
Heterogeneous Resource Scheduling Method based on Energy
Optimization under Price Constraints in Computing Force Network

Shizhan Lan1, Zhenyu Wang2, Weichao Kong2 and Yuxuan Long2

1China Mobile Guangxi Branch Co., Ltd, Nanning, China
2South China University of Technology, Guangzhou, China

Keywords: Computing Force Network, Workflow Scheduling, Price-Sensitive.

Abstract: With the development of Computing Force Network (CFN), more and more resources are deployed in CFN
which dynamically provide computing resources according to users' needs. In the CFN environment,
scheduling workflow under deadline constraints is one of the fundamental issues. The number and size of
heterogeneous resources in the CFN are gradually increasing, and the required costs are also constantly
rising. As a result, it is necessary to consider users' budget limits while also reducing the energy
consumption of end-side devices and edge servers. Aiming at workflow scheduling on time, cost, and
energy consumption constraints, a scheduling algorithm that combines with NSGA-II is used to optimize
scheduling time, cost, and energy consumption, with price as a soft constraint to ensure that the cost stays
within the budget and the schedule is completed before the deadline while minimizing energy consumption.
Our algorithm is validated by four typical scientific workflows, and the experimental results show that our
algorithm can reduce the average energy consumption by 14.8%, and compared to the GPR-HEFT method,
the average energy consumption can be reduced by 20.5%.

1 INTRODUCTION

In recent years, the computing infrastructure has
undergone a significant transformation, moving
from a centralized cloud-based model to a
distributed architecture that includes the cloud, edge,
and end-side computing (F. Liang, 2018). The cloud,
represented by large-scale data centers, serves as the
foundation of cloud computing, offering users the
ability to store and process data through grid-based
access to interconnected computers and servers.
However, the rise of Multi-access Edge Computing
(MEC) has shifted the focus towards bringing
computing capabilities closer to the data source,
addressing the limitations of latency and data
volume associated with centralized cloud computing
(Ahmad, S. Lembo, 2022). MEC enables the analysis
and processing of data generated by Internet of
Things (IoT) devices at the network edge, enhancing
efficiency and security by eliminating the need to
transmit data to remote cloud data centers.
Additionally, the end-side computing encompasses
various devices with networking and computing
capabilities, such as PCs, smartphones, smart TVs,
home set-top boxes, and IoT devices like smart
meters for water and electricity (Baek, 2020). The

proliferation of these terminal devices in the era of
the Internet of Things presents an opportunity for
leveraging their collective computing power through
shared computing resources (B. Baek, 2020). By
aggregating the idle computational resources of
these devices, computing power sharing can be
achieved, opening up new possibilities for
distributed computing. These advancements in
computing infrastructure offer potential for
improved performance, reduced latency, enhanced
security, and efficient utilization of computing
resources. Researchers and industry professionals
are actively exploring the opportunities and
challenges associated with distributed computing
models to harness the benefits of cloud, edge, and
end-side computing in various domains.

With the increasing adoption of the three-level
computing architecture comprising cloud, edge, and
end-side, computing power is no longer confined to
centralized data centers but is distributed across
various locations at the edge and end-side. However,
realizing the full potential of these distributed
computing resources requires a robust network
infrastructure that enables seamless interconnection
and collaboration among the computing nodes. To
address this challenge, the concept of the Computing
Fabric Network (CFN) has been introduced. The

194
Lan, S., Wang, Z., Kong, W. and Long, Y.
Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network.
DOI: 10.5220/0012277500003807
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2023), pages 194-203
ISBN: 978-989-758-677-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

CFN seeks to establish a network framework that
facilitates the sharing, scheduling, utilization, and
collaboration of computing resources across the
distributed computing nodes. By enabling effective
communication and coordination among these
nodes, the CFN ensures that the computing power
available at the edge and end-side can be harnessed
efficiently and effectively. This concept holds great
promise in unlocking the full potential of the three-
level computing architecture and driving the
development of innovative applications and services.

In the CFN, there are various heterogeneous
resources in addition to computing power and
storage space. Heterogeneous resources refer to
different computing resources, such as CPUs, GPUs,
FPGAs, etc., with different computing capabilities
and characteristics. In the CFN (Seo, 2022), the use
of heterogeneous resources can better meet the needs
of different computing tasks and improve computing
efficiency and flexibility.

Energy consumption of end-side devices is a
crucial factor in computing scheduling, as these
devices usually have limited computing power and
storage space and need to complete various
computing tasks through the CFN (Zhu, 2020). In
computing scheduling, considering the energy
consumption of end-side devices can help to
maximize the battery life of devices, increase device
usage time, and improve usage efficiency (Djigal,
2021).

