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Abstract: In recent years, CPU is still the most widely used computing system. And in CNN inference applications, 
batching is an essential technique utilized on many platforms. The arrival time and the sample number of 
the convolutional neural network inference requests are unpredictable, and the inference with the small 
batch size cannot make full use of the computation resources of the multi-threading in CPU. In this paper, 
we propose a layered batch inference optimization method for CNN based on CPU (LBCI). This method 
implements "layer-to-layer" optimal scheduling for being-processed and to-be-processed CNN inference 
tasks under the constraints of the user preference delay in a single batch. It conducts the dynamic batch 
inference by "layer-to-layer" optimal scheduling during the processing. The experimental results show that 
for the request with a single-sample inference task, LBCI reduces the inference time by 10.43%-52.43% 
compared with the traditional method; for the request with a multi-sample inference task, LBCI reduces the 
inference time by 4.32%-22.76% compared with the traditional method. 

1 INTRODUCTION 

Convolutional neural network (CNN) is often used 
in the field of computer vision. In practice, since 
computer vision tasks such as face recognition (F. 
Boutros, 2022), (Kim, 2022) and image 
classification (D. Landa-Silva, 2008), (Li, 2023) are 
widely applied, the number of CNN deployments are 
also showing an increasing trend year by year. CNN 
models are deployed on CPU platforms such as 
servers, clients, and edge devices for the needs of 
some practical applications (Mittal, 2022). In recent 
years, CPU is still the most widely used computing 
system, and CPU manufacturers continue to launch 
CPU products for deep learning applications 
(Daghaghi, 2021). 

In the cloud server providing the services, the 
cloud inference server will process inference 
requests sent by users to obtain prediction results. In 
most scenarios, a user inference request carries only 
one inference sample, which is called a single-
sample inference task; in a small number of 
application scenarios, a user inference request 
carries multiple inference sample, which is called a 
multi-sample inference task (AMAZON, 2018). 
Some traditional inference servers can only process 
one inference request at a time; some set the 

maximum allowed batch size and a batching time 
window that is the maximum period time of waiting 
for incoming requests to form a batch (Choi, 2021). 
With these methods, the server can only process the 
tasks in the order of the arrivals. And we call them 
as the "end-to-end" coarse-grained inference 
method. The "end-to-end" coarse-grained inference 
method will produce the good effect under the strict 
condition that the batch size of the running inference 
tasks is just fit. Actually, the arrival time and the 
sample number of the inference requests are 
unpredictable. It is hard to form a batch with a fit 
batch size all the time for the inference. And it is 
also unreasonable to blindly wait the arrival of the 
new inference requests to form a batch with a fit 
batch size. The running inference tasks with the 
small batch size can’t fully utilize the computation 
resources of the multi-threading in CPU. After the 
running inference tasks are finished, the server needs 
to reload the weight data to process the new 
inference task. Accessing memory too frequently 
will reduce the CPU processing efficiency. 
Therefore, the "end-to-end" coarse-grained inference 
method is only a suboptimal solution for CPU 
platforms.  

The related works didn’t provide a solution that 
optimizing the inference on CPU while the batch 
size is smaller than the ideal value. Based on the 
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above, we propose a layered batch inference 
optimization method for convolutional neural 
networks based on CPU referred to as LBCI. This is 
a fine-grained inference method, which converts the 
traditional "end-to-end" inference method into a 
"layer-to-layer" inference method. The user 
preference delay on the server is the most significant 
constriction for processing the inference requests. 
Hence, LBCI will schedule the to-be-processed 
inference task samples to be batching processed with 
the being-processed inference task samples in a 
running thread within the user preference delay, 
while the batch size of the being-processed inference 
task samples is smaller than the ideal value. LBCI 
can make full use of the parallel capability of the 
CPU and improve the average throughput of the 
inference server within the user preference delay. 
Our contributions can be summarized as follows. 

•Our study indicates that the batch process 
schedule of the CNN inference on CPU can be 
optimized at the level of the layers, not only at the 
level of the model. And we design a novel strategy 
for predicting the running time with the new batch 
size by using the running time ratio lookup table of 
the computed sub-models. 

•We propose a layered batch inference 
optimization method for convolutional neural 
networks based on CPU referred to as LBCI which 
makes full use of the parallel capability of the CPU 
and improve the average throughput of the inference 
server within the user preference delay. 

