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Abstract: Computing Force Network (CFN) is a new infrastructure based on cloud, edge and end three-layer network 
architecture. In CFN, tasks exist in the form of micro-services, so how to reduce the cost of user micro-
services and ensure the quality of service is a challenging problem. In order to solve the above problems, 
firstly, we established the hierarchical model, resource limitation model, price model and time delay model 
of micro-service workflow. Secondly, we modeled the micro-service scheduling problem under the computing 
network into a multi-objective optimization problem with resource limitation as constraint and micro-service 
cost and overall time delay as targets. Thirdly, we propose a multi-objective optimization algorithm based on 
NSGA-II to solve the above problems. The experimental results show that the multi-objective optimization 
model established in this paper is effective, and the multi-objective optimization algorithm proposed in this 
paper is superior to the existing algorithms, which can effectively reduce the micro-service delay and cost. 

1 INTRODUCTION 

In recent years, with the development of technologies 
such as 5G and the Internet of Things, the amount of 
data in the global network has grown exponentially, 
and the constantly surging amount of data has brought 
huge challenges to cloud computing data centers. 
Edge computing is an emerging distributed 
computing paradigm. By extending the computing 
capacity of cloud data centers to the edge of networks, 
part of the data in the network can be processed by 
the edge, relieving the pressure on cloud data centers 
to some extent (J. Zhang, 2018). For example, from 
large cloud data centers to scattered Mobile Edge 
Computing (MEC) servers to mobile smart devices, 
the traditional network architecture has gradually 
evolved into cloud, edge, and end three-layer network 
architecture. In order to make better use of 
heterogeneous resources distributed in different 
places and realize accurate matching between user 
resource demand and heterogeneous resource supply, 
Computing Force Network is proposed. 

In CFN, tasks submitted by users are usually 
divided into multiple micro-services and assigned to 
different compute nodes for processing. The compute 
nodes communicate and exchange data through 
network connections to achieve collaborative 

calculation and result summary (Islam A, 2021). In 
order to ensure the QoS of user tasks, the following 
aspects need to be considered. 

Firstly, Cost is the key constraint. Due to the 
heterogeneity of the underlying hardware of the 
server and the interference of various factors, the 
rental price and cost of different servers vary greatly. 
However, users always hope that the rental cost will 
not exceed the cost budget when renting servers to 
deploy micro-services. Especially for high-
performance computing micro-services, AI 
accelerator is expensive, and reasonable scheduling 
of micro-services can save costs for enterprises. 
Therefore, how to schedule micro service under strict 
price cost budget is the primary consideration (Tang 
X, 2022). 

Secondly, Resource requirements are 
heterogeneous. Micro-services in computing 
networks have heterogeneous resource requirements. 
In addition to general resource requirements such as 
CPU and memory, many micro-services also require 
more dimensions of resource allocation according to 
specific business requirements. Therefore, the 
heterogeneity of micro-service resource requirements 
increases the complexity of micro-service scheduling. 

Thirdly, the network becomes the bottleneck of 
application QoS. The scheduling problem of micro-
services can be regarded as the scheduling of 

Lan, S., Song, S., Wang, Z. and Long, Y.
Multi-Objective Optimization for Cost and Latency in Computing Force Network.
DOI: 10.5220/0012281700003807
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2023), pages 291-300
ISBN: 978-989-758-677-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

291



workflow with dependency relationship. There is a 
sequence of execution among micro-services, and 
there is a relationship of data transmission between 
different micro-services. In the computing power 
network, computing resources are connected through 
the network. Optimizing the communication delay of 
micro-service is of great significance to reduce 
network congestion and ensure the application of 
QoS. 

Our contributions are multifold and can be 
summarized as follows: 

Firstly, considering the cost of micro-service 
scheduling, we set up a cost model from the 
perspective of user micro-service scheduling cost.  

Secondly, we take into account the resource 
constraint of micro-service scheduling. Nodes that do 
not meet the resource constraint are not allowed to 
serve as scheduling nodes, so as to ensure the service 
quality of micro-service, which is different from 
previous workflow scheduling studies.  

Then, we set up a multi-objective optimization 
model with resource constraints and cost and time 
delay as optimization objectives.  

Finally, we propose a target capture optimization 
model based on NSGA-II to solve the above 
problems. 

