
Heterogeneous Resource Scheduling Method based on Energy 
Optimization under Price Constraints in Computing Force Network 

Shizhan Lan1, Zhenyu Wang2, Weichao Kong2 and Yuxuan Long2 

1China Mobile Guangxi Branch Co., Ltd, Nanning, China 
2South China University of Technology, Guangzhou, China 

Keywords: Computing Force Network, Workflow Scheduling, Price-Sensitive. 

Abstract: With the development of Computing Force Network (CFN), more and more resources are deployed in CFN 
which dynamically provide computing resources according to users' needs. In the CFN environment, 
scheduling workflow under deadline constraints is one of the fundamental issues. The number and size of 
heterogeneous resources in the CFN are gradually increasing, and the required costs are also constantly 
rising. As a result, it is necessary to consider users' budget limits while also reducing the energy 
consumption of end-side devices and edge servers. Aiming at workflow scheduling on time, cost, and 
energy consumption constraints, a scheduling algorithm that combines with NSGA-II is used to optimize 
scheduling time, cost, and energy consumption, with price as a soft constraint to ensure that the cost stays 
within the budget and the schedule is completed before the deadline while minimizing energy consumption. 
Our algorithm is validated by four typical scientific workflows, and the experimental results show that our 
algorithm can reduce the average energy consumption by 14.8%, and compared to the GPR-HEFT method, 
the average energy consumption can be reduced by 20.5%. 

1 INTRODUCTION 

In recent years, the computing infrastructure has 
undergone a significant transformation, moving 
from a centralized cloud-based model to a 
distributed architecture that includes the cloud, edge, 
and end-side computing (F. Liang, 2018). The cloud, 
represented by large-scale data centers, serves as the 
foundation of cloud computing, offering users the 
ability to store and process data through grid-based 
access to interconnected computers and servers. 
However, the rise of Multi-access Edge Computing 
(MEC) has shifted the focus towards bringing 
computing capabilities closer to the data source, 
addressing the limitations of latency and data 
volume associated with centralized cloud computing 
(Ahmad, S. Lembo, 2022). MEC enables the analysis 
and processing of data generated by Internet of 
Things (IoT) devices at the network edge, enhancing 
efficiency and security by eliminating the need to 
transmit data to remote cloud data centers. 
Additionally, the end-side computing encompasses 
various devices with networking and computing 
capabilities, such as PCs, smartphones, smart TVs, 
home set-top boxes, and IoT devices like smart 
meters for water and electricity (Baek, 2020). The 

proliferation of these terminal devices in the era of 
the Internet of Things presents an opportunity for 
leveraging their collective computing power through 
shared computing resources (B. Baek, 2020). By 
aggregating the idle computational resources of 
these devices, computing power sharing can be 
achieved, opening up new possibilities for 
distributed computing. These advancements in 
computing infrastructure offer potential for 
improved performance, reduced latency, enhanced 
security, and efficient utilization of computing 
resources. Researchers and industry professionals 
are actively exploring the opportunities and 
challenges associated with distributed computing 
models to harness the benefits of cloud, edge, and 
end-side computing in various domains. 

With the increasing adoption of the three-level 
computing architecture comprising cloud, edge, and 
end-side, computing power is no longer confined to 
centralized data centers but is distributed across 
various locations at the edge and end-side. However, 
realizing the full potential of these distributed 
computing resources requires a robust network 
infrastructure that enables seamless interconnection 
and collaboration among the computing nodes. To 
address this challenge, the concept of the Computing 
Fabric Network (CFN) has been introduced. The 
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CFN seeks to establish a network framework that 
facilitates the sharing, scheduling, utilization, and 
collaboration of computing resources across the 
distributed computing nodes. By enabling effective 
communication and coordination among these 
nodes, the CFN ensures that the computing power 
available at the edge and end-side can be harnessed 
efficiently and effectively. This concept holds great 
promise in unlocking the full potential of the three-
level computing architecture and driving the 
development of innovative applications and services. 

In the CFN, there are various heterogeneous 
resources in addition to computing power and 
storage space. Heterogeneous resources refer to 
different computing resources, such as CPUs, GPUs, 
FPGAs, etc., with different computing capabilities 
and characteristics. In the CFN (Seo, 2022), the use 
of heterogeneous resources can better meet the needs 
of different computing tasks and improve computing 
efficiency and flexibility. 

Energy consumption of end-side devices is a 
crucial factor in computing scheduling, as these 
devices usually have limited computing power and 
storage space and need to complete various 
computing tasks through the CFN (Zhu, 2020). In 
computing scheduling, considering the energy 
consumption of end-side devices can help to 
maximize the battery life of devices, increase device 
usage time, and improve usage efficiency (Djigal, 
2021). 