The energy consumption of end-side devices is
closely related to computing scheduling. In
computing scheduling, tasks need to be assigned to
different computing nodes for execution, and these
computing nodes often require a significant amount
of energy to complete computing tasks. If the
computing scheduling is unreasonable, it can cause
some computing nodes to have a high workload,
resulting in excessive energy consumption and
affecting the performance and efficiency of the
entire CFN (Wang, 2021). Therefore, computing
scheduling needs to consider the energy
consumption of end-side devices to maximize the
reduction of computing node energy consumption
and improve the energy efficiency performance of
the entire CFN.

To reduce energy consumption, computing
scheduling can adopt various measures, such as task
merging, node sleep, load balancing, etc. Task
merging can merge multiple small tasks into one
large task, reducing nodes’ startup and shutdown
time and lowering energy consumption (Yadav,
2020). Node sleep can put idle nodes to sleep to
reduce energy consumption. Load balancing can

evenly distribute tasks to different computing nodes,
avoiding high workload on some nodes and thereby
reducing energy consumption.

The contributions of this paper are summarized
as follows:

According to the CFN scenario, the resource
scheduling problem was defined in a three-tiered
collaborative environment of cloud, edge, and
terminal, and a resource scheduling stability model
based on energy consumption and price sensitivity
was constructed.

A refined NSGA-II algorithm is introduced in
this study, leveraging the resource scheduling model
in the Computing Fabric Network (CFN).
Alongside, a novel elite selection method is
employed to efficiently match services with tasks,
while considering cost, energy consumption, and
execution time. The approach prioritizes selecting
the best-suited service within budget and deadline
limitations, leading to cost reduction without
compromising success rates under various strict
constraints.

Extensive simulation experiments were
performed to evaluate the effectiveness of the
proposed algorithm, comparing it against four state-
of-the-art methods. The obtained results demonstrate
that the proposed algorithm consistently achieves
successful scheduling under all imposed constraints
across all tested scenarios.

The remaining sections of the paper are as
follows: Section II provides a review and discussion
of the related work. Section III models the workflow
scheduling problem in the CFN environment.
Section IV presents the proposed optimization
algorithm in detail. Section V provides the specific
simulation settings and results, summarizes our work
and points out the next steps.

2 RELATED WORK

Currently, there are increasing numbers of workflow
scheduling algorithms proposed for cloud
computing, which can be mainly classified into three
types: heuristic algorithms, meta-heuristic
algorithms, and reinforcement learning-based
algorithms.

Heuristic algorithms have been extensively
researched as a method for workflow scheduling,
offering time-saving benefits by traversing tasks
from the entry to the exit of the workflow.
Researchers have made notable contributions in this
area. Durillo et al. (Durillo, 2014) analyzed the multi-
objective heterogeneous earliest finish time

Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network

195

(MOHEFT) algorithm, a Pareto-based list
scheduling heuristic that provides a set of trade-off
optimal solutions to users. Poola et al. (Poola, 2014)
proposed a robust scheduling algorithm that utilizes
a resource allocation strategy to schedule workflow
tasks on heterogeneous cloud resources, aiming to
minimize both completion time and cost. Faragardi
et al. (Faragardi, 2020) introduced GPR-HEFT, a
cost-benefit-driven resource allocation method for
minimizing makespan in budget-constrained cloud
environments. They considered different cost-benefit
ratios among resource instances and proposed an
improved version of the HEFT algorithm that
schedules tasks on a fixed subset of resource
instances. They optimized the calculation of the
earliest finish time using an insertion strategy and
sought a balance between instance renewal and
budget constraints. However, while heuristic
algorithms provide specific rules for task scheduling
with lower time complexity, they face challenges in
handling uncertainty in real-world scheduling
scenarios and may not yield solutions close to
optimality.

Meta-heuristic algorithms have gained significant
popularity for scheduling workflows in the cloud due
to their ability to find global optimal solutions while
minimizing completion time and monetary cost.
These algorithms operate based on a set of guiding
principles or strategies. Deb et al. (K. Deb, 2002)
proposed the Non-dominated Sorting Genetic
Algorithm II (NSGA-II), which is a generational
evolutionary algorithm that employs Pareto sorting
and crowding distance density estimation. Coello et
al. (Coello, 2004) introduced the Multi-Objective
Particle Swarm Optimization algorithm (MOPSO),
which incorporates Pareto dominance into Particle
Swarm Optimization (PSO) to handle multi-
objective optimization problems. These meta-
heuristic algorithms partially overcome the
limitations of heuristic approaches and can generate
near-optimal solutions. However, their high time
complexity poses challenges for their widespread
and deep application. These algorithms often require
a large number of iterations in the evolutionary
process to obtain good solutions, resulting in high
computational costs and long convergence times.