2 RELATED WORK 

Many scholars have carried out in-depth research on 
the optimization of pricing cost and delay of micro-
service scheduling.  

According to the number of scheduling objectives, 
the current micro-service scheduling can be divided 
into single-objective optimization micro-service 
scheduling and multi-objective optimization micro-
service scheduling. In the single-objective 
optimization micro-service scheduling, only one 
index is optimized, so the scheduling result is too 
limited. In the micro-service scheduling with multi-
objective optimization, considering multiple 
constraints and optimization objectives, the 
scheduling results are more applicable. According to 
the types of micro-service scheduling, micro-service 
scheduling can be divided into mutually independent 
micro-service scheduling and workflow scheduling. 
The mutually independent micro-service scheduling 
does not consider the dependency between micro-
services, while workflow scheduling considers the 
execution sequence of micro-services, and its 
scheduling implementation is more complex. Micro-
service scheduling algorithm can be divided into 

heuristic scheduling algorithm and meta-heuristic 
scheduling algorithm. 

For the delay problem of microservice scheduling, 
H. Topcuoglu proposed a Heterogeneous earliest-
finisher (HEFT) algorithm and a Critical-Path-on-a-
Processor, heterogeneous earlier-finisher (HEFT) 
algorithm (Topcuoglu H, 2002). In the CPOP 
algorithm, HEFT selects the task with the highest 
ascending rank value in each step and assigns the 
selected task to the processor, which minimizes its 
earliest completion time using the insertion-based 
method. In the CPOP algorithm, the priority of each 
task is calculated by comprehensively considering the 
ascending and descending sort. Since the above two 
algorithms were proposed, many scholars have 
proposed many improved algorithms based on the 
ideas of the above two algorithms according to 
different problem scenarios. Xiumin Zhou et al. 
proposed a heterogeneous earliest completion time 
(FDHEFT) algorithm based on fuzzy dominance 
sorting, which closely combines the fuzzy dominance 
sorting mechanism with the list scheduling heuristic 
HEFT, while optimizing the scheduling cost and 
delay (Zhou X, 2019). Faragardi et al. proposed a new 
resource supply mechanism and workflow scheduling 
algorithm GRP-HEFT, which is used to minimize the 
maximum completion time of a given workflow, so 
as to meet the budget constraints of the pay-as-the-
volume cost model in modern IaaS cloud (Faragardi 
H R, 2020). In view of workflow scheduling 
problems, the above algorithms optimize the delay of 
workflow scheduling under the condition of 
satisfying workflow cost constraints. However, the 
above algorithms schedule with virtual machine as 
granularity, resulting in a large amount of resource 
waste. Moreover, the above algorithms do not 
consider the critical path of tasks as a whole, so it is 
easy to fall into local optimal. In order to implement 
global scheduling of micro-service, some scholars 
propose to use heuristic algorithm to solve micro-
service scheduling problem. Lin et al. proposed an ant 
colony algorithm for solving scheduling problems, 
which not only considered the calculation of physical 
nodes and the utilization rate of storage resources, but 
also the number of micro-service requests and failure 
rate of physical nodes. Experimental results showed 
that the algorithm achieved better results in 
optimizing cluster business reliability, cluster load 
balancing and network transmission overhead(Lin M, 
2019). Aiming at minimizing the cost of micro-
service scheduling, Hussain et al proposed a hybrid 
cuckoo search and genetic algorithm HFSGA 
algorithm to realize micro-service scheduling 
(Hussain S M, 2022). But their approach is also 
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virtual machine granularity, resulting in a waste of 
resources. Liang et al. proposed an heuristic micro-
service scheduling algorithm based on container to 
solve the scheduling problem of application 
workflow based on micro-service with minimum end-
to-end delay under user-specified budget constraints 
(Bao L, 2019). This algorithm optimizes the delay of 
micro-service scheduling. His method takes container 
as unit for scheduling, which improves resource 
utilization in the scheduling process. However, it 
ignores the resource limitation of nodes. Once the 
resource allocation of containers exceeds the resource 
capacity of nodes, QoS applied by users will be 
seriously affected、. To sum up, the existing methods 
have some problems, such as too large granularity of 
micro-service scheduling, ignoring resource 
constraints and price and cost factors, which cannot 
meet the micro-service scheduling requirements 
under the computing power network. 

