
Layered Batch Inference Optimization Method for Convolutional
Neural Networks Based on CPU

Hongzhi Zhao1, Xun Liu1, Jingzhen Zheng2 and Jingjing He1
1School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

2Zhejiang Scientific Research Institute of Transport, Hangzhou, China

Keywords: Convolutional Neural Network, Batch Processing, Inference Task Scheduling Optimization, CPU.

Abstract: In recent years, CPU is still the most widely used computing system. And in CNN inference applications,
batching is an essential technique utilized on many platforms. The arrival time and the sample number of
the convolutional neural network inference requests are unpredictable, and the inference with the small
batch size cannot make full use of the computation resources of the multi-threading in CPU. In this paper,
we propose a layered batch inference optimization method for CNN based on CPU (LBCI). This method
implements "layer-to-layer" optimal scheduling for being-processed and to-be-processed CNN inference
tasks under the constraints of the user preference delay in a single batch. It conducts the dynamic batch
inference by "layer-to-layer" optimal scheduling during the processing. The experimental results show that
for the request with a single-sample inference task, LBCI reduces the inference time by 10.43%-52.43%
compared with the traditional method; for the request with a multi-sample inference task, LBCI reduces the
inference time by 4.32%-22.76% compared with the traditional method.

1 INTRODUCTION

Convolutional neural network (CNN) is often used
in the field of computer vision. In practice, since
computer vision tasks such as face recognition (F.
Boutros, 2022), (Kim, 2022) and image
classification (D. Landa-Silva, 2008), (Li, 2023) are
widely applied, the number of CNN deployments are
also showing an increasing trend year by year. CNN
models are deployed on CPU platforms such as
servers, clients, and edge devices for the needs of
some practical applications (Mittal, 2022). In recent
years, CPU is still the most widely used computing
system, and CPU manufacturers continue to launch
CPU products for deep learning applications
(Daghaghi, 2021).

In the cloud server providing the services, the
cloud inference server will process inference
requests sent by users to obtain prediction results. In
most scenarios, a user inference request carries only
one inference sample, which is called a single-
sample inference task; in a small number of
application scenarios, a user inference request
carries multiple inference sample, which is called a
multi-sample inference task (AMAZON, 2018).
Some traditional inference servers can only process
one inference request at a time; some set the

maximum allowed batch size and a batching time
window that is the maximum period time of waiting
for incoming requests to form a batch (Choi, 2021).
With these methods, the server can only process the
tasks in the order of the arrivals. And we call them
as the "end-to-end" coarse-grained inference
method. The "end-to-end" coarse-grained inference
method will produce the good effect under the strict
condition that the batch size of the running inference
tasks is just fit. Actually, the arrival time and the
sample number of the inference requests are
unpredictable. It is hard to form a batch with a fit
batch size all the time for the inference. And it is
also unreasonable to blindly wait the arrival of the
new inference requests to form a batch with a fit
batch size. The running inference tasks with the
small batch size can’t fully utilize the computation
resources of the multi-threading in CPU. After the
running inference tasks are finished, the server needs
to reload the weight data to process the new
inference task. Accessing memory too frequently
will reduce the CPU processing efficiency.
Therefore, the "end-to-end" coarse-grained inference
method is only a suboptimal solution for CPU
platforms.

The related works didn’t provide a solution that
optimizing the inference on CPU while the batch
size is smaller than the ideal value. Based on the

182
Zhao, H., Liu, X., Zheng, J. and He, J.
Layered Batch Inference Optimization Method for Convolutional Neural Networks Based on CPU.
DOI: 10.5220/0012277100003807
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2023), pages 182-189
ISBN: 978-989-758-677-4
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

above, we propose a layered batch inference
optimization method for convolutional neural
networks based on CPU referred to as LBCI. This is
a fine-grained inference method, which converts the
traditional "end-to-end" inference method into a
"layer-to-layer" inference method. The user
preference delay on the server is the most significant
constriction for processing the inference requests.
Hence, LBCI will schedule the to-be-processed
inference task samples to be batching processed with
the being-processed inference task samples in a
running thread within the user preference delay,
while the batch size of the being-processed inference
task samples is smaller than the ideal value. LBCI
can make full use of the parallel capability of the
CPU and improve the average throughput of the
inference server within the user preference delay.
Our contributions can be summarized as follows.