The energy consumption of end-side devices is 
closely related to computing scheduling. In 
computing scheduling, tasks need to be assigned to 
different computing nodes for execution, and these 
computing nodes often require a significant amount 
of energy to complete computing tasks. If the 
computing scheduling is unreasonable, it can cause 
some computing nodes to have a high workload, 
resulting in excessive energy consumption and 
affecting the performance and efficiency of the 
entire CFN (Wang, 2021). Therefore, computing 
scheduling needs to consider the energy 
consumption of end-side devices to maximize the 
reduction of computing node energy consumption 
and improve the energy efficiency performance of 
the entire CFN. 

To reduce energy consumption, computing 
scheduling can adopt various measures, such as task 
merging, node sleep, load balancing, etc. Task 
merging can merge multiple small tasks into one 
large task, reducing nodes’ startup and shutdown 
time and lowering energy consumption (Yadav, 
2020). Node sleep can put idle nodes to sleep to 
reduce energy consumption. Load balancing can 

evenly distribute tasks to different computing nodes, 
avoiding high workload on some nodes and thereby 
reducing energy consumption. 

The contributions of this paper are summarized 
as follows: 

According to the CFN scenario, the resource 
scheduling problem was defined in a three-tiered 
collaborative environment of cloud, edge, and 
terminal, and a resource scheduling stability model 
based on energy consumption and price sensitivity 
was constructed. 

A refined NSGA-II algorithm is introduced in 
this study, leveraging the resource scheduling model 
in the Computing Fabric Network (CFN). 
Alongside, a novel elite selection method is 
employed to efficiently match services with tasks, 
while considering cost, energy consumption, and 
execution time. The approach prioritizes selecting 
the best-suited service within budget and deadline 
limitations, leading to cost reduction without 
compromising success rates under various strict 
constraints. 

Extensive simulation experiments were 
performed to evaluate the effectiveness of the 
proposed algorithm, comparing it against four state-
of-the-art methods. The obtained results demonstrate 
that the proposed algorithm consistently achieves 
successful scheduling under all imposed constraints 
across all tested scenarios. 

The remaining sections of the paper are as 
follows: Section II provides a review and discussion 
of the related work. Section III models the workflow 
scheduling problem in the CFN environment. 
Section IV presents the proposed optimization 
algorithm in detail. Section V provides the specific 
simulation settings and results, summarizes our work 
and points out the next steps. 

2 RELATED WORK 

Currently, there are increasing numbers of workflow 
scheduling algorithms proposed for cloud 
computing, which can be mainly classified into three 
types: heuristic algorithms, meta-heuristic 
algorithms, and reinforcement learning-based 
algorithms. 

Heuristic algorithms have been extensively 
researched as a method for workflow scheduling, 
offering time-saving benefits by traversing tasks 
from the entry to the exit of the workflow. 
Researchers have made notable contributions in this 
area. Durillo et al. (Durillo, 2014) analyzed the multi-
objective heterogeneous earliest finish time 
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(MOHEFT) algorithm, a Pareto-based list 
scheduling heuristic that provides a set of trade-off 
optimal solutions to users. Poola et al. (Poola, 2014) 
proposed a robust scheduling algorithm that utilizes 
a resource allocation strategy to schedule workflow 
tasks on heterogeneous cloud resources, aiming to 
minimize both completion time and cost. Faragardi 
et al. (Faragardi, 2020) introduced GPR-HEFT, a 
cost-benefit-driven resource allocation method for 
minimizing makespan in budget-constrained cloud 
environments. They considered different cost-benefit 
ratios among resource instances and proposed an 
improved version of the HEFT algorithm that 
schedules tasks on a fixed subset of resource 
instances. They optimized the calculation of the 
earliest finish time using an insertion strategy and 
sought a balance between instance renewal and 
budget constraints. However, while heuristic 
algorithms provide specific rules for task scheduling 
with lower time complexity, they face challenges in 
handling uncertainty in real-world scheduling 
scenarios and may not yield solutions close to 
optimality. 

Meta-heuristic algorithms have gained significant 
popularity for scheduling workflows in the cloud due 
to their ability to find global optimal solutions while 
minimizing completion time and monetary cost. 
These algorithms operate based on a set of guiding 
principles or strategies. Deb et al. (K. Deb, 2002) 
proposed the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II), which is a generational 
evolutionary algorithm that employs Pareto sorting 
and crowding distance density estimation. Coello et 
al. (Coello, 2004) introduced the Multi-Objective 
Particle Swarm Optimization algorithm (MOPSO), 
which incorporates Pareto dominance into Particle 
Swarm Optimization (PSO) to handle multi-
objective optimization problems. These meta-
heuristic algorithms partially overcome the 
limitations of heuristic approaches and can generate 
near-optimal solutions. However, their high time 
complexity poses challenges for their widespread 
and deep application. These algorithms often require 
a large number of iterations in the evolutionary 
process to obtain good solutions, resulting in high 
computational costs and long convergence times. 