3 SOLUTIONS 

In the following, we first model the micro-service 
scheduling problem under the computing network, 
and then propose a heuristic algorithm based on 
NSGA-II to solve the above problem model. 

3.1 Subsection System Model 

This scenario consists of multiple physical server 
servers in geographically remote locations. The nodes 
are connected over the core network. Each node has 
heterogeneous resources, such as CPU, memory, 
bandwidth, and GPU. User tasks are broken down 
into multiple micro-services with dependencies. 
Micro-services exist in the form of containers. When 
users use node resources, they are rented as VMS. 
Users need to pay the VM rental fee. The fee is 
determined by the VM rental price per unit time and 
the VM rental duration. The execution of micro-
services and data transmission between micro-
services will result in a certain delay, and the overall 
delay of micro-services will affect the QoS of 
applications. When the micro-service is scheduled to 
a node, the amount of micro-service resources 
requested cannot exceed the remaining resources of 
the node. Before dispatching the service, the user will 
inform the cloud manufacturer of the price 
expectation and hope to obtain the highest QoS within 
the price expectation. The system model is shown in 
figure 1. 

 

Figure 1. System model. 

 

Figure 2. Workflow model. 

3.2 Microservice Workflow Model 

The workflow between microservices can be 
represented by a directed acyclic graph. Figure 2 
describes the workflow structure of two 
microservices with dependencies. 

For any microservice workflow, it can be 
expressed by 𝐺ሺ𝑇, 𝐸ሻ , where 𝑇 ൌ ሼ𝑡ଵ, 𝑡ଶ, … , 𝑡௠ሽ 
represents a set of microservices that are dependent 
on each other, 𝐸 ൌ ሼ𝑒௜,௝|𝑡௜, 𝑡௝ ∈ 𝑇ሽ represents a direct 
dependency between microservices, If the 
microservice𝑡௝depends on the microservice 𝑡௜, 𝑒௜,௝ is 
1, otherwise 𝑒௜,௝  is 0. Set 𝑝𝑟𝑒ሺ𝑡௜ሻ   represent all 
precursor nodes of microservice 𝑡௜ , 𝑓𝑟𝑜𝑛𝑡ሺ𝑡௜ሻ 
represents the direct precursor of microservice 𝑡௜, and 
use 𝑎𝑓𝑡𝑒𝑟ሺ𝑡௜ሻ  to represent the direct successor of 
microservice 𝑡௜. 

In this paper, the hierarchical workflow model 
mentioned in literature(Rizvi N, 2020) is used to 
process the above workflows. The specific process is 
to divide the DAG graph into multiple microservice 
chains. The entry microservice of each microservice 
chain has no precursor node, and the exit 
microservice has no successor node. According to the 
split microservice chain, the tasks are divided into 
different levels, and each level contains a set of 
independent microservices. For example, workflow 1 
in Figure 4 can be divided into four microservice 
chains: 𝑡ଵ-𝑡ଶ-𝑡଺-𝑡ଽ、𝑡ଵ-𝑡ଷ-𝑡଻-𝑡ଽ、𝑡ଵ-𝑡ସ-𝑡଻-𝑡ଽ、𝑡ଵ-𝑡ହ-
𝑡଼-𝑡ଽ. In each microservice chain, microservice levels 
are divided. For example, in the 𝑡ଵ-𝑡ଶ-𝑡଺-𝑡ଽ chain, if 
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𝑡ଵ  is the entry node, 𝑡ଵ  is the first layer, and 
accordingly 𝑡ଶ、𝑡଺、𝑡ଽ  are the second, third, and 
fourth layers respectively. Finally, for any 
microservice 𝑡ଵ , if 𝑡ଵ  is in multiple microservice 
chains, the levels of 𝑡ଵ  in each microservice chain 
are𝑟𝑎𝑛𝑘ଵ、𝑟𝑎𝑛𝑘ଵ、…、 𝑟𝑎𝑛𝑘௡, the final 𝑡௜ level is 
the highest of the preceding levels. For example, in 
workflow 2 in Figure 4, 𝑡ସ  is in the microservice 
chain 𝑡ଵ -𝑡ଶ -𝑡ସ -𝑡ହ、𝑡ଵ -𝑡ସ -𝑡ହ  and 𝑡ଵ -𝑡ଷ -𝑡ସ -𝑡ହ . The 
corresponding levels of 𝑡ସ in each chain are 2, 1, and 
2 respectively, so the final level of 𝑡ସ is 2. 