3 SOLUTIONS

3.1 Workflow Model

The workflow is represented by a directed acyclic
graph (DAG), G=(T, E), where T represents a set of

nodes, 𝑇 = {𝑡ଵ, 𝑡ଶ, 𝑡ଷ. . . 𝑡ே} , and each node is a
microservice. In addition, E represents a set of edges
between tasks, 𝐸 = {𝑒௜,௝|𝑡௜ , 𝑡௝ ∈ 𝑇} , where these
edges are control or data dependencies, and the
amount of data transferred between 𝑡௜ and 𝑡௝ is
denoted by 𝐶𝑅௜,௝ . If microservice 𝑡௝ depends on
microservice 𝑡௜, then 𝑒௜,௝ is 1, otherwise 𝑒௜,௝ is 0.

There are M different combinations of computing
resources in the entire CFN, 𝑃 = {𝑝ଵ,𝑝ଶ, 𝑝ଷ. . . 𝑝ெ} ,
where 𝑝௜ ={𝐶𝑃𝑈௜ ,𝐺𝑃𝑈௜ ,𝐴𝑆𝐼𝐶௜ ,𝐹𝑃𝐺𝐴௜ , 𝑀𝐸𝑀𝑂𝑅𝑌௜ ,𝐵𝐴𝑁𝐷𝑊𝐼𝑇𝐻௜|𝑖 ∈ 𝑀}
represents the number of heterogeneous resources
provided by different resource combinations.

The processing capacity of different computing
resource combinations varies, and 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒௜,௝ is
used to represent the execution time of 𝑡௝ on 𝑝௜ . If
resource combination A takes less time to execute
the same task than B, then A is faster than B. The
reasons for this may be: (1) the MIPS rate of the
virtual processors of instance types is higher. (2)
there are more virtual cores. (3) the memory size and
storage capacity are larger, and the storage access
time is faster.

3.2 Energy Consumption Model

Consider the following three types of energy
consumption: (1) energy consumption when running
tasks on computing resource combinations; (2)
energy consumption when computing resource
combinations are idle; (3) energy consumption of
communication links. Assuming that the hardware
facilities support DVFS technology (S. Wang, 2017),
the system-level power model used in (Y. Chen,
2018) and (Z. Long, 2020) is adopted, and the power
estimation at running frequency f is shown in
Formula 1: 𝑃ሺ𝑓ሻ = 𝑃௦ + ℎሺ𝑃௜௡ௗ + 𝑃ௗሻ = 𝑃௦ + ℎ൫𝑃௜௡ௗ + 𝐶௘௙ ∗ 𝑓௠൯

(1)

Where 𝑃௦ is the static power, which is always
present by default and can only be eliminated by
turning off the entire system's power; h is the system
state, indicating whether the current system is
consuming dynamic power. When the system is in
an active state, h=1; otherwise, h=0. 𝑃௜௡ௗ represents
the frequency-independent dynamic power, which
can only be eliminated by putting the system into
sleep mode; 𝑃ௗ represents the frequency-dependent
dynamic power (Y. Chen, 2018); 𝐶௘௙ represents the
effective switching capacitance; m represents the
dynamic power exponent, and its value should not
be less than 2.

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

196

In this study, the static power 𝑃௦ is not considered
in the computation. For various types of
heterogeneous resources in the CFN, such as FPGA
and ASIC, the mainstream calculation method for
their power consumption is to follow the
computation form of CPU, which consists of three
parts: chip static power, design static power, and
design dynamic power (Xu, 2016)(Taghinezhad-
Niar A., 2020). The power consumption of the first
two parts depends on the FPGA chip itself, so the
main focus is still on the dynamic power
consumption as the variable to be considered in the
computation: 𝑃௧௢௧௔௟ = 𝑃௦௧௔௧௜௖ + 𝛼𝐶𝑉ଶ𝑓

(2)

3.3 Cost Model

Cloud computing resources are composed of a set of
virtual machines with different unit prices.
Therefore, let 𝐶𝑜𝑠𝑡(𝑡௜ ,𝑝௠, 𝑓௠,ℎ) denote the
execution cost of task 𝑡௜ running on node 𝑝௠ with 𝑓௠,௛, which can be expressed as: 𝐶𝑜𝑠𝑡(𝑡௜ ,𝑝௠,𝑓௠,ℎ) = 𝑤௜,௠ × 𝑝𝑟𝑖𝑐𝑒௠ × ௙೘,೘ೌೣ௙೘,೓ .