3 SOLUTIONS 

3.1 Workflow Model 

The workflow is represented by a directed acyclic 
graph (DAG), G=(T, E), where T represents a set of 

nodes, 𝑇 = {𝑡ଵ, 𝑡ଶ, 𝑡ଷ. . . 𝑡ே} , and each node is a 
microservice. In addition, E represents a set of edges 
between tasks, 𝐸 = {𝑒௜,௝|𝑡௜ , 𝑡௝ ∈ 𝑇} , where these 
edges are control or data dependencies, and the 
amount of data transferred between 𝑡௜  and 𝑡௝  is 
denoted by 𝐶𝑅௜,௝ . If microservice 𝑡௝  depends on 
microservice 𝑡௜, then 𝑒௜,௝ is 1, otherwise 𝑒௜,௝ is 0. 

There are M different combinations of computing 
resources in the entire CFN, 𝑃 = {𝑝ଵ,𝑝ଶ, 𝑝ଷ. . . 𝑝ெ} , 
where 𝑝௜ ={𝐶𝑃𝑈௜ ,𝐺𝑃𝑈௜ ,𝐴𝑆𝐼𝐶௜ ,𝐹𝑃𝐺𝐴௜ ,  𝑀𝐸𝑀𝑂𝑅𝑌௜ ,𝐵𝐴𝑁𝐷𝑊𝐼𝑇𝐻௜|𝑖 ∈ 𝑀}  
represents the number of heterogeneous resources 
provided by different resource combinations. 

The processing capacity of different computing 
resource combinations varies, and 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒௜,௝  is 
used to represent the execution time of 𝑡௝  on 𝑝௜ . If 
resource combination A takes less time to execute 
the same task than B, then A is faster than B. The 
reasons for this may be: (1) the MIPS rate of the 
virtual processors of instance types is higher. (2) 
there are more virtual cores. (3) the memory size and 
storage capacity are larger, and the storage access 
time is faster. 

3.2 Energy Consumption Model 

Consider the following three types of energy 
consumption: (1) energy consumption when running 
tasks on computing resource combinations; (2) 
energy consumption when computing resource 
combinations are idle; (3) energy consumption of 
communication links. Assuming that the hardware 
facilities support DVFS technology (S. Wang, 2017), 
the system-level power model used in (Y. Chen, 
2018) and (Z. Long, 2020) is adopted, and the power 
estimation at running frequency f is shown in 
Formula 1: 𝑃ሺ𝑓ሻ = 𝑃௦ + ℎሺ𝑃௜௡ௗ + 𝑃ௗሻ = 𝑃௦ + ℎ൫𝑃௜௡ௗ + 𝐶௘௙ ∗ 𝑓௠൯

(1) 

Where 𝑃௦  is the static power, which is always 
present by default and can only be eliminated by 
turning off the entire system's power; h is the system 
state, indicating whether the current system is 
consuming dynamic power. When the system is in 
an active state, h=1; otherwise, h=0. 𝑃௜௡ௗ represents 
the frequency-independent dynamic power, which 
can only be eliminated by putting the system into 
sleep mode; 𝑃ௗ  represents the frequency-dependent 
dynamic power (Y. Chen, 2018); 𝐶௘௙  represents the 
effective switching capacitance; m represents the 
dynamic power exponent, and its value should not 
be less than 2. 
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In this study, the static power 𝑃௦ is not considered 
in the computation. For various types of 
heterogeneous resources in the CFN, such as FPGA 
and ASIC, the mainstream calculation method for 
their power consumption is to follow the 
computation form of CPU, which consists of three 
parts: chip static power, design static power, and 
design dynamic power (Xu, 2016)(Taghinezhad-
Niar A., 2020). The power consumption of the first 
two parts depends on the FPGA chip itself, so the 
main focus is still on the dynamic power 
consumption as the variable to be considered in the 
computation: 𝑃௧௢௧௔௟ = 𝑃௦௧௔௧௜௖ + 𝛼𝐶𝑉ଶ𝑓

(2) 

3.3 Cost Model 

Cloud computing resources are composed of a set of 
virtual machines with different unit prices. 
Therefore, let 𝐶𝑜𝑠𝑡(𝑡௜ ,𝑝௠, 𝑓௠,ℎ)  denote the 
execution cost of task 𝑡௜  running on node 𝑝௠  with 𝑓௠,௛, which can be expressed as: 𝐶𝑜𝑠𝑡(𝑡௜ ,𝑝௠,𝑓௠,ℎ) = 𝑤௜,௠ × 𝑝𝑟𝑖𝑐𝑒௠ × ௙೘,೘ೌೣ௙೘,೓ .