3.3 Resource Constraint Mode 

Each VM has a certain amount of heterogeneous 
resources. When microservices are scheduled to 
VMS, they must meet the resource restrictions of VM 
nodes. Use 𝑉 ൌ ሼ𝑣ଵ, 𝑣ଶ, … , 𝑣௡ሽ to represent the set of 
all virtual machine nodes. For any virtual machine 
node v_j, there is a certain amount of heterogeneous 
resources. This paper considers four heterogeneous 
resources, namely CPU, memory, bandwidth, and 
GPU. 𝑅௖௣௨

௝
、 𝑅௠௘௠

௝
、 𝑅௡௘௧

௝
、 𝑅௚௣௨

௝  are used to 
represent the remaining amount of four 
heterogeneous resources on the node at time t, 
respectively. The application amount of 
heterogeneous resources applied by microservice 𝑡௜ 
is expressed by 𝑟௖௣௨

௜ 、 𝑟௠௘௠
௜ 、 𝑟௡௘௧

௝
、 𝑟௚௣௨

௜  
respectively. The 0-1 variable 𝑧௜,௞ indicates whether 
the microservice 𝑡௜  is scheduled to node 𝑣௞ . When 
𝑧௜,௞  is 1, it indicates that the microservice 𝑡ଵ  is 
scheduled to 𝑣௞ . When 𝑧௜,௞is 0, it indicates that the 
microservice 𝑡௜ is not scheduled to 𝑣௞. The resource 
cannot be preempted. The requested resource is 
released after the microservice is executed. The 
following constraints must be met during 
microservice scheduling 

෍ 𝑧௜,௞

௡

௧೔∈்,௞ୀଵ

ൌ 1 ሺ1ሻ 

 

෍ 𝑟௖௣௨
௜ 𝑧௜,௞

∀௧೔∈்

൑ 𝑅௖௣௨
௞ ሺ2ሻ 

 

෍ 𝑟௠௘௠
௜ 𝑧௜,௞

∀௧೔∈்

൑ 𝑅௠௘௠
௞ ሺ3ሻ 

 

෍ 𝑟௡௘௧
௜ 𝑧௜,௞

∀௧೔∈்

൑ 𝑅௡௘௧
௞ ሺ4ሻ 

 

෍ 𝑟௚௣௨
௜ 𝑧௜,௞

∀௧೔∈்

൑ 𝑅௚௣௨
௞ ሺ5ሻ 

 
Formula (1) indicates that all microservices must 

be scheduled and can only be scheduled to one node 
at a time. Formulas (2) to (5) indicate that when 
microservices are scheduled to any node, the number 
of heterogeneous resources applied for microservices 
must be less than or equal to the remaining resources 
on the node. 

3.4 Price-Cost Model 

When a user rents a VM, the cloud vendor charges the 
user a fee based on whether the user rents the VM and 
the VM usage time, regardless of how many 
microservice containers the user schedules on the 
VM. The total price that the user needs to pay is 
represented by Cost, and the calculation formula of 
Cost is shown in formula (6). 

𝐶𝑜𝑠𝑡 ൌ ෍ 𝑝௞ ൈ

௡

௞ୀଵ

𝑡௩௞ ሺ6ሻ 

𝑡_𝑣௞ indicates the total duration of VM 𝑣௞ rental, 
and 𝑝௞ indicates the unit price of VM 𝑣௞ rental. The 
user will submit a price budget before microservice 
scheduling, so the overall price cost should be lower 
than the budget after the final microservice execution 
is completed, otherwise the scheduling will fail. This 
paper deals with the budget by first optimizing the 
microservice delay and cost at the same time, finally 
getting the Pareto frontier, and then calculating the 
scheduling scheme with the lowest delay within the 
budget according to the price budget. Therefore, the 
final cost will be as close to the budget as possible, so 
as to obtain the best QoS within the budget. The price 
of a VM is related to the computing power of the VM 
per unit computing resource. Generally, the higher the 
price of a VM, the greater the computing power of the 
VM per unit computing resource, and the shorter the 
execution time of microservices. 