(3)
Where 𝑝𝑟𝑖𝑐𝑒௠ is the unit execution price of a task

on node 𝑝௠ . The total execution cost of a DAG
application can be calculated as follows:

𝐶𝑜𝑠𝑡(𝐺) = ෍𝐶𝑜𝑠𝑡(𝑡௜)|ே|
௜ୀ଴ = ෍𝐶𝑜𝑠𝑡(𝑡௜ ,𝑝௠ ,𝑓௠ ,ℎ)|ே|

௜ୀ଴ . (4)

3.4 Optimization Model

This study considers completing the scheduling
before the deadline while minimizing energy
consumption as much as possible while ensuring that
the cost is within the budget. The optimization
model can be formulated as follows: 𝑀𝑖𝑛𝐹(𝑋) = 𝑀𝑖𝑛𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑋) + 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑋) (5)

𝑠. 𝑡 ෍𝑋௜,௞ெ
௞ୀଵ = 1, ∀𝑖 ∈ ሾ1,𝑁ሿ,𝑋௜,௞ ∈ {0,1}. 𝑇𝑎𝑠𝑘௜,௝ ≤ 𝐶𝑢𝑟𝑟𝑁𝑜𝑑𝑒௜,௝ ,∀𝑖 ∈ ሾ1,𝑁ሿ,∀𝑗 ∈ ሾ1,4ሿ. |𝐶𝑜𝑠𝑡(𝐺) − 𝐵𝑢𝑑𝑔𝑒𝑡௜| ≤ 𝑞, ∀𝑖 ∈ ሾ1,𝑁ሿ.

3.5 Baseline

The Spread algorithm is an innovative approach for
solving multi-objective heterogeneous earliest finish
time scheduling problems. It is a Pareto-based list
scheduling heuristic algorithm that offers users a
range of trade-off optimal solutions. The Binpack
algorithm, on the other hand, proposes a robust

scheduling approach that incorporates a resource
allocation strategy. It schedules workflow tasks onto
a set of heterogeneous cloud resources while
minimizing both the maximum completion time and
cost. GPR-HEFT, a greedy heuristic method, takes
into account resource allocation under budget
constraints. To establish a baseline for comparison,
the essence of these three algorithms was
reproduced, and energy and time calculations were
incorporated into the algorithms.

3.6 Algorithm Based on NSGA-II

The workflow scheduling problem is a typical multi-
objective optimization problem, and it is also NP-
Hard. Traditional single-objective optimization
algorithms cannot solve multi-objective optimization
problems. Non-Dominated Sorting Genetic
Algorithm (NSGA) is a commonly used method for
solving multi-objective optimization problems.
However, NSGA has drawbacks such as high
computational complexity and the inability to
perform elite selection.

To address these issues, Deb et al. proposed the
NSGA-II algorithm in (K. Deb, 2002), which
improves on NSGA in the following ways: (1)
proposes a fast non-dominated sorting method, (2)
introduces the concept of crowding distance and
crowding distance sorting, and (3) introduces an
elite selection strategy. In NSGA-II, a portion of the
best solutions is retained in each offspring to ensure
the algorithm maintains diversity in the search space
and accelerates convergence. Therefore, NSGA-II
has significant improvements over NSGA in terms
of algorithm efficiency, diversity in the search space,
offspring quality, and convergence speed. NSGA-II
is an effective method for solving multi-objective
optimization problems, and this paper will also
design a workflow scheduling algorithm based on
NSGA-II to solve the microservice scheduling
problem in the CFN.

The algorithm takes as input a set of user tasks
and a set of computing nodes, and outputs the Pareto
front. The following is the algorithm and its
flowchart.
Algorithm 1 The proposed algorithm
Input: Input the initial population size, number of generations to run the algorithm,
number of offspring, crossover and mutation rates, and fitness function.
Output: Return the final population, non-dominated solutions or Pareto front,
diversity of the population, convergence performance, and execution time.
1. Initialize population P(0) with N individuals randomly
2. for each generation G = 1 to T do
3. M = 2N offspring created through crossover and mutation of P(G-1)
4. Q = P(G-1) ∪ M
5. Compute non-domination of Q
6. Assign a rank to each individual based on the non-domination levels
7. Perform crowding distance calculation for each individual
8. Create a new population P(G) by selecting the best individuals based on

their rank and crowding distance
9. end for

Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network

197

The input of the proposed algorithm is a set of
user tasks and a set of computing nodes, and the
output is the Pareto front.

4 EXPERIMENT

To ensure reproducibility and statistical significance,
simulation methods were employed to evaluate the
proposed method. Conducting repeatable
experiments in a real data center or cloud platform
can be challenging. Therefore, a simulation
approach was adopted, enabling a substantial
number of experiments to be conducted across
various application configurations. This approach
allows for rigorous testing and analysis, resulting in
more reliable and statistically significant results.

The purpose of the experiment is to verify the
superiority of the improved algorithm over other
algorithms in the same optimization indicators,
including energy consumption, cost, and scheduling
delay. In terms of hardware, a physical machine with
an Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
processor and running the Windows 11 operating
system was used for the experiment.

CYBERSHAKE LIGO

MONTAGE GENOME

Figure 1: Four kinds of workflow diagrams.