(3) 
Where 𝑝𝑟𝑖𝑐𝑒௠ is the unit execution price of a task 

on node 𝑝௠ . The total execution cost of a DAG 
application can be calculated as follows: 

𝐶𝑜𝑠𝑡(𝐺) = ෍𝐶𝑜𝑠𝑡(𝑡௜)|ே|
௜ୀ଴ = ෍𝐶𝑜𝑠𝑡(𝑡௜ ,𝑝௠ ,𝑓௠ ,ℎ)|ே|

௜ୀ଴ . (4) 

3.4 Optimization Model 

This study considers completing the scheduling 
before the deadline while minimizing energy 
consumption as much as possible while ensuring that 
the cost is within the budget. The optimization 
model can be formulated as follows: 𝑀𝑖𝑛𝐹(𝑋) = 𝑀𝑖𝑛𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑋) + 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑋) (5) 

𝑠. 𝑡   ෍𝑋௜,௞ெ
௞ୀଵ = 1,       ∀𝑖 ∈ ሾ1,𝑁ሿ,𝑋௜,௞ ∈ {0,1}.      𝑇𝑎𝑠𝑘௜,௝ ≤ 𝐶𝑢𝑟𝑟𝑁𝑜𝑑𝑒௜,௝ ,∀𝑖 ∈ ሾ1,𝑁ሿ,∀𝑗 ∈ ሾ1,4ሿ.  |𝐶𝑜𝑠𝑡(𝐺) − 𝐵𝑢𝑑𝑔𝑒𝑡௜| ≤ 𝑞,      ∀𝑖 ∈ ሾ1,𝑁ሿ. 

3.5 Baseline 

The Spread algorithm is an innovative approach for 
solving multi-objective heterogeneous earliest finish 
time scheduling problems. It is a Pareto-based list 
scheduling heuristic algorithm that offers users a 
range of trade-off optimal solutions. The Binpack 
algorithm, on the other hand, proposes a robust 

scheduling approach that incorporates a resource 
allocation strategy. It schedules workflow tasks onto 
a set of heterogeneous cloud resources while 
minimizing both the maximum completion time and 
cost. GPR-HEFT, a greedy heuristic method, takes 
into account resource allocation under budget 
constraints. To establish a baseline for comparison, 
the essence of these three algorithms was 
reproduced, and energy and time calculations were 
incorporated into the algorithms. 

3.6 Algorithm Based on NSGA-II  

The workflow scheduling problem is a typical multi-
objective optimization problem, and it is also NP-
Hard. Traditional single-objective optimization 
algorithms cannot solve multi-objective optimization 
problems. Non-Dominated Sorting Genetic 
Algorithm (NSGA) is a commonly used method for 
solving multi-objective optimization problems. 
However, NSGA has drawbacks such as high 
computational complexity and the inability to 
perform elite selection. 

To address these issues, Deb et al. proposed the 
NSGA-II algorithm in (K. Deb, 2002), which 
improves on NSGA in the following ways: (1) 
proposes a fast non-dominated sorting method, (2) 
introduces the concept of crowding distance and 
crowding distance sorting, and (3) introduces an 
elite selection strategy. In NSGA-II, a portion of the 
best solutions is retained in each offspring to ensure 
the algorithm maintains diversity in the search space 
and accelerates convergence. Therefore, NSGA-II 
has significant improvements over NSGA in terms 
of algorithm efficiency, diversity in the search space, 
offspring quality, and convergence speed. NSGA-II 
is an effective method for solving multi-objective 
optimization problems, and this paper will also 
design a workflow scheduling algorithm based on 
NSGA-II to solve the microservice scheduling 
problem in the CFN. 

The algorithm takes as input a set of user tasks 
and a set of computing nodes, and outputs the Pareto 
front. The following is the algorithm and its 
flowchart. 
Algorithm 1 The proposed algorithm 
Input: Input the initial population size, number of generations to run the algorithm, 
number of offspring, crossover and mutation rates, and fitness function. 
Output: Return the final population, non-dominated solutions or Pareto front, 
diversity of the population, convergence performance, and execution time. 
1. Initialize population P(0) with N individuals randomly 
2. for each generation G = 1 to T do 
3.     M = 2N offspring created through crossover and mutation of P(G-1) 
4.     Q = P(G-1) ∪ M 
5.     Compute non-domination of Q 
6.     Assign a rank to each individual based on the non-domination levels 
7.     Perform crowding distance calculation for each individual 
8.     Create a new population P(G) by selecting the best individuals based on 

their rank and crowding distance 
9. end for 
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The input of the proposed algorithm is a set of 
user tasks and a set of computing nodes, and the 
output is the Pareto front. 