3.5 Delay Model 

In this paper, the time delay from the start of the first 
microservice to the end of the last microservice will 
be referred to as makespan, makespan is calculated as 

 
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൌ max

∀௧೔∈்
𝐹𝑇ሺ𝑡௜ሻ ሺ7ሻ 

Where 𝐹𝑇ሺ𝑡௜ሻ represents the total time taken from 
the start of scheduling the first microservice to the 
completion of the microservice 𝑡௜, and formulas (7) 
calculate the total time taken for all microservices to 
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be completed. For any microservice 𝑡௜ , 𝐹𝑇ሺ𝑡௜ሻ 
consists of two parts: 𝑊𝑇ሺ𝑡௜ሻ , the waiting time 
required for task execution, and its own execution 
time 𝑒𝑥𝑐௜,௞, where 𝑊𝑇ሺ𝑡௜ሻ and 𝐹𝑇ሺ𝑡௜ሻ are calculated 
respectively. 

 
𝑊𝑇ሺ𝑡௜ሻ ൌ max

∀௧ೕ∈௣௥௘ሺ௧೔ሻ
ቀ𝐹𝑇൫𝑡௝൯ ൅ 𝑡𝑟𝑎𝑛𝑠൫𝑡௝, 𝑡௜൯ቁ ሺ8ሻ 

 
𝐹𝑇ሺ𝑡௜ሻ ൌ 𝑊𝑇ሺ𝑡௜ሻ ൅ 𝑒𝑥𝑐௜,௞ ሺ9ሻ 

In the above formula, assuming that the 
microservice 𝑡௜  is at layer n, 𝑊𝑇ሺ𝑡௜ሻ represents the 
total time taken for the first layer N-1 microservices 
to complete. 𝑡𝑟𝑎𝑛𝑠൫𝑡௝, 𝑡௜൯  indicates the data 
transmission delay of the precursor node 𝑡௝  of 
microservice 𝑡௜ . If the containers of microservice 𝑡௜ 
and microservice 𝑡௝  are scheduled to the same VM, 
the delay is ignored. Otherwise, the delay is the ratio 
of the size of the data transfer between the two 
microservices to the average bandwidth allocated by 
the container in which the two microservices reside. 
Assuming that the amount of data transfer between 
microservice 𝑡௝  and microservice 𝑡௜  is 𝑙𝑒𝑛𝑔𝑡ℎ௝,௜ , the 
formula for calculating 𝑡𝑟𝑎𝑛𝑠൫𝑡௝, 𝑡௜൯ is: 

𝑡𝑟𝑎𝑛𝑠൫𝑡௝, 𝑡௜൯ ൌ ቐ
0

𝑙𝑒𝑛𝑔𝑡ℎ௝,௜

൫𝑟௡௘௧
௜ ൅ 𝑟௡௘௧

௝ ൯/2
ሺ10ሻ 

𝑒𝑥𝑐௜,௞  indicates the execution delay required to 
schedule microservice 𝑡௜  to node 𝑣௞ . The delay is 
negatively correlated with the computing power per 
unit computing resource of the VM. This paper 
assumes that the delay is known. 

3.6 Overall Model Design 

Generally, the price of a virtual machine is related to 
the computing power per unit of computing resource 
of a virtual machine. The higher the price of a virtual 
machine, the greater the computing power per unit of 
computing resource of a virtual machine, and the 
shorter the execution time of a microservice. 
However, the size of virtual machine computing 
power and the price of virtual machine is not a 
constant proportion, under normal circumstances, the 
price of virtual machine is far more than doubled 
when the virtual machine computing power is 
doubled. Therefore, excessive pursuit of delay 
reduction will make the final price exceed the user's 
cost budget. Similarly, if only lower cost is required, 
the delay of the entire application will increase, 
affecting the QoS of the application. Therefore, the 
optimization direction of price cost and delay is not 
consistent, so that both objectives can be optimized, 
so that a relatively optimal scheduling scheme can be 

obtained under each price budget. Combined with the 
above problem description and the general model 
formula of multi-objective optimization introduced in 
Section 4.2, the above problem is modeled into a 
multi-objective optimization model in this paper, as 
shown below. 