2 RELATED WORK 

2.1 Optimizing CNN Inference Task 
Scheduling 

On homogeneous devices, the focus of scheduling 
optimization is fully utilizing resources on the 
device; while on heterogeneous devices, the focus of 
scheduling optimization is often the division of 
computing tasks and communication between 
heterogeneous devices. Here we only focus on 
research work on scheduling optimization of CNN 
inference requests on homogeneous devices. Choi et 
al. (Choi, 2021) proposed a batch processing system 
LazyBatching that supports SLA (service level 
agreement) on the NPU simulator. It performs 
scheduling and batch processing at the level of 
nodes in the graph, rather than at the level of the 
entire graph, and improves the throughput of batch 
processing on the NPU simulator. But this work is 
based on the NPU simulator, not the CPU platform. 

Zhang et al. (Y. Zhang, 2022) proposed a CNN task 
scheduling paradigm, "One-Instance-Per-x-Core", 
which improved the throughput of multi-core CPU 
batch processing on DNN training and inference 
tasks. Since ParaX works mainly for DNN model 
training, they mainly consider the impact of the 
batch size in each instance on the accuracy of the 
training results, not on the delay and throughput of 
multi-core CPUs. Wu et al. (X. Wu, 2020) proposed 
Irinan online scheduling optimization strategy on the 
GPU platform for multiple different DNN models’ 
inference, which reduces delays under unpredictable 
workloads, effectively shares GPU resources and 
minimizes average inference delays. Irina focuses on 
scheduling optimization between different DNN 
model inference tasks. 

2.2 Using CPU Multithreading to 
Calculate CNN Inference Tasks 

The CPU computing modules in mainstream deep 
learning frameworks such as PyTorch already 
support multi-threading technology. The PyTorch 
deep learning framework can achieve multiple levels 
of parallelism on the CPU platform (Pytorch, 2019). 
Liu et al. (Liu, 2019) pointed out that high-
performance kernel libraries (such as Intel MKL-
DNN (INTEL, 2022) and OpenBlas (Zhang, 2016) 
are usually used to obtain the high performance of 
CNN operations. In the convolution calculation, the 
parallel instructions of OpenMP (Openmp] are used 
to realize multi-threaded parallel operations at the 
same time, making full use of hardware resources 
and greatly reduce computing time. Amazon 
(Daghaghi, 2021) pointed out that the inference time 
per unit image shows a decreasing trend as the 
number increases using the MXNet framework on 
the CPU platform for CNN inference when the 
number of input images is within a certain range.  

2.3 Optimizing Batch Processing of 
DNN Inference Tasks 

Batch research on the inference process of DNN 
began in 2018, and Gao et al. (Gao, 2018) firstly 
studied the inference process of RNN. The 
traditional CNN batch inference method is image-
wise batch processing. Wang et al. (Wang, 2020) 
proposed a layer-wise scheduling method on a CPU 
processor without parallel optimization. With the 
layer-wise scheduling method, the images in one 
batch use the weights of one layer at the same time, 
reducing the memory accesses and the access delays. 
In view of the different weight data and memory 
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usage of each layer in a CNN model, Choudhury et 
al. (A. R. Choudhury, 2020] proposed a strategy which 
used dynamic programming to set the optimal batch 
size of each layer of the CNN model on the GPU 
platform, making full use of the computational 
parallelism of the GPU and speeding up the 
inference execution speed. 

3 METHOD 

3.1 Overview of LBCI 

LBCI consists of four functional modules as shown 
in Fig 1: an initialization setting module (IS), a 
buffer data storage module (DS), a buffer data 
detection module (DD), and a CNN computing 
module (CNNC).  

Initialization Setting Module: First, LBCI will 
run the initialization setting module (IS) on the 
corresponding CPU platform to initialize two key 
variables and preprocess the CNN model. The key 
variables are the user preference delay topt and the 
optimal number Nopt of the batch size for the model 
inference. The user preference delay topt is a 
hyperparameter provided by the CPU server. We 
propose an strategy to calculate the optimal number 
Nopt with which the running time of the batch 
inference must satisfy the constraint of topt. The 
strategy is described in the section B. 

The IS prepocesses the CNN model at the level of 
the layers. As shown in Fig. 2, the IS refers several 
sequential convolutional layers as a sub-model and 
the whole CNN model can be referred to as a 
combination of the sub-models. The preprocess 
won’t change the results of the original model. 

Based on the sub-models of the CNN model, the 
IS runs the model inference to record the running 
time of each sub-model. The input data are a batch 
of samples and the batch size b is an integer ranging 
from 1 to N. The model