4 EXPERIMENT 

To ensure reproducibility and statistical significance, 
simulation methods were employed to evaluate the 
proposed method. Conducting repeatable 
experiments in a real data center or cloud platform 
can be challenging. Therefore, a simulation 
approach was adopted, enabling a substantial 
number of experiments to be conducted across 
various application configurations. This approach 
allows for rigorous testing and analysis, resulting in 
more reliable and statistically significant results. 

The purpose of the experiment is to verify the 
superiority of the improved algorithm over other 
algorithms in the same optimization indicators, 
including energy consumption, cost, and scheduling 
delay. In terms of hardware, a physical machine with 
an Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 
processor and running the Windows 11 operating 
system was used for the experiment. 

 

  
CYBERSHAKE LIGO 

  
MONTAGE GENOME 

Figure 1: Four kinds of workflow diagrams. 

4.1 Dataset 

The simulation incorporated four commonly used 
scientific workflow models: CYBERSHAKE, 
GENOME, LIGO, and MONTAGE. Figure 1 
illustrates the smaller workflow structures of each 
application. CYBERSHAKE is a data-intensive 
workflow that places high demands on memory and 

CPU resources. It plays a significant role in 
modeling seismic disasters in a particular region. 
GENOME is designed for automating various 
genome sequencing operations, essentially serving 
as a data processing pipeline. LIGO is utilized for 
the detection and analysis of gravitational waves in 
physics. It primarily requires substantial CPU 
resources.MONTAGE is an astronomy workflow 
model used to generate customized sky mosaics. In 
MONTAGE, most tasks are I/O-intensive and do not 
necessitate high CPU processing capabilities 
(Gideon Juve, 2012). 

In our experiment, we assume that the CFN 
provides six types of virtual machines, each with 
different resource and price characteristics.Each 
virtual machine has different attribute values that are 
randomly generated based on the resource 
requirements of the dataset. The pricing was based 
on the existing Alibaba Cloud pricing for cloud 
resources. For the resource requirements, the same 
dataset as (S. Tao, 2023) was used. 

The parameters of the algorithm greatly affect the 
performance of the algorithm. Table 1 is the 
parameters used in the implementation of the 
algorithm. 

Table 1: NSGA-II parameter setting. 

Parameter Value 
Population size 80 

Number of iterations 100 
Cross probability 1 

Mutation probability 0.1 

The performance metric employed to evaluate the 
different algorithms on various workflows is the 
normalized cost. The normalized cost is calculated 
as the ratio of the cost of the current solution to the 
cost of the cheapest solution. In the cheapest 
solution, all tasks are scheduled on the cheapest 
virtual machine, resulting in the minimum cost. The 
total execution time and cost of the cheapest solution 
are denoted as 𝑀௧ and 𝐶௧, respectively. Similarly, in 
the fastest scheduling solution, all tasks are 
scheduled on the fastest virtual machine. The HEFT 
algorithm is used to determine the fastest scheduling 
method in our experiment. The total execution time 
and cost of the fastest solution are denoted as  𝑀௙ 
and 𝐶௙, respectively. To control the variation of the 
deadline, a deadline factor µ is introduced, with µ ∈ 
[0,1]. The deadline for each repeated experiment can 
be calculated based on the value of µ. This allows 
for the assessment of algorithm performance under 
different deadline constraints. 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀௙ + ൫𝑀௧ − 𝑀௙൯ × 𝜇 (6) 
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For certain workflows, the cost can be much 
higher due to their special structures, making it 
difficult to show differences when considering 
budget constraints. To overcome this problem, a 
budget factor λ (λ∈[0,1]) is introduced to represent 
the looseness of the budget. To make it easier to 
control the factor, we set λ = 1−µ and calculate the 
budget based on λ. 𝐵𝑢𝑑𝑔𝑒𝑡 = 𝐶௧ + ൫𝐶௙ − 𝐶௧൯ × λ (7) 

A higher value of µ indicates looser deadline 
constraints and stricter budget constraints. In such 
cases, the scheduling method is more likely to 
prioritize slower services to meet the budget 
restrictions. On the other hand, a higher value of λ 
increases the likelihood of the scheduling method 
selecting faster services, as it emphasizes meeting 
tighter deadline constraints. 

The success rate measurement was employed to 
assess the effectiveness of each method in 
generating solutions that satisfy the given 
constraints. It is determined by dividing the number 
of successful plans by the total number of plans 
evaluated. This metric provides an indication of how 
well each method performs in meeting the specified 
constraints and achieving satisfactory outcomes. 