The objective function is: 

𝐶𝑜𝑠𝑡 ൌ 𝑀𝑖𝑛 ෍ 𝑝௞ ൈ

௡

௞ୀଵ

𝑡௩௞ ሺ11ሻ 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൌ 𝑀𝑖𝑛 max
∀௧೔∈்

𝐹𝑇ሺ𝑡௜ሻ 

The relevant constraints are: 

෍ 𝑧௜,௞

௡

∀௧೔∈்,௞ୀଵ

ൌ 1  

෍ 𝑟௖௣௨
௜ 𝑧௜,௞

∀௧೔∈்

൑  𝑅௖௣௨
௞  

෍ 𝑟௠௘௠
௜ 𝑧௜,௞

∀௧೔∈்

൑  𝑅௠௘௠
௞  

෍ 𝑟௡௘௧
௜ 𝑧௜,௞

∀௧೔∈்

൑  𝑅௡௘௧
௞  

෍ 𝑟௚௣௨
௜ 𝑧௜,௞

∀௧೔∈்

൑  𝑅௚௣௨
௞  

In this paper, the process of solving the final 
scheduling scheme is divided into two steps: the first 
step is to obtain a set of uniformly distributed feasible 
solutions by solving the above multi-objective 
optimization model, that is, Pareto optimal front; The 
second step is to solve the optimal scheduling scheme 
according to the price budget set by the user. 

3.7 Muti-Objective Optimization 
Algorithm Based on NSGA-II 

Figure 3 shows the flow chart of the algorithm. The 
input of the algorithm is microservice set, virtual 
machine node set, and user price expectation, and the 
output of the algorithm is Pareto optimal frontier. 
In NSGA-II algorithm, the common encoding 
methods include binary encoding, symbol encoding 
and real encoding. The traditional binary coding and 
decoding process is more troublesome, but the real 
coding reduces the complexity of calculation and 
improves the efficiency of operation. The goal of this 
paper is to schedule m microservice containers to be 
scheduled on n virtual machine nodes. Based on the 
characteristics of the problems studied in this paper, 
the real coding mode is selected, as shown in Figure 
4. The numbers 1-9 represent the microservice to be 
scheduled, Node1 to Node5 represent the number of 
the VM node that can be scheduled, and the number 
corresponding to the server node number indicates 
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that the microservice is scheduled to the 
corresponding VM node. For example, 
((1,4),(6,7),(2,3,9),(5,8)) indicates a possible initial 
solution. Resource constraints must be satisfied when 
generating the initial feasible solution. In order to 
generate the initial population, this paper randomly 
generates x initial solutions and the initial population 
𝑃 ൌ ሼ𝑆ଵ, 𝑆ଶ, . . . , 𝑆௫ሽ. 

 

 

Figure 3. NSGA-II Algorithm Flowchart. 

 

Figure 4. Coding Scheme. 

The initial population was sorted according to the 
fitness function. The input of fast non-dominated 
sequencing was the original population P and the 
output was the stratified population 𝑃௥. 

For the parent population 𝑃 ൌ ሼ𝑆ଵ, 𝑆ଶ, . . . , 𝑆௫ሽ. For 
any individual 𝑆௜ , calculate the values of objective 
function 1 and objective function 2 of S_i. If for any 
other individual 𝑆௝ in the population, 𝑆௝ does not have 
a pareto dominance over 𝑆௜  then divide 𝑆௜  into the 
first non-dominated layer and traverse the population 
successively to find all the individuals meeting the 
above conditions. Divide all of the above individuals 
into the current tier and delete all of the above 
individuals into the current tier from the original 
population. 

The number of non-dominant layers of the 
population is increased by one each time, and the 
above steps are repeated until there are no individuals 
in the original population, and finally the stratified 
population 𝑃௥ ൌ ሼሼ𝑆ଵ, 𝑆௫ሽ, . . . , ሼ𝑆ଶሽሽ .The number of 
non-dominated levels of an individual represents the 
quality of the solution, and the smaller the number of 
non-dominated levels, the better the performance of 
the individual and the closer to the optimization goal.  