•Our study indicates that the batch process
schedule of the CNN inference on CPU can be
optimized at the level of the layers, not only at the
level of the model. And we design a novel strategy
for predicting the running time with the new batch
size by using the running time ratio lookup table of
the computed sub-models.

•We propose a layered batch inference
optimization method for convolutional neural
networks based on CPU referred to as LBCI which
makes full use of the parallel capability of the CPU
and improve the average throughput of the inference
server within the user preference delay.

2 RELATED WORK

2.1 Optimizing CNN Inference Task
Scheduling

On homogeneous devices, the focus of scheduling
optimization is fully utilizing resources on the
device; while on heterogeneous devices, the focus of
scheduling optimization is often the division of
computing tasks and communication between
heterogeneous devices. Here we only focus on
research work on scheduling optimization of CNN
inference requests on homogeneous devices. Choi et
al. (Choi, 2021) proposed a batch processing system
LazyBatching that supports SLA (service level
agreement) on the NPU simulator. It performs
scheduling and batch processing at the level of
nodes in the graph, rather than at the level of the
entire graph, and improves the throughput of batch
processing on the NPU simulator. But this work is
based on the NPU simulator, not the CPU platform.

Zhang et al. (Y. Zhang, 2022) proposed a CNN task
scheduling paradigm, "One-Instance-Per-x-Core",
which improved the throughput of multi-core CPU
batch processing on DNN training and inference
tasks. Since ParaX works mainly for DNN model
training, they mainly consider the impact of the
batch size in each instance on the accuracy of the
training results, not on the delay and throughput of
multi-core CPUs. Wu et al. (X. Wu, 2020) proposed
Irinan online scheduling optimization strategy on the
GPU platform for multiple different DNN models’
inference, which reduces delays under unpredictable
workloads, effectively shares GPU resources and
minimizes average inference delays. Irina focuses on
scheduling optimization between different DNN
model inference tasks.

2.2 Using CPU Multithreading to
Calculate CNN Inference Tasks

The CPU computing modules in mainstream deep
learning frameworks such as PyTorch already
support multi-threading technology. The PyTorch
deep learning framework can achieve multiple levels
of parallelism on the CPU platform (Pytorch, 2019).
Liu et al. (Liu, 2019) pointed out that high-
performance kernel libraries (such as Intel MKL-
DNN (INTEL, 2022) and OpenBlas (Zhang, 2016)
are usually used to obtain the high performance of
CNN operations. In the convolution calculation, the
parallel instructions of OpenMP (Openmp] are used
to realize multi-threaded parallel operations at the
same time, making full use of hardware resources
and greatly reduce computing time. Amazon
(Daghaghi, 2021) pointed out that the inference time
per unit image shows a decreasing trend as the
number increases using the MXNet framework on
the CPU platform for CNN inference when the
number of input images is within a certain range.

2.3 Optimizing Batch Processing of
DNN Inference Tasks

Batch research on the inference process of DNN
began in 2018, and Gao et al. (Gao, 2018) firstly
studied the inference process of RNN. The
traditional CNN batch inference method is image-
wise batch processing. Wang et al. (Wang, 2020)
proposed a layer-wise scheduling method on a CPU
processor without parallel optimization. With the
layer-wise scheduling method, the images in one
batch use the weights of one layer at the same time,
reducing the memory accesses and the access delays.
In view of the different weight data and memory

Layered Batch Inference Optimization Method for Convolutional Neural Networks Based on CPU

183

usage of each layer in a CNN model, Choudhury et
al. (A. R. Choudhury, 2020] proposed a strategy which
used dynamic programming to set the optimal batch
size of each layer of the CNN model on the GPU
platform, making full use of the computational
parallelism of the GPU and speeding up the
inference execution speed.

3 METHOD

3.1 Overview of LBCI

LBCI consists of four functional modules as shown
in Fig 1: an initialization setting module (IS), a
buffer data storage module (DS), a buffer data
detection module (DD), and a CNN computing
module (CNNC).

