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Abstract: In response to the issues of low detection accuracy for surface defects in strip steel and difficulty in detecting 

small target defects in modern steel production processes, this study presents an improved algorithm based 

on YOLOv5s is proposed for detecting strip-steel surface defects. Firstly, an improved C3 module combining 

large-kernel depth separable convolution and Squeeze-and-Excitation (SE) attention mechanism is proposed, 

which increases the global receptive field of the network while adaptively adjusting the weight relationships 

among different channels in order to enhance the fusion of tiny features in the model. Secondly, A multi-scale 

pyramidal detection head is introduced as a means to enhance the model's proficiency in detecting small 

targets. Finally, the SIoU loss function is employed to more accurately calculate the regression loss and 

improve the model's detection accuracy. The results indicate that the mean average precision (mAP) of the 

proposed algorithm on the NEU-DET dataset reaches 80.6%, an increase of 3.4% compared to the baseline 

algorithm; moreover, the detection speed reaches 79.3f/s, which meets the real-time requirement of 

industrialised defect detection. 

1 INTRODUCTION 

As industrialization continues to advance, the demand 

for strip steel, a pivotal industrial raw material, is on 

the rise. However, several factors, including the 

inherent instability of raw materials, the intricacies of 

the rolling process, and the challenges associated with 

system control, have given rise to surface defects on 

strip steel. These defects encompass issues such as 

burrs, scratches, and patches. Notably, these surface 

imperfections exert a substantial impact on the critical 

properties of strip steel, including corrosion 

resistance and strength. Consequently, they 

significantly diminish the overall performance and 

service life of strip steel when deployed in practical 

applications. Therefore, the detection of surface 

defects on strip steel assumes paramount importance 

in ensuring the quality and reliability of this essential 

material. 

In recent years, the prevailing approach in strip 

steel defect detection has shifted towards deep 

learning, driven by the remarkable advancements in 

convolutional neural networks. Yang et al.0 

introduced a pixel-level deep segmentation network 

for automated defect detection and successfully built 

an end-to-end defect segmentation model. This model 

exhibited outstanding performance in terms of defect 

recognition and localization. Akhya et al.0 introduced 

a powerful defect detector (FDD) based on the 

Cascade R-CNN algorithm for surface defect 

detection in steel materials. Yu et al.0 proposed a 

bidirectional feature fusion network combining 

channel attention and FCOS detector to achieve fast 

detection of steel strips. Tang et al.0 introduced an 

innovative steel plate surface defect detection 

approach based on deep learning, incorporating the 

Transformer architecture. Specifically, they utilized 

the Swin Transformer module to extract features from 

strip steel images, thereby enhancing the network's 

feature extraction capabilities but less real-time. Jian 

et al.0 proposed a multi-scale cascaded attention 

network based on ResNet34 to enhance the extraction 

of high-level semantic features. However, the size of 

the model is large and not easy to deploy for edge 

devices. Zhao et al.0 introduced an enhanced steel 

detection method based on YOLOv5, leveraging the 

Res2Net module to expand the receptive field. 

Additionally, incorporated the Dual Feature 

Pyramidal Network to bolster the extraction of critical 

neck features in the process. 

In view of above problems, this paper chooses 

YOLOv5s as the baseline model and proposes 

improvements on it. To tackle the challenge of 

distinguishing between the background and targets in 

strip steel surface defects, we introduce the large 

kernel depth separable convolution (Dsconv)0 to 
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enhance the network's receptive field. Additionally, 

we incorporate the SE attention mechanism to 

enhance the network's feature extraction capability. 

We also have introduced a multi-scale pyramidal 

detection head structure. This addition is intended to 

improve the model's ability to effectively detect 

smaller targets. Additionally, to address the issue of 

diverse defect shapes and significant variations in size 

within the dataset, we have replaced the original 

CIoU loss function in the network with an SIoU loss 

function. This modification serves to expedite the 

model's convergence speed, particularly in scenarios 

where defect shapes and sizes vary considerably. 

2 METHODS 

2.1 Improved YOLOv5s Network 
Structure 

In this paper, we introduce three significant 

improvements to enhance the YOLOv5s network. 

First, we enhance the C3 module of the network by 

replacing it with the improved DsSE_C3 module. To 

strike a balance between model size and inference 

speed, the Ds_C3 component within the Neck 

structure does not employ the SE attention 

mechanism. Secondly, we make improvements to the 

Head of the network. The first detection head of the 

is substituted with a multi-scale pyramidal detection 

head. The overall architecture of the improved 

YOLOv5s network is visualized in Fig. 1. These 

enhancements collectively contribute to improving 

the network's performance in detecting surface 

defects on strip steel. 