4.2 Results Analysis 

The experiment employed the total delay of 
scheduling and the energy consumption of resources 
as evaluation indicators for microservice scheduling. 
These indicators were calculated using formulas 2 
and 4, respectively. To assess the performance of the 
proposed algorithm, benchmark methods such as 
Spread, Binpack, and GPR-HEFT were utilized. 
These methods are well-established optimization 
techniques in the field of workflow scheduling. 
Considering the stochastic nature of certain 
properties of the methods, the experiments were 
conducted using datasets of different sizes (50, 100, 
200). Each experiment was repeated 10 times to 
obtain average values, ensuring the reliability and 
robustness of the results. 

To comprehensively assess the effectiveness of 
each method under varying degrees of constraints, 
the evaluation process began by setting µ and λ to 
small values to evaluate performance under strict 
constraints. Subsequently, µ and λ were varied 
within the range of [0.005, 0.03] with a step size of 
0.005. The average success rate of each method 
under different configurations is depicted in Figures 
2 and 3. These figures provide insights into the 
performance of each method across a range of 
constraint settings, allowing for a comprehensive 

evaluation of their ability to generate effective 
solutions. 

  
(a) CYBERSHAKE (b) LIGO 

  
(c) MONTAGE (d) GENOME 

Figure 2: The average scheduling success rate of each 
workflow data under the deadline constraint. 

  
(a) CYBERSHAKE (b) LIGO 

  
(c) MONTAGE (d) GENOME 

Figure 3: The average scheduling success rate of each 
workflow data under budget constraints 

As shown in Figure 2, as the deadline factor µ 
increases and the budget factor λ decreases, the 
success rate of each method also increases, and 
when µ equals 0.025, all methods can achieve a 
success rate of 100%. The Spread method does not 
perform well on every workflow. When used on 
CYBERSHAKE and LIGO, it can quickly reach 
100%, but performs the worst on GENOME. When 
µ is less than 0.025, the Binpack method cannot 
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complete the scheduling 100% and performs 
relatively poorly on GENOME and LIGO. the GPR-
HEFT method performs better than the first two 
methods, but there are still cases where it cannot 
complete scheduling when the deadline constraints 
are strict. The proposed agorithm performs the best 
in terms of performance and can successfully 
schedule under all workflows in this experiment. 

As depicted in Figure 3, an interesting 
observation is that when the budget factor λ is 
extremely small, only our proposed method 
consistently achieves a 100% success rate across all 
workflows. In contrast, the Binpack method fails to 
satisfy the constraints in most cases, achieving a 
100% success rate only for GENOME when λ 
exceeds 0.02. The Spread method performs well for 
MONTAGE, reaching a 100% success rate in every 
case. However, it struggles to satisfy the constraints 
when the budget is at its minimum for MONTAGE. 
On the other hand, the Binpack method 
demonstrates robustness, with a relatively stable 
success rate at small values of µ and λ. The 
performance of GPR-HEFT under budget constraints 
remains steady, with a success rate that gradually 
increases as the budget constraint becomes more 
stringent. This aligns with the design intention of the 
GPR-HEFT algorithm. Overall, these findings shed 
light on the comparative performance of different 
methods under varying constraint settings and 
highlight the strengths and limitations of each 
approach. 

 

 
(a) CYBERSHAKE (b) LIGO 

(c) MONTAGE (d) GENOME 

Figure 4: The number of tasks is 100 when the NSGA-II 
algorithm Vilfredo Pareto front. 

Figure 4 shows the Pareto front of the proposed 
algorithm for four different workflow datasets with a 
task count of 100. It can be seen that for the four 
different datasets, our algorithm can converge 
quickly and obtain a set of Pareto front solutions for 
selection, with a moderate number of solutions that 
are evenly distributed. 

Figures 5 and 6 show the comparison of delay 
and energy consumption of three algorithms under 
different task counts in four datasets. From the 
figure, it can be seen that as the number of 
microservices increases, the overall delay continues  
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(c)100 

 
(d) 200 

Figure 5: The energy consumption of the four algorithms 
was compared with the data from different tasks. 
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to increase, and the proposed algorithm has a much 
lower delay than the Spread algorithm, slightly 
lower than the Binpack algorithm. This is because 
Spread always schedules microservices to different 
nodes, resulting in an increase in microservice data 
transmission. Binpack schedules microservices to 
one node, reducing this delay. Due to its greedy 
strategy, the GPR-HEFT method often falls into 
local optima during the search process, resulting in 
overall inefficiency, while our algorithm has global 
search capabilities and can find globally optimal 
solutions to some extent. In terms of load balance, 
our algorithm has significant improvements 
compared to the above two algorithms. The 
experimental results show that the proposed 
algorithm optimizes both scheduling delay and 
energy consumption, effectively ensuring the QoS of 
user applications. 