Initialization Setting Module: First, LBCI will
run the initialization setting module (IS) on the
corresponding CPU platform to initialize two key
variables and preprocess the CNN model. The key
variables are the user preference delay topt and the
optimal number Nopt of the batch size for the model
inference. The user preference delay topt is a
hyperparameter provided by the CPU server. We
propose an strategy to calculate the optimal number
Nopt with which the running time of the batch
inference must satisfy the constraint of topt. The
strategy is described in the section B.

The IS prepocesses the CNN model at the level of
the layers. As shown in Fig. 2, the IS refers several
sequential convolutional layers as a sub-model and
the whole CNN model can be referred to as a
combination of the sub-models. The preprocess
won’t change the results of the original model.

Based on the sub-models of the CNN model, the
IS runs the model inference to record the running
time of each sub-model. The input data are a batch
of samples and the batch size b is an integer ranging
from 1 to N. The model inference is performed for N
times with the different batch sizes. Then the IS
builds the running time ratio lookup table of the
computed sub-models as shown in Fig. 3. The
running time ratio of the computed sub-models rp, q
is:

rp, q = ∑tp, i ÷ tp, (i = 1, 2, …, q) (1)
where p is the batch size of the input data, q is the
number of the computed sub-models, tp,i is the
running time of the sub-modeli with the batch size b
of p and tp is the total running time of the model
with the batch size b of p.

Buffer Data Storage Module: After the
initialization, LBCI uses a thread to independently
run the buffer data storage module (DS) which
receives and stores CNN inference tasks’ samples in
the memory. We define a state variable f for marking
a sample at the being-processed or to-be-processed
state. f = 0 indicates to-be-processed while f = 1
indicates being-processed. The DS maintains a
queue of the samples, in which saves the data, the
arriving time and the state variable f of each sample.
The DS will check all the state variables in the
queue while the new samples arrive, and delete the
samples with f = 1 in the queue. The state variable f
of each new arriving sample is referred to as 0 by
default.

CNN Computing Module: The CNN computing
module (CNNC) loads the preprocessed model
which contains several sub-models. The CNNC with
the certain input data is an instance for the model
inference. One instance needs an individual thread.
Please note that the threads separately running the
different CNNC instances can exist at the same time.

Assuming that the number of the to-be-processed
samples in the queue is Nst. If Nst ≥ Nopt, the CNNC
instance will read Nd = Nopt to-be-processed samples
from the head of the sample queue and set f = 1. Nd
is the batch size of the CNNC instance input samples.
And we will not optimize the instance later in the
computing process. If Nst < Nopt, the CNNC instance
will read Nd = Nst to-be-processed samples and set f
= 1. For the condition, the above CNNC instance can
be optimized in the computing process. Since the
batch size of the instance input data is smaller than
Nopt, the purpose of the optimization is increasing the
batch size with the constraint of topt. The CNNC
instance calls the buffer data detection module (DD)
to detect whether it can be optimized or not, when
the calculations of each sub-model are completed as
shown in Fig. 1. Based on the DD’s feedback, if the
CNNC can be optimized, it will continually be
processed in the rest of the sub-models with the
“layer-to-layer” optimal scheduling which is
described in the section D. Once a CNNC instance is
optimized, it will not call the DD and be optimized
again.

Figure 1: The overview of LBCI.

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

184

Buffer Data Detection Module: The buffer data
detection module (DD) will count the number Nst of
the to-be-processed samples in the queue after being
called by a CNNC instance. If Nst = 0, the DD will
return 0 to the instance, which means that no to-be-
processed sample in the queue. The instance can’t be
optimized at the moment. If Nst > 0, the instance can
be optimized. Then the DD utilizes the prediction
strategy to predict how many (Nadd) to-be-processed
samples can be added to the instance while keeping
the total running time will not over topt. And the DD
will return Nadd to the instance. The prediction
strategy is explained in the section C. If Nadd = 0, the
CNNC instance can’t be optimized now and later,
and will never call the DD again. If Nadd > 0, the
CNNC instance will schedule Nadd to-be-processed
inference task samples to be batching processed with
Nd being-processed samples.

3.2 Strategy for Calculating the
Optimal Number Nopt

The strategy calculates Nopt on the basis of the test
data coming from the multiple inference tests. The
key steps of the strategy are explained as follows.