4.1 Dataset

The simulation incorporated four commonly used
scientific workflow models: CYBERSHAKE,
GENOME, LIGO, and MONTAGE. Figure 1
illustrates the smaller workflow structures of each
application. CYBERSHAKE is a data-intensive
workflow that places high demands on memory and

CPU resources. It plays a significant role in
modeling seismic disasters in a particular region.
GENOME is designed for automating various
genome sequencing operations, essentially serving
as a data processing pipeline. LIGO is utilized for
the detection and analysis of gravitational waves in
physics. It primarily requires substantial CPU
resources.MONTAGE is an astronomy workflow
model used to generate customized sky mosaics. In
MONTAGE, most tasks are I/O-intensive and do not
necessitate high CPU processing capabilities
(Gideon Juve, 2012).

In our experiment, we assume that the CFN
provides six types of virtual machines, each with
different resource and price characteristics.Each
virtual machine has different attribute values that are
randomly generated based on the resource
requirements of the dataset. The pricing was based
on the existing Alibaba Cloud pricing for cloud
resources. For the resource requirements, the same
dataset as (S. Tao, 2023) was used.

The parameters of the algorithm greatly affect the
performance of the algorithm. Table 1 is the
parameters used in the implementation of the
algorithm.

Table 1: NSGA-II parameter setting.

Parameter Value
Population size 80

Number of iterations 100
Cross probability 1

Mutation probability 0.1

The performance metric employed to evaluate the
different algorithms on various workflows is the
normalized cost. The normalized cost is calculated
as the ratio of the cost of the current solution to the
cost of the cheapest solution. In the cheapest
solution, all tasks are scheduled on the cheapest
virtual machine, resulting in the minimum cost. The
total execution time and cost of the cheapest solution
are denoted as 𝑀௧ and 𝐶௧, respectively. Similarly, in
the fastest scheduling solution, all tasks are
scheduled on the fastest virtual machine. The HEFT
algorithm is used to determine the fastest scheduling
method in our experiment. The total execution time
and cost of the fastest solution are denoted as 𝑀௙
and 𝐶௙, respectively. To control the variation of the
deadline, a deadline factor µ is introduced, with µ ∈
[0,1]. The deadline for each repeated experiment can
be calculated based on the value of µ. This allows
for the assessment of algorithm performance under
different deadline constraints. 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀௙ + ൫𝑀௧ − 𝑀௙൯ × 𝜇 (6)

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

198

For certain workflows, the cost can be much
higher due to their special structures, making it
difficult to show differences when considering
budget constraints. To overcome this problem, a
budget factor λ (λ∈[0,1]) is introduced to represent
the looseness of the budget. To make it easier to
control the factor, we set λ = 1−µ and calculate the
budget based on λ. 𝐵𝑢𝑑𝑔𝑒𝑡 = 𝐶௧ + ൫𝐶௙ − 𝐶௧൯ × λ (7)

A higher value of µ indicates looser deadline
constraints and stricter budget constraints. In such
cases, the scheduling method is more likely to
prioritize slower services to meet the budget
restrictions. On the other hand, a higher value of λ
increases the likelihood of the scheduling method
selecting faster services, as it emphasizes meeting
tighter deadline constraints.

The success rate measurement was employed to
assess the effectiveness of each method in
generating solutions that satisfy the given
constraints. It is determined by dividing the number
of successful plans by the total number of plans
evaluated. This metric provides an indication of how
well each method performs in meeting the specified
constraints and achieving satisfactory outcomes.

4.2 Results Analysis

The experiment employed the total delay of
scheduling and the energy consumption of resources
as evaluation indicators for microservice scheduling.
These indicators were calculated using formulas 2
and 4, respectively. To assess the performance of the
proposed algorithm, benchmark methods such as
Spread, Binpack, and GPR-HEFT were utilized.
These methods are well-established optimization
techniques in the field of workflow scheduling.
Considering the stochastic nature of certain
properties of the methods, the experiments were
conducted using datasets of different sizes (50, 100,
200). Each experiment was repeated 10 times to
obtain average values, ensuring the reliability and
robustness of the results.

To comprehensively assess the effectiveness of
each method under varying degrees of constraints,
the evaluation process began by setting µ and λ to
small values to evaluate performance under strict
constraints. Subsequently, µ and λ were varied
within the range of [0.005, 0.03] with a step size of
0.005. The average success rate of each method
under different configurations is depicted in Figures
2 and 3. These figures provide insights into the
performance of each method across a range of
constraint settings, allowing for a comprehensive

evaluation of their ability to generate effective
solutions.

(a) CYBERSHAKE (b) LIGO

(c) MONTAGE (d) GENOME

Figure 2: The average scheduling success rate of each
workflow data under the deadline constraint.