In summary, the LIGO workflow's complex 
topological structures may limit the impact of 
NSGA-II in the elite selection step, leading to a less 
significant reduction in scheduling execution costs. 
In the CYBERSHAKE workflow, tasks with 
numerous parent tasks but no intermediate child 
tasks can be scheduled flexibly, with their execution 
having a varying impact on the overall plan 
depending on the constraints and budget. The 
GENOME workflow, with its simpler structure and 
consistent scheduling order, exhibits similar cost and 
energy consumption patterns across different 
scheduling methods. These observations emphasize 
the role of workflow characteristics in influencing 
scheduling method performance and highlight the 
specific challenges posed by each workflow. 
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Figure 6. Under the data of different tasks, the Makespan 
of the three algorithms is compared. 

In summary, the proposed algorithm performs well 
on each dataset with different numbers of tasks, as 
shown in Figure 5. On the four datasets, the 
scheduling energy consumption of the NSGA-II 
algorithm is on average 19.4% lower than Binpack, 
14.8% lower than Spread, and 20.5% lower than 
GPR-HEFT. Especially on the MONTAGE dataset, 
the average energy consumption is 24.7% lower than 
Binpack. In Figure 6, the NSGA-II method still has 
an advantage in scheduling delay, with an average 
delay that is 15.4% lower than Binpack, 14.1% 
lower than Spread, and 3.7% lower than GPR-
HEFT. Especially on the CYBERSHAKE dataset, 
the average scheduling time is 23.7% lower than 
Spread. 
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Regarding scheduling delay, our method also 
performs well. Figure 6 shows the average 
scheduling delay of the four methods on four 
datasets. The scheduling delay of our algorithm is on 
average 15.4% lower than Binpack, 14.1% lower 
than Spread, and 3.7% lower than GPR-HEFT. 
Especially on the CYBERSHAKE dataset, the 
average scheduling time of our method is 23.7% 
lower than that of Spread. 

5 CONCLUSION 

In this article, we analyzed the scheduling problem 
of workflow in the existing CFN environment and 
found that energy consumption and price constraints 
are important in the scheduling process in a real 
environment. Therefore, we concluded that the 
scheduling problem in the CFN is a multi-objective 
optimization problem. Then, we modeled the 
energy-aware and price-sensitive scheduling 
problem in the CFN. 

A comparative analysis between the proposed 
algorithm and existing algorithms showed that the 
proposed algorithm achieved the highest success 
rate, satisfying constraints with low energy 
consumption, especially under tight constraints. It 
also maintained good performance as the constraints 
became looser. The algorithm performed 
exceptionally well on the CYBERSHAKE dataset, 
with a consistently lower average Makespan 
compared to other algorithms. In summary, the 
comparative analysis demonstrated the superior 
performance of the proposed algorithm in terms of 
success rate, constraint satisfaction, energy 
consumption, and Makespan. This highlights its 
potential as a promising solution for microservice 
scheduling. 

In future research, we plan to enhance the update 
strategy of the algorithm to improve convergence 
speed and achieve better results across workflow 
processes. Our goal is to optimize the algorithm's 
efficiency, enabling faster generation of high-quality 
solutions. We will also focus on refining the 
comprehensive budget allocation and service 
selection methods, particularly for relaxed constraint 
conditions. This will allow the algorithm to be 
applied effectively in a wider range of real-world 
scenarios with varying constraints and budget 
allocations. By addressing these areas, we aim to 
advance the algorithm's performance, expand its 
applicability, and contribute to the field of 
microservice scheduling research. 

REFERENCES 

F. Liang, W. Yu, D. An, A Survey on Big Data Market: 
Pricing, Trading and Protection[J], IEEE Access. 2018, 
6: 15132-15154. https://doi.org/10.1109/ACCESS. 
2018.2806881 

I. Ahmad, S. Lembo, F. Rodriguez, Security of Micro MEC 
in 6G: A Brief Overview[C], 2022 IEEE 19th Annual 
Consumer Communications & Networking Conference 
(CCNC) 2022, 332-337. https://doi.org/10.1109/CCNC4 
9033.2022.9700577 

B. Baek, J. Lee, Y. Peng, Three Dynamic Pricing Schemes 
for Resource Allocation of Edge Computing for IoT 
Environment[J], IEEE Internet of Things Journal. 2020, 
7 (5): 4292-4303. https://doi.org/10.1109/JIOT.2020. 
2966627 

H. Seo, H. Oh, J. K. Choi, Differential Pricing-Based Task 
Offloading for Delay-Sensitive IoT Applications in 
Mobile Edge Computing System[J], IEEE Internet of 
Things Journal. 2022. 9 (19): 19116-19131. https:// 
doi.org/10.1109/JIOT.2022.3163820 