•The IS runs the model inference for N times with
the different input data batch size b (1 ≤ b ≤ N) and
obtains a set of the average running time per sample
T = {tb} where tb is the average running time per
sample while the batch size is b. Then fitting a
function T = g(b).

•For each batch size b, the inference is performed
for n times. The IS gets a running time set {tj|1 ≤ j ≤
n } and the average running time tavg of n inferences
where tavg = ∑tj ÷ n. And calculating the average
fluctuation ratio rb of the running time per sample by
(2):

rb = [∑ (|tj - tavg| ÷ tavg)] ÷ n. (2)
Then we obtain the average fluctuation ratio set

{rb|1 ≤ b ≤ N } and find the maximal ratio rmax in the
set. Let tOPT = topt × rmax where tOPT is the strict user
preference delay.

•With the strict user preference delay tOPT, let T =
tOPT and substitut in T = g(b). Then b is obtained
which is the optimal number Nopt of the batch size
for inference.

3.3 Prediction Strategy of Buffer Data
Detection Module

The prediction strategy produces Nadd being return to
the CNNC instance. Assuming that the CNN model
has x sub-models. The key of the prediction strategy

is that (3) should be valid while Nadd is as large as
possible:

tall = twait + tdone + tadd + tk+1 and tall < topt, (3)
where tall is the predicted total time, twait is the
waiting time for Nadd to-be-processed samples lining
up in the queue, tdone is the elapsed running time of
Nd being-processed samples in the thread, tadd is the
predicted running time of Nadd to-be-processed
samples from the sub-model1 to the sub-modelk (1 <
k < x) and tk+1 is the predicted running time of (Nd +
Nadd) samples from the sub-modelk+1 to the sub-
modelx. The key steps of the strategy are explained
as follows.
•Initializing Nadd = 1 by default. Since we recorded
the arriving time of the samples in the queue, the DD
can directly calculate twait. And tdone can be obtained
from the thread running time by calling some system
functions.

Figure 2: The IS refers several sequential convolutional
layers as a sub-model.

Figure 3: The IS builds the running time ratio lookup table
of the computed sub-models.

•Let batch size b = Nadd and substitut in T = g(b),
predicting average running time per sample for b =

Layered Batch Inference Optimization Method for Convolutional Neural Networks Based on CPU

185

Nadd. In the running time ratio lookup table of the
computed sub-models, the DD finds rp, q, (p = Nadd, q
= k). tadd can be predicted by (4):

tadd = Nadd × g(Nadd) × rp, q (4)
•Let batch size b = Nd + Nadd and substitut in T =

g(b), predicting average running time per sample for
b = Nadd. In the running time ratio lookup table of the
computed sub-models, the DD finds rp, q, (p = Nd +
Nadd, q = k +1). tk+1 can be predicted by (5):

tk+1 = (Nd + Nadd) × g(Nd + Nadd) × (1 − rp, q) (5)
•Then the DD calculates tall by (3). If tall < topt,

Nadd = Nadd +1 and going back to the step 2. If tall ≥
topt, it means that the DD finds the final Nadd at the
sub-modelk and ends the prediction. At last, the DD
will return Nadd = Nadd - 1 to the CNNC instance.

3.4 “Layer-to-Layer” Optimal
Scheduling

Assuming that the CNNC instance calls the DD
when the calculations of the sub-modelk are
completed. After getting the DD feedback, the
CNNC instance is aware of that Nadd (Nadd > 0) to-
be-processed samples can be added to the instance
while keeping the total running time will not over topt.
The specific steps of “layer-to-layer” optimal
scheduling are described as follows.

•The batch processing of Nd being-processed
samples in the instance are paused before the sub-
modelk+1 calculations begin. The instance stores Nd
outputs produced by the sub-modelk in the memory.

•The CNNC instance reads Nadd to-be-processed
samples from the head of the queue maintained by
the DS and modifies the state variable f of these
samples to 1. Then the instance processes these Nadd
samples in batch from the sub-model1 to the sub-
modelk and generates Nadd outputs.

•Then the instance loads Nd outputs from the
memory and concatenates (Nd + Nadd) outputs
produced by the sub-modelk as a new batch. The
new batch will be calculated by the rest of the sub-
models until outputting (Nd + Nadd) results in the
CNNC instance.