(a) CYBERSHAKE (b) LIGO

(c) MONTAGE (d) GENOME

Figure 3: The average scheduling success rate of each
workflow data under budget constraints

As shown in Figure 2, as the deadline factor µ
increases and the budget factor λ decreases, the
success rate of each method also increases, and
when µ equals 0.025, all methods can achieve a
success rate of 100%. The Spread method does not
perform well on every workflow. When used on
CYBERSHAKE and LIGO, it can quickly reach
100%, but performs the worst on GENOME. When
µ is less than 0.025, the Binpack method cannot

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Deadline Factor 𝜇

Binpack Spread GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Deadline Factor 𝜇

Binpack Spread GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Deadline Factor 𝜇

Binpack Spread GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Deadline Factor 𝜇

Binpack Spread GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Budget Factor λ

Binpack Spread GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Budget Factor λ

Binpack Spread GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Budget Factor λ

Binpack Spread
GPR-HEFT NSGA-II

0

0,2

0,4

0,6

0,8

1

0 0,005 0,01 0,015 0,02

Su
cc

es
s

ra
te

Budget Factor λ

Binpack Spread GPR-HEFT NSGA-II

Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network

199

complete the scheduling 100% and performs
relatively poorly on GENOME and LIGO. the GPR-
HEFT method performs better than the first two
methods, but there are still cases where it cannot
complete scheduling when the deadline constraints
are strict. The proposed agorithm performs the best
in terms of performance and can successfully
schedule under all workflows in this experiment.

As depicted in Figure 3, an interesting
observation is that when the budget factor λ is
extremely small, only our proposed method
consistently achieves a 100% success rate across all
workflows. In contrast, the Binpack method fails to
satisfy the constraints in most cases, achieving a
100% success rate only for GENOME when λ
exceeds 0.02. The Spread method performs well for
MONTAGE, reaching a 100% success rate in every
case. However, it struggles to satisfy the constraints
when the budget is at its minimum for MONTAGE.
On the other hand, the Binpack method
demonstrates robustness, with a relatively stable
success rate at small values of µ and λ. The
performance of GPR-HEFT under budget constraints
remains steady, with a success rate that gradually
increases as the budget constraint becomes more
stringent. This aligns with the design intention of the
GPR-HEFT algorithm. Overall, these findings shed
light on the comparative performance of different
methods under varying constraint settings and
highlight the strengths and limitations of each
approach.

(a) CYBERSHAKE (b) LIGO

(c) MONTAGE (d) GENOME

Figure 4: The number of tasks is 100 when the NSGA-II
algorithm Vilfredo Pareto front.

Figure 4 shows the Pareto front of the proposed
algorithm for four different workflow datasets with a
task count of 100. It can be seen that for the four
different datasets, our algorithm can converge
quickly and obtain a set of Pareto front solutions for
selection, with a moderate number of solutions that
are evenly distributed.

Figures 5 and 6 show the comparison of delay
and energy consumption of three algorithms under
different task counts in four datasets. From the
figure, it can be seen that as the number of
microservices increases, the overall delay continues

(a)10

(b) 50

(c)100

(d) 200

Figure 5: The energy consumption of the four algorithms
was compared with the data from different tasks.

129

139

149

159

169

179

189

199

209

219

229

179 189 199 209

Th
e

co
ns

um
pt

io
n

of
 e

ne
rg

y

makespan

339

359

379

399

419

439

459

479

499

118 123 128 133 138

Th
e

co
ns

um
pt

io
n

of
 e

ne
rg

y

makespan

129

139

149

159

169

179

189

179 189 199 209

Th
e

co
ns

um
pt

io
n

of
 e

ne
rg

y

makespan

129

139

149

159

169

179

189

183 198 213 228

Th
e

co
ns

um
pt

io
n

of
 e

ne
rg

y

makespan

0

2

4

6

8

10

12

14

16

18

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

0

10

20

30

40

50

60

70

80

90

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

0

50

100

150

200

250

300

350

400

450

500

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

0

100

200

300

400

500

600

700

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

200

to increase, and the proposed algorithm has a much
lower delay than the Spread algorithm, slightly
lower than the Binpack algorithm. This is because
Spread always schedules microservices to different
nodes, resulting in an increase in microservice data
transmission. Binpack schedules microservices to
one node, reducing this delay. Due to its greedy
strategy, the GPR-HEFT method often falls into
local optima during the search process, resulting in
overall inefficiency, while our algorithm has global
search capabilities and can find globally optimal
solutions to some extent. In terms of load balance,
our algorithm has significant improvements
compared to the above two algorithms. The
experimental results show that the proposed
algorithm optimizes both scheduling delay and
energy consumption, effectively ensuring the QoS of
user applications.