J. Zhu, X. Li, R. Ruiz, Scheduling Periodical Multi-Stage 
Jobs With Fuzziness to Elastic Cloud Resources[J], 
IEEE Transactions on Parallel and Distributed Systems. 
2020, 31 (12): 2819-2833. https://doi.org/10.1109/TP 
DS.2020.3004134 

H. Djigal, J. Feng, J. Lu, J. Ge, An Efficient Algorithm for 
Scientific Workflow Scheduling in Heterogeneous 
Computing Systems[J], IEEE Transactions on Parallel 
and Distributed Systems. 2021, 32 (5): 1057-1071. 
https://doi.org/10.1109/TPDS.2020.3041829 

Y. Wang and X. Zuo, An Effective Cloud Workflow 
Scheduling Approach Combining PSO and Idle Time 
Slot-Aware Rules[J], IEEE/CAA Journal of 
Automatica Sinica. 2021, 8 (5): 1079-1094. https:// 
doi.org/10.1109/JAS.2021.1003982 

Yadav, R., Zhang, W. Li, K., An adaptive heuristic for 
managing energy consumption and overloaded hosts in 
a cloud data center[J], Wireless Networks. 2020, 26 (3): 
1905–1919.https://doi.org/10.1007/s11276-018-1874-1 

Durillo, J.J., Prodan, R., Multi-objective workflow 
scheduling in Amazon EC2[J], Cluster Computing. 
2014, 17 (2): 169–189. https://doi.org/10.1007/s10586-
013-0325-0 

D. Poola, S. K. Garg, R. Buyya, Robust Scheduling of 
Scientific Workflows with Deadline and Budget 
Constraints in Clouds[C], 2014 IEEE 28th 
International Conf. on Advanced Information 
Networking and Applications. 2014, 2819-2833. 
https://doi.org/10.1109/AINA.2014.105 

K. Deb, A. Pratap, S. Agarwal, A fast and elitist 
multiobjective genetic algorithm: NSGA-II Constraints 
in Clouds[J], IEEE Transactions on Evolutionary 
Computation. 2002, 6 (2): 182-197. https://doi.org/10. 
1109/4235.996017 

C. A. C. Coello, G. T. Pulido, M. S. Lechuga, Handling 
multiple objectives with particle swarm 
optimization[J], IEEE Transactions on Evolutionary 
Computation. 2004, 8 (3): 256-279. https://doi. 
org/10.1109/TEVC.2004.826067 

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

202



S. Tao, Y. Xia, L. Ye, DB-ACO: A Deadline-Budget 
Constrained Ant Colony Optimization for Workflow 
Scheduling in Clouds[J], IEEE Transactions on 
Automation Science and Engineering. 2023, 1–16. 
https://doi.org/10.1109/TASE.2023.3247973 

H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, 
GRP-HEFT: A Budget-Constrained Resource 
Provisioning Scheme for Workflow Scheduling in IaaS 
Clouds[J], IEEE Transactions on Parallel and 
Distributed Systems. 2020, 31 (6): 1239-1254. 
https://doi.org/10.1109/TPDS.2019. 2961098 

Gideon Juve, Ann Chervenak, Ewa Deelman, Taheri, 
Handling, Characterizing and profiling scientific 
workflows[J], Future Generation Computer Systems. 
2013, 29 (3): 682–692. 
https://doi.org/10.1016/j.future.2012.08.015 

S. Wang, Z. Qian, J. Yuan, A DVFS Based Energy-
Efficient Tasks Scheduling in a Data Center[J], IEEE 
Access. 2017, 5: 13090-13102. 
https://doi.org/10.1109/ACCESS.2017.2724598 

Y. Chen, G. Xie, R. Li, Reducing Energy Consumption 
With Cost Budget Using Available Budget 
Preassignment in Heterogeneous Cloud Computing 
Systems[J], IEEE Access. 2018, 6: 20572-20583. 
https://doi.org/10.1109/ACCESS.2018.2825648 

Z. Long, Z. Li, S. Ahmad, Efficient scientific workflow 
scheduling for deadline-constrained parallel tasks in 
cloud computing environments[J], IEEE Transactions 
on Evolutionary Computation. 2020, 531: 31-46. 
https://doi.org/10.1016/j.ins.2020.04.039 

X. Xu, W. Dou, X. Zhang, An Energy-Aware Resource 
Allocation Method for Scientific Workflow Executions 
in Cloud Environment[J], IEEE Transactions on Cloud 
Computing. 2016, 4 (2): 166-179. 
https://doi.org/10.1109/TCC.2015.2453966 

Taghinezhad-Niar A., Pashazadeh S., Taheri, Handling, 
Workflow scheduling of scientific workflows under 
simultaneous deadline and budget constraints[J], 
Cluster Computing. 2021, 24 (4): 3449–3467. 
https://doi.org/10.1007/s10586-021-03314-3 

Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network

203