4 EVALUATION

We verify the effectiveness of LBCI in two
perspectives: the effectiveness of strategy for
calculating the optimal number Nopt and the
comparison with two typical batching inference
methods on the time and throughput. The

verification experiments use AlexNet (Krizhevsky,
2017) as the inference model with the test dataset
ImageNet-2012. We deploy AlexNet by "web
server" method, which is implemented with the
lightweight web framework Flask of Python. The
web page sends the inference requests, and the
backend server receives and responses the requests.
The inference platform is a multi-core CPU platform
with Intel(R) Core (TM) i7-8700 CPU and L1
384KB, L2 1.5MB, L3 12MB.

4.1 Effectiveness of Strategy for
Calculating the Optimal Number
Nopt

The IS runs the AlexNet inference for N = 256 times
with the different input data batch size b (1 ≤ b ≤
256) and obtains a set of the average running time
per sample T = { tb } where tb is the average running
time per sample while the batch size is b. We
consider that the four-parameter equation fits best.
Then the fitting four-parameter function is:
g(b) = b × [(z1 − z2) ÷ (1+ (b ÷ z3)z4) + z2], (6)

where z1, z2, z3 and z4 are the parameters of the
fitting function.

Then we rerun the AlexNet inference for 100
times with the different input data batch size b (1 ≤ b
≤ 100) and record the real running time per samples
of each time. The real time and the predicted time
calculated by (6) are close as shown in Fig. 4(a),
which preliminarily verifies the effectiveness of (6).

And we calculate the strict user preference delay
tOPT and the optimal batch size Nopt with (6) on the
basis of the strategy. The running time of performing
the AlexNet inference with b = Nopt for 100 times is
shown in Fig. 4(b). The blue line denotes that the
user preference delay topt = 500ms. Only 1% of the
inference running time are larger than topt, which
verifies the effectiveness of the strategy for
calculating the optimal number Nopt.

4.2 Time and Throughput Comparison

We use two typical batching inference methods to
comprise with LBCI: (1) sequential processing one
task at a time like Amazon Rekognitio inference
server (AMAZON, 2022) referred to as Serial. (2)
Batch processing by setting the maximum allowed
batch size m and a batching time window (Choi,
2021) referred to as Batchsize(m). The web page
sends the requests per second to the backend server
producing four traffics (20/s, 40/s, 60/s and 80/s).

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

186

1)The single-sample inference task: The request
with a single-sample inference task is the most
common. The average delay time per batch for LBCI
is always below Serial and Batchsize(10) as shown
in Fig. 5(a). At the low traffic (20/s), the average
delay time per batch for Serial and LBCI is much
less than Batchsize(10). At the medium, high and
heavy traffics (40/s, 60/s and 80/s), since the poor
efficiency of Serial the sequential processing, many
requests are waiting, which causes the larger
increasing of the average delay time per batch for
Serial. With Batchsize(10), the backend server
always processes a batch of the requests after
collecting 10 requests. Therefore, the average delay
time per batch for Batchsize(10) is relatively stable
at four traffics (20/s, 40/s, 60/s and 80/s).

The throughput of LBCI is higher than Serial and
Batchsize(10) at the low, medium and high traffics
(20/s, 40/s and 60/s) as shown in Fig. 5(b). LBCI
sacrifices the throughput for the lower average delay
time per batch at the heavy traffic (80/s). But the
throughput at the heavy traffic (80/s) is still higher
than that at the 20/s and 40/s. At the low traffic
(20/s), LBCI reduces the average delay time per
batch by 26.12% and improves the throughput per
second by 20.3% compared with Serial. At the
medium and high traffics (40/s and 60/s), LBCI
reduces the average delay time per batch by 52.43%
and 19.43%, and improves the throughput per
second by 16.96% and 9.56% compared with
Batchsize(10). Since the average delay time per
batch hardly exceeds the user preference delay topt,
we only assess the timeout ratio at the high traffic
(60/s), as shown in Fig. 6. The probability for the
average delay time per batch of LBCI exceeding the
user preference delay topt is 11.67% at topt = 500,
which is much lower than Serial and Batchsize(10).