The crowding degree 𝑖ௗ of each individual in each 
layer of the stratified population 𝑃௥ was calculated in 
turn. The degree of crowding represents the density 
of individuals around an individual in the population, 
and the value is equal to the circumference of the 
rectangle with the vertex near the point. Let the 
crowding degree of individuals 𝑂ௗ  and 𝐼ௗ  at the 
boundary position be ∞ , and the formula for 
calculating the crowding degree of individuals at the 
other positions be 

𝑖ௗ ൌ ෍ ൭
│𝑓௝

௜ାଵ െ 𝑓௝
௜ିଵ│

│𝑓௝
௠௔௫ െ 𝑓௝

௠௜௡│
൱

௠

௝

ሺ12ሻ 

m is the number of fitness evaluation functions, 
𝑓௝

௜ାଵ and 𝑓௝
௜ିଵ represent the function value of the JTH 

objective of the i+1 individual and the I-1 individual, 
respectively, 𝑓௝

௠௔௫ and 𝑓௝
௠௜௡ represent the maximum 

and minimum objective function values of all 
individuals in the current level for the objective j, 
respectively.  

The elite selection strategy is based on non-
dominant ordering and crowding distance to obtain 
progeny populations. Suppose that for the stratified 
population 𝑃௥ ൌ ሼሼ𝑆ଵ, 𝑆௫ሽ, . . . , ሼ𝑆ଶሽሽ , each layer is 
sorted in ascending order by crowding distance, and 
the steps selected by the elite are: All the individuals 
from the first layer in 𝑃௥  were added to the new 
population P, and then all the individuals from the 
second layer were added to the new population P, and 
so on, until the individuals from a certain layer could 
not all be added to the new population P, and the 
individuals from that layer were added to P in the 
order of the crowding degree distance, until the 

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

296



number of individuals in the new population P 
reached x, as shown in Figure 5. 

 

 

Figure 5. Fast non-dominated sorting algorithm 

 

Figure 6. Workflow 

4 EXPERIMENT 

Table 1. Specifications and Prices of the Six VMS. 

Instance CPU Memory GPU Bandwidth cost 

𝑣ଵ 4 16 4 100 30.39 

𝑣ଶ 4 16 8 100 60.94 

𝑣ଷ 8 32 16 100 130.88 

𝑣ସ 6 32 24 100 150.09 

𝑣ହ 8 40 32 100 180.04 

𝑣଺ 16 40 32 100 190.10 

Table 2. NSGA-II Parameter Setting. 

Parameter number 

Size 50 

Number of iterations 50 

Cross probability 1 

Mutation probability 0.1 

 
In this section, the NSGA-II-based microservice 
scheduling algorithm is tested using the Cloudsim 
simulation platform, which has the modeling and 

simulation functions of physical machines and 
containers. This paper first analyzes several common 
workflow structures in Alibaba Cluster Trace 
Program, and constructs DAG graphs with 5, 10, 15 
and 20 microservices respectively by referring to 
common workflow structures. Figure 6 shows the 
DAG diagram when the number of microservices is 
10, and the weights on the edges of the diagram 
represent the size of the data transfer volume of the 
microservices with dependencies. 

The specifications and prices of the VMS used in 
the experiment refer to the cloud vendor's charging by 
volume rules. Table 1 lists the specifications and 
prices of the six VMS used in this paper. 

The parameter Settings of an algorithm largely 
determine the performance of the algorithm. Table 2 
lists the parameters of the algorithm in this paper. 

Price and microservice delay are used as 
evaluation indexes for microservice scheduling. The 
calculation formulas for the above two are formula 
(6) and formula (7) respectively. To verify the 
performance of the scheduling algorithms in this 
paper, the Spread, Binpack, and HEFT algorithms are 
selected as benchmarks. Spread and Binpack 
algorithms are common methods in container 
scheduling. Spread tends to distribute containers to 
each node to balance cluster load, while Binpack 
tends to dispatch containers to one node to improve 
resource utilization. HEFT algorithm is a classic 
algorithm in workflow scheduling. Its idea is to 
always schedule tasks to the node with the minimum 
completion time. However, HEFT algorithm 
schedules tasks based on virtual machines and does 
not consider resource constraints during scheduling. 
The HEFT is changed to a HEFT algorithm that 
schedules by container and considers resource 
constraints. 