In summary, the LIGO workflow's complex
topological structures may limit the impact of
NSGA-II in the elite selection step, leading to a less
significant reduction in scheduling execution costs.
In the CYBERSHAKE workflow, tasks with
numerous parent tasks but no intermediate child
tasks can be scheduled flexibly, with their execution
having a varying impact on the overall plan
depending on the constraints and budget. The
GENOME workflow, with its simpler structure and
consistent scheduling order, exhibits similar cost and
energy consumption patterns across different
scheduling methods. These observations emphasize
the role of workflow characteristics in influencing
scheduling method performance and highlight the
specific challenges posed by each workflow.

(a) 10

(b) 50

(c) 100

(d) 200

Figure 6. Under the data of different tasks, the Makespan
of the three algorithms is compared.

In summary, the proposed algorithm performs well
on each dataset with different numbers of tasks, as
shown in Figure 5. On the four datasets, the
scheduling energy consumption of the NSGA-II
algorithm is on average 19.4% lower than Binpack,
14.8% lower than Spread, and 20.5% lower than
GPR-HEFT. Especially on the MONTAGE dataset,
the average energy consumption is 24.7% lower than
Binpack. In Figure 6, the NSGA-II method still has
an advantage in scheduling delay, with an average
delay that is 15.4% lower than Binpack, 14.1%
lower than Spread, and 3.7% lower than GPR-
HEFT. Especially on the CYBERSHAKE dataset,
the average scheduling time is 23.7% lower than
Spread.

0

10

20

30

40

50

60

70

80

90

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

0

50

100

150

200

250

300

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

0

50

100

150

200

250

300

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

0

50

100

150

200

250

300

CYBERSHAKE LIGO MONTAGE GENOME

Binpack Spread GPR-HEFT NSGA-II

Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network

201

Regarding scheduling delay, our method also
performs well. Figure 6 shows the average
scheduling delay of the four methods on four
datasets. The scheduling delay of our algorithm is on
average 15.4% lower than Binpack, 14.1% lower
than Spread, and 3.7% lower than GPR-HEFT.
Especially on the CYBERSHAKE dataset, the
average scheduling time of our method is 23.7%
lower than that of Spread.

5 CONCLUSION

In this article, we analyzed the scheduling problem
of workflow in the existing CFN environment and
found that energy consumption and price constraints
are important in the scheduling process in a real
environment. Therefore, we concluded that the
scheduling problem in the CFN is a multi-objective
optimization problem. Then, we modeled the
energy-aware and price-sensitive scheduling
problem in the CFN.

A comparative analysis between the proposed
algorithm and existing algorithms showed that the
proposed algorithm achieved the highest success
rate, satisfying constraints with low energy
consumption, especially under tight constraints. It
also maintained good performance as the constraints
became looser. The algorithm performed
exceptionally well on the CYBERSHAKE dataset,
with a consistently lower average Makespan
compared to other algorithms. In summary, the
comparative analysis demonstrated the superior
performance of the proposed algorithm in terms of
success rate, constraint satisfaction, energy
consumption, and Makespan. This highlights its
potential as a promising solution for microservice
scheduling.

In future research, we plan to enhance the update
strategy of the algorithm to improve convergence
speed and achieve better results across workflow
processes. Our goal is to optimize the algorithm's
efficiency, enabling faster generation of high-quality
solutions. We will also focus on refining the
comprehensive budget allocation and service
selection methods, particularly for relaxed constraint
conditions. This will allow the algorithm to be
applied effectively in a wider range of real-world
scenarios with varying constraints and budget
allocations. By addressing these areas, we aim to
advance the algorithm's performance, expand its
applicability, and contribute to the field of
microservice scheduling research.

REFERENCES

F. Liang, W. Yu, D. An, A Survey on Big Data Market:
Pricing, Trading and Protection[J], IEEE Access. 2018,
6: 15132-15154. https://doi.org/10.1109/ACCESS.
2018.2806881

I. Ahmad, S. Lembo, F. Rodriguez, Security of Micro MEC
in 6G: A Brief Overview[C], 2022 IEEE 19th Annual
Consumer Communications & Networking Conference
(CCNC) 2022, 332-337. https://doi.org/10.1109/CCNC4
9033.2022.9700577

B. Baek, J. Lee, Y. Peng, Three Dynamic Pricing Schemes
for Resource Allocation of Edge Computing for IoT
Environment[J], IEEE Internet of Things Journal. 2020,
7 (5): 4292-4303. https://doi.org/10.1109/JIOT.2020.
2966627

H. Seo, H. Oh, J. K. Choi, Differential Pricing-Based Task
Offloading for Delay-Sensitive IoT Applications in
Mobile Edge Computing System[J], IEEE Internet of
Things Journal. 2022. 9 (19): 19116-19131. https://
doi.org/10.1109/JIOT.2022.3163820