2)The multi-sample inference task: For the
request with a multi-sample inference task, since
Batchsize(m) may divide a request to form a batch of
m samples, it loses the original advantage. Hence, we
compare LBCI with Serial. The web page sends the
requests with num samples per request to backend
server per 100 ms for 10 times. We respectively
conduct three tests to process the num samples and
record the running time of each test. For each test,
num is randomly generated from the different ranges.
The range of [1, 10] means the small data; [1, 25]
means the medium data; [1, 50] means the big data.
As shown in Fig. 7, compared with Serial, LBCI
reduces the running time per test by 22.76% at the
small data, 10.08% at the medium data and 4.32% at
the big data. And the average delay time per batch of
LBCI and Serial is always below the user preference

delay topt at the small data and the medium data. At
the big data, the average delay time per batch of
LBCI occasionally exceeds topt, which can be
accepted. From the analysis results, LBCI is more
suitable for the inference requests

(a)

 (b)

Figure 4: (a) Comparison between real time and predicted
time. (b) The running time of performing the AlexNet
inference with b = Nopt for 100 times.

(a)

20 40 60 80
0

200

400

600

800

1000

1200

1400

1600

A
ve

ra
ge

 d
el

ay
 ti

m
e

pe
r b

at
ch

 (m
s)

Number of requests per second

 Serial
 Batchsize(10)
 LBCI

Layered Batch Inference Optimization Method for Convolutional Neural Networks Based on CPU

187

 (b)

Figure 5: Comparison between LBCI, Serial and Batchsize
(10) on average delay time per batch and throughput per
second at four traffics (20/s, 40/s, 60/s and 80/s).

Figure 6: The probability for the average delay time per
batch of LBCI exceeding the user preference delay topt. of
the small data and medium data.

Figure 7: The running time of tests for the
small/medium/big data.

5 CONCLUSION

In the cloud server providing the services, the arrival
time and the sample number of the inference
requests are unpredictable. And the running
inference tasks with the small batch size can’t fully
utilize the computation resources of the multi-
threading in CPU. Based on the mentioned above,
we propose a layered batch inference optimization
method for CNN based on CPU (LBCI). LBCI
executes "layer-to-layer" optimal scheduling for
being-processed and to-be-processed CNN inference
tasks. It conducts the dynamic batch inference by
"layer-to-layer" optimal scheduling during the
processing. The experimental results show that for
the request with a single-sample inference task,
LBCI reduces the inference time by 10.43%-52.43%
compared with the traditional method; for the
request with a multi-sample inference task, LBCI
reduces the inference time by 4.32%-22.76%
compared with the traditional method.

ACKNOWLEDGMENTS

This work was financially supported by Research
and Development Center of Transport Industry of
New Generation of Artificial Intelligence
Technology (202207H).

REFERENCES

F. Boutros, N. Damer, F. Kirchbuchner and A. Kuijper,
ElasticFace: Elastic margin loss for deep face
recognition[C]. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), New Orleans, LA, USA, 2022, 1577-1586.
https://doi.org/10.1109/CVPRW56347.2022.00164.

M. Kim, A. K. Jain and X. Liu, AdaFace: Quality
Adaptive Margin for Face Recognition[C]. 2022
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), New Orleans, LA, USA,
2022, 18729-18738. https://doi.org/10.1109/CVPR5
2688.2022.01819.

D. Landa-Silva, K. N. Le, A simple evolutionary
algorithm with self-adaptation for multi-objective
nurse scheduling[J]. Adaptive and multilevel
metaheuristics, 2008, 133-155. https://doi.org/10.
1007/978-3-540-79438-7_7.

Y. Li, W. Liu. Deep learning-based garbage image
recognition algorithm[J]. Applied Nanoscience, vol. 13,
No. 2, 2023, 13(2): 1415-1424. https://doi.org/10.
1007/s13204-021-02068-z.

