doi.org/10.1016/j.datak.2018.06.004

Xu J, He R, Zhou W, et al. Trouble Ticket Routing Models

and Their Applications (J). IEEE Transactions on

Network & Service Management, 2018, 15(2):530-543.

https://doi.org/10.1109/TNSM.2018.2790956

Miao G, Moser LE, Yan X, Tao S, Chen Y, Anerousis N.

Generative models for ticket resolution in expert

networks(C). In Proceedings of the 16th ACM

international conference on Knowledge discovery and

data mining (SIGKDD). 2010, pp. 733-742.

https://doi.org/10.1145/1835804.1835897

Aggarwal V, Agarwal S, Dasgupta GB, et al. ReAct: A

System for Recommending Actions for Rapid

Resolution of IT Service Incidents(C). In 2016 IEEE

International Conference on Services Computing

(SCC), 2016, pp. 1-8.

https://doi.org/10.1109/COMPSAC.2016.170

Quoc Le, Tomas Mikolov. Distributed representations of

sentences and documents(C). Proceedings of the 31st

International Conference on International Conference

on Machine Learning. 2014, 1188-1196.

https://dl.acm.org/doi/10.5555/3044805.3045025

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

408