1) Introduction of SE attention mechanism  

The SE attention mechanism module that can 

adaptively learn the weight relationship between 

different channels0, as shown in Fig. 2. It can be 

divided into the following steps: the first step is the 

transformation operation, for which the input 𝑋  is 

mapped by any given 𝐹𝑡𝑟 transformation to a feature 

map 𝑈. The second step is the squeezing operation, 

which generates channel descriptors and thus global 

distributions embedded in the channel feature 

responses  through  the  feature  map   𝑈, so  that  the

 

Figure 1. Improved network structure of YOLOv5s 

 

Figure 2. Structure diagram of SE attention mechanism. 
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network learns the information in the global sensory 

domain. The third step is the excitation operation, 

which employs a self-gating mechanism to generate 

the set of modulation weights for each channel. The 

fourth step is the fusion operation, which multiplies 

the modulated weight set and the feature map 𝑈 on a 

channel-by-channel basis to adjust the weights 

between the channels, to mine the links between the 

features and to improve the performance of the 

model. 

 

2) Improved C3 module 

In order to strengthen the feature extraction 

capability of the model, we improve the C3 module in 

this paper, as shown in Fig. 3. Inspired by RTMDet0, 

we introduce a large kernel 5×5 depth-separable 

convolution into the basic C3 construction block of 

YOLOv5s to increase the effective receptive field and 

capture and model image semantic information more 

comprehensively. The DsBottleneck structure of the 

depth separable convolution module with the 

introduction of larger convolution kernels is shown in 

Fig. 3 (a). In addition, we introduce the SE channel 

attention mechanism module in Backbone's C3 

module, which enables the model to focus on the 

feature relationships in the channel dimension to 

improve defect detection, and the improved DsSE_C3 

is visually depicted in Fig. 3 (b). 

3) Introduction of multi-scale pyramidal 

detection head 

The Pyramidal Convolution (PyConv)0 structure, 

which performs multi-scale decomposition of the 

feature maps by multiple convolution operations with 

different convolution kernel sizes and depths, and 

cascades the decomposed feature maps to enhance the 

perceptual range of the network, which in turn 

improves the model performance and performance. In 

this paper, we combine PyConv with the first output 

detection header of YOLOv5s model, and add 

residual connectivity by borrowing the idea of 

Resnet0. A multi-scale pyramidal detection head is 

proposed, as shown in Fig. 4. The Pyramidal 

Convolutional Kernels (PyConv Kernels) in the 

figure is a double oriented pyramidal convolutional 

kernel. On one side the kernel size is increasing and 

on the other side the kernel depth (connectivity) is 

decreasing. It allows the network to explore from 

large receptive fields with low connectivity to small 

receptive fields with high connectivity, which brings 

about complementary image semantic information 

and enhances the network's multi-scale perception. In 

addition residual connectivity is added to enhance the 

expressive capability of the network without 

degrading the performance. The multi-scale 

pyramidal detection head effectively enhances the 

model for small target defect detection. 

 

Figure 3. Improved C3 module. (a) DsBottleneck. (b) DsSE_C3. 

 

Figure 4. Structure diagram of multi-scale pyramidal detection head. 
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4) Modifying the regression loss function 

The CIoU loss function0 was used in YOLOv5 

(V6.1) version to calculate the regression loss of the 

prediction bounding box. In order to improve the 

detection performance, the SIoU loss function is used 

in this paper. It consists of four components: angular 

loss, distance loss, shape loss and IoU loss0. The 

angular loss is achieved by reducing the values of the 

distance-related variables and can be defined as 

follows: 
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4
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Where 
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between the central point of the real bounding box 

and the predicted bounding box, as shown in equation 
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points, as shown in equation (3). ( , )
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coordinate of the central point of the real bounding 
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The angular loss is mainly used to assist in 

calculating the distance between two bounding boxes 

to further approximation of the centers of the two 

bounding boxes. The distance loss is defined as 

follows: 
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( , )w hc c  is the width and height of the smallest outer 

rectangle of the true and predicted bounding boxes. 

The shape loss between the two bounding boxes 

is defined as follows: 
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( , )w h ， ( , )gt gtw h  denote the width and height of the 

predicted and real boxes, respectively. 

In summary, the SIoU loss function is defined as 

follows: 

1
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 denotes the intersection and 

concurrency ratio between the true and predicted 

bounding boxes. 

3 EXPERIMENTS AND RESULT 

ANALYSIS 

3.1 Datasets 

The NEU-DET dataset comprises six distinct defect 

classes: crazing, inclusion, patches, pitted_surface, 

rolled-in_scale and scratches. Each defect class is 

comprised of 300 grayscale images, each having a 

resolution of 200 pixels, as visually presented in Fig. 5. 

To assess the model's training performance, we 

conducted a random split of the dataset, allocating 80% 

of the data to the training set and the remaining 20% to 

the test set, maintaining an 8:2 ratio. 

 

Figure 5. Examples of defect on the steel surface. 

3.2 Implementation Details 

The GPU utilized was an NVIDIA GeForce RTX 

2080 Ti graphics card with 11GB of memory. The 

optimization algorithm employed was Stochastic 

Gradient Descent (SGD), with a batch size of 16. The 

initial learning rate was set to 0.01, momentum at 

0.937, weight decay factor of 0.005, and the training 

process was conducted over 300 epochs. Our method 

was implemented with Pytorch. The input image size 

was consistently scaled to 224×224 pixels. 