20 40 60 80
0

10

20

30

40

50

Th
ro

ug
hp

ut
 (i

m
gs

/s)

Number of requests per second

 Serial
 Batchsize(10)
 LBCI

200 400 600 800 1000
0

20

40

60

80

100

Th
e

pr
ob

ab
ili

ty
 fo

r t
he

 a
ve

ra
ge

 d
el

ay
 ti

m
e

pe
r

ba
tc

h
of

 L
BC

I e
xc

ee
di

ng
 th

e
us

er
 p

re
fe

re
nc

e
de

la
y

t op
t

the user preference delay topt (ms)

 Serial
 Batchsize(10)
 HBCI

small data medium data big data

500

1000

1500

2000

2500

3000

Ru
nn

in
g

tim
e

pe
r t

es
t (

m
s)

Number of samples per request

 Serial
 LBCI

ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology

188

S. Mittal, P. Rajput and S. Subramoney, A survey of deep
learning on cpus: Opportunities and co-
optimizations[J]. IEEE Transactions on Neural
Networks and Learning Systems, Oct. 2022, 33(10):
5095-5115. https://doi.org/10.1109/TNNLS.2021.307
1762.

S. Daghaghi, N. Meisburger, M. Zhao, A. Shrivastava,
Accelerating slide deep learning on modern cpus:
Vectorization, quantizations, memory optimizations,
and more[J]. arXiv preprint arXiv:2103.10891, 2021.
https://doi.org/10.48550/arXiv.2103.10891.

AMAZON, Accelerating apache mxnet with the nnpack
library. 2018. Available online. https://aws.amazon.
com/cn/blogs/china/speeding-up-apache-mxnet-using-
the-nnpack-library/.

Y. Choi, Y. Kim and M. Rhu, Lazy batching: An sla-
aware batching system for cloud machine learning
inference[C]. 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA),
Seoul, Korea (South), 2021, 493-506. https://doi.
org/10.1109/HPCA51647.2021.00049

A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet
classification with deep convolutional neural
networks[J]. Communications of the ACM, 2017,
60(6): 84-90. https://doi.org/10.1145/3065386

Y. Zhang, L. Yin, D. Li, Y. Peng and K. Lu, ParaX:
Bandwidth-Efficient Instance Assignment for DL on
Multi-NUMA Many-Core CPUs[J]. IEEE Transactions
on Computers, Nov. 2022, 71(11): 3032-3046.
https://doi.org/10.1109/TC.2022.3145164.

X. Wu, H. Xu, Y. Wang, Irina: Accelerating dnn inference
with efficient online scheduling[C]. 4th Asia-Pacific
Workshop on Networking, 2020, 36-43. https://doi.
org/10.1145/3411029.3411035

Pytorch, Pytorch chinese tutorial & documentation. 2019.
Available online. https://pytorch.apachecn.org/#/.

Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang,
Optimizing CNN model inference on CPUs[C]. In
Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference (USENIX ATC
'19). 2019, 1025–1040. https://dl.acm.org/doi/10.
5555/3358807.3358895.

INTEL, Intel math kernel library for deep neural networks
(intel mkl-dnn). Available online. https://oneapi-
src.github.io/oneDNN/v0/index.html.

X. Y. Zhang, Q. Wang, W. Saar, et al. Openblas: An
optimized blas library. In Texas Advanced Computing
Center. 2016. Available online. http://www.open
blas.net/.

Openmp, The OpenMP Api specification for parallel
programming. Available online. https://www.
openmp.org.

P. Gao, L. Yu, Y. Wu, and J. Li, Low latency rnn
inference with cellular batching[C]. In Proceedings of
the Thirteenth EuroSys Conference (EuroSys '18).
Association for Computing Machinery, New York,
NY, USA, 31, 1–15. https://doi.org/10.1145/319
0508.3190541.

X. Wang, L. Zhao and P. Li, High throughput cnn
inference and training with in-cache computation[C].

2020 IEEE 38th International Conference on
Computer Design (ICCD), Hartford, CT, USA, 2020,
461-464, https://doi.org/10.1109/ICCD50377.2020.
00084.

A. R. Choudhury, S. Goyal, Y. Sabharwal and A. Verma,
Variable batch size across layers for efficient
prediction on cnns[C]. 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD), Beijing,
China, 2020, 435-444, https://doi.org/10.1109/CLOUD
49709.2020.00065.

Layered Batch Inference Optimization Method for Convolutional Neural Networks Based on CPU

189