J. Zhu, X. Li, R. Ruiz, Scheduling Periodical Multi-Stage
Jobs With Fuzziness to Elastic Cloud Resources[J],
IEEE Transactions on Parallel and Distributed Systems.
2020, 31 (12): 2819-2833. https://doi.org/10.1109/TP
DS.2020.3004134

H. Djigal, J. Feng, J. Lu, J. Ge, An Efficient Algorithm for
Scientific Workflow Scheduling in Heterogeneous
Computing Systems[J], IEEE Transactions on Parallel
and Distributed Systems. 2021, 32 (5): 1057-1071.
https://doi.org/10.1109/TPDS.2020.3041829

Y. Wang and X. Zuo, An Effective Cloud Workflow
Scheduling Approach Combining PSO and Idle Time
Slot-Aware Rules[J], IEEE/CAA Journal of
Automatica Sinica. 2021, 8 (5): 1079-1094. https://
doi.org/10.1109/JAS.2021.1003982

Yadav, R., Zhang, W. Li, K., An adaptive heuristic for
managing energy consumption and overloaded hosts in
a cloud data center[J], Wireless Networks. 2020, 26 (3):
1905–1919.https://doi.org/10.1007/s11276-018-1874-1

Durillo, J.J., Prodan, R., Multi-objective workflow
scheduling in Amazon EC2[J], Cluster Computing.
2014, 17 (2): 169–189. https://doi.org/10.1007/s10586-
013-0325-0

D. Poola, S. K. Garg, R. Buyya, Robust Scheduling of
Scientific Workflows with Deadline and Budget
Constraints in Clouds[C], 2014 IEEE 28th
International Conf. on Advanced Information
Networking and Applications. 2014, 2819-2833.
https://doi.org/10.1109/AINA.2014.105

K. Deb, A. Pratap, S. Agarwal, A fast and elitist
multiobjective genetic algorithm: NSGA-II Constraints
in Clouds[J], IEEE Transactions on Evolutionary
Computation. 2002, 6 (2): 182-197. https://doi.org/10.
1109/4235.996017

C. A. C. Coello, G. T. Pulido, M. S. Lechuga, Handling
multiple objectives with particle swarm
optimization[J], IEEE Transactions on Evolutionary
Computation. 2004, 8 (3): 256-279. https://doi.
org/10.1109/TEVC.2004.826067

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

202

S. Tao, Y. Xia, L. Ye, DB-ACO: A Deadline-Budget
Constrained Ant Colony Optimization for Workflow
Scheduling in Clouds[J], IEEE Transactions on
Automation Science and Engineering. 2023, 1–16.
https://doi.org/10.1109/TASE.2023.3247973

H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi,
GRP-HEFT: A Budget-Constrained Resource
Provisioning Scheme for Workflow Scheduling in IaaS
Clouds[J], IEEE Transactions on Parallel and
Distributed Systems. 2020, 31 (6): 1239-1254.
https://doi.org/10.1109/TPDS.2019. 2961098

Gideon Juve, Ann Chervenak, Ewa Deelman, Taheri,
Handling, Characterizing and profiling scientific
workflows[J], Future Generation Computer Systems.
2013, 29 (3): 682–692.
https://doi.org/10.1016/j.future.2012.08.015

S. Wang, Z. Qian, J. Yuan, A DVFS Based Energy-
Efficient Tasks Scheduling in a Data Center[J], IEEE
Access. 2017, 5: 13090-13102.
https://doi.org/10.1109/ACCESS.2017.2724598

Y. Chen, G. Xie, R. Li, Reducing Energy Consumption
With Cost Budget Using Available Budget
Preassignment in Heterogeneous Cloud Computing
Systems[J], IEEE Access. 2018, 6: 20572-20583.
https://doi.org/10.1109/ACCESS.2018.2825648

Z. Long, Z. Li, S. Ahmad, Efficient scientific workflow
scheduling for deadline-constrained parallel tasks in
cloud computing environments[J], IEEE Transactions
on Evolutionary Computation. 2020, 531: 31-46.
https://doi.org/10.1016/j.ins.2020.04.039

X. Xu, W. Dou, X. Zhang, An Energy-Aware Resource
Allocation Method for Scientific Workflow Executions
in Cloud Environment[J], IEEE Transactions on Cloud
Computing. 2016, 4 (2): 166-179.
https://doi.org/10.1109/TCC.2015.2453966

Taghinezhad-Niar A., Pashazadeh S., Taheri, Handling,
Workflow scheduling of scientific workflows under
simultaneous deadline and budget constraints[J],
Cluster Computing. 2021, 24 (4): 3449–3467.
https://doi.org/10.1007/s10586-021-03314-3

Heterogeneous Resource Scheduling Method Based on Energy Optimization Under Price Constraints in Computing Force Network

203