Figure 7 shows the scheduling success rates of the 
four algorithms at different price expectation levels. 
Subgraphs (a), (b), (c) and (d) respectively show the 
scheduling success rates of four algorithms with DAG 
sizes of 5, 10, 15 and 20. The higher the price 
expectation level, the more adequate the price budget 
given by the user. Because the Spread scheme tends 
to schedule microservices to different nodes, a large 
number of virtual machines are rented, and the data 
transmission delay between microservices becomes 
longer, which ultimately makes scheduling 
impossible under the condition of meeting the price 
constraint. The Binpack scheme tends to schedule 
microservices to a node, so the number of leased 
virtual machines is small and the communication 
delay between microservices is reduced, which can 
meet the price constraint to a certain extent, but it 
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(a) 5 microservices 
 

 
(b) 10 microservices 

 

 
(c) 15 microservices 

 

 
(d) 20 microservices 

Figure 7. Success Rate. 

cannot take into account the global scheduling, so it 
cannot meet the scheduling demand when the price 
constraint level is high. The HEFT algorithm always 
schedules microservices to the node with the shortest 
completion time, without considering the global 
scheduling and scheduling cost, so the scheduling 
result is difficult to meet the cost expectation set by 
users. The NSGA-II-based microservice scheduling 
algorithm proposed in this paper also optimizes the 
scheduling delay and cost of microservices, so the 
scheduling success rate of the algorithm proposed in 
this paper exceeds other algorithms. 

Figure 7 shows the scheduling delay of four 
microservice algorithms under four microservice 
scales and different price expectations. Subfigures 
(a), (b), (c), and (d) show the experimental results 
when DAG scales are 5, 10, 15, and 20 respectively. 
It can be seen from the figure that with the increase of 
price expectation, the delay of various algorithms 
shows a non-increasing trend. Among them, the 
algorithm proposed in this paper can obtain lower 
microservice delay compared with other algorithms 
under the same price expectation. When the price 
expectation increases to a certain value, the delay will 
no longer decrease, and higher QoS can no longer be 
obtained when the price expectation is increased. The 
above phenomenon is in line with normal logic, 
because microservice execution and data 
transmission will certainly cost a certain delay, and 
the computing power of virtual machine nodes and 
the transmission capacity of the network are limited, 
so the delay can not be reduced. From the 
experimental results, it can be seen that the algorithm 
proposed in this paper can find the global relative 
optimal scheduling scheme under the user-set price 
expectation. For example, under 5 microservices, 
when the user price expectation is 2, only the 
algorithm in this paper and the Binpack algorithm can 
give the scheduling scheme under the price 
expectation, and the other two algorithms fail to 
schedule. When the user's price expectation is 2.6, the 
algorithm in this paper obtains a lower delay than 
Binpack and Spread, so the user pays the same price, 
and the algorithm in this paper can obtain higher QoS. 
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(a) 5 microservices 

 

 
(b) 10 microservices 

 

 
(c) 15 microservices 

 

 
(d) 20 microservices 

Figure 8. Scheduling delay in different DAGs. 

In summary, the multi-objective optimization 
algorithm proposed in this paper can optimize both 
delay and price, and can select the relatively optimal 
scheduling scheme from the Pareto frontier solution 
according to the price expectation set by users, which 
improves the scheduling success rate and reduces the 
microservice delay. The algorithm proposed in this 
paper provides a solution for the price-sensitive 
microservice scheduling under the computing power 
network. 

5 CONCLUSION 

This paper first analyzes the microservice scheduling 
problem under the CFN, then we introduce the 
relevant theories and technologies of multi-objective 
optimization, and models the scheduling problem of 
microservice under the computing network into a 
multi-objective optimization problem. Finally, a 
multi-objective optimization algorithm based on 
NSGA-II is proposed to solve the above problem 
model. The experimental results show that the 
proposed algorithm can optimize both the price cost 
and the microservice delay, and finally give a 
relatively optimal scheduling scheme according to the 
price expectation set by the user. 

The microservice scheduling model constructed 
in this paper does not take into account the oversold 
problem of resources, that is, the amount of resource 
applications of containers on a virtual machine node 
can be greater than the total amount of resources 
owned by the virtual machine. Further research can 
be carried out in the future. 
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