3.3 Evaluation Metric 

We use average precision (AP), mean average 

precision (mAP), and frames per second (FPS) as the 

model evaluation metrics with the following formulas: 
1

0

( ) ( )AP p R d R       (7) 
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where AP denotes precision of a single category. 

mAP denotes the mean of the average precision of all 

target detection categories. TP, FP, and FN denote the 

number of true positives, false positives, and false 

negatives, respectively.  

3.4 Ablation Study 

In order to assess the effectiveness of various 

improvement strategies, we conducted ablation 

experiments, and the outcomes are presented in Table 

1. 

Table 1. Results of ablation experiment. 

Method 
DsSE 

_C3 

Ms_PD 

Head 
SIoU 

mAP 

@0.5/% 

FPS/ 

Frame·s-1 

AP/% 

Cr In Pa PS RS Sc 

1 — — — 77.2 93.4 47.6 81.6 96.1 80.3 63.3 94.2 

2 √ — — 78.9 82.9 52.3 82.6 96.6 81.6 65.5 94.6 

3 √ √ — 80.0 79.6 51.4 85.2 96.3 81.8 69.6 95.5 

4 √ √ √ 80.6 79.3 53.2 87.2 95.7 83.2 67.9 96.3 

 

The data presented in Table 1 clearly illustrates 

the effectiveness of the proposed DsSE_C3 module in 

enhancing the accuracy of strip steel defect detection. 

When compared to the original Method 1, the 

improved Model 2 exhibits a notable increase of 1.7% 

in mAP. Furthermore, the incorporation of the multi-

scale pyramidal detection head results in a substantial 

2.6% improvement in the AP for the "In" defect class 

in Method 3, specifically benefiting the detection of 

smaller targets. Finally, with the introduction of the 

SIoU loss function, Method 4 attains the highest 

detection accuracy at 80.6%. Apart from the "Pa" and 

"RS" classes, all other defect classes exhibit 

improved AP values when compared to Method 3. 

This underscores the efficacy of the SIoU loss 

function in enhancing the overall detection accuracy 

across different defect categories. Among them, for 

the Cr class, which has the lowest detection accuracy 

and is more difficult to detect, the detection accuracy 

is improved from 47.6% to 53.2%, which has a 5.6 

percentage points improvement, enhancement effect 

is outstanding. 

3.5 Comparison with State-of-the-Art 
Methods 

To validate the efficacy of the algorithms introduced 

in this paper, a series of comparative experiments 

have been conducted. To ensure the fairness of the 

comparison experiments, the following classical 

algorithms: Cascade R-CNN, Faster R-CNN, and 

Retinanet are all trained in the same experimental 

environment and MMDetection0 open target 

detection toolbox. The experimental results are 

shown in Table 2. 

Table 2. Performance comparison of mainstream 

algorithms. 

Method mAP/% 
FPS/ 

Frame·s-1 

AP/% 

Cr In Pa Ps RS Sc 

YOLOv3 69.1 55 44.7 60.8 84.4 74.5 61.1 87.2 

YOLOv4 69.1 — 35.1 77.6 90.2 78.4 51.2 82.2 

SSD 72.82 — 36.3 81.9 91.3 83.9 62.1 78.2 

Faster R-CNN 78.7 21.7 49.5 84.8 93.7 78.1 71.1 94.9 

Retinanet 75.1 32.3 49.6 78.4 94.7 78.7 70.3 78.7 

Cascade R-

CNN 
79.4 18.6 47.3 86.2 92.7 83.0 73.4 94.0 

YOLOv5s 77.8 92.4 46.6 84.8 96.1 80.3 63.8 95.1 

Ours 80.6 79.3 53.2 87.2 95.7 83.2 67.9 96.3 
 

 

Figure 6. Comparison of detection effects. 
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Fig.6. illustrates a side-by-side comparison of the 

detection results for samples in each defect category.  

The results of crazing defect detection clearly 

demonstrate that the algorithm presented in this paper 

excels in accurately locating the detection bounding 

box when compared to YOLOv5s. In the case of 

inclusion defect detection, it is evident that our 

improved algorithm surpasses the baseline model, 

offering more robust detection capabilities and 

outstanding performance for small targets.  

4 CONCLUSION 

To tackle the challenges associated with detecting 

surface defects on strip steel within the context of 

automated production, this paper introduces an 

enhancement strategy based on the YOLOv5s 

algorithm. Firstly, we propose an enhanced C3 

module aimed at augmenting the model's feature 

extraction capabilities. Secondly, we incorporate a 

multi-scale pyramidal detection head to bolster the 

model's proficiency in detecting small targets. Lastly, 

we adopt the SIoU loss function to expedite the 

model's convergence speed during training, thereby 

improving its overall performance in defect detection. 

The experimental results show that compared with the 

benchmark model, the method proposed in this paper 

effectively improves the detection accuracy and the 

detection effect for small targets is improved 

significantly. Furthermore, we plan to utilize 

techniques like pruning and distillation to reduce the 

model's size, facilitating its deployment on embedded 

edge devices, thereby expanding its practical 

applicability. 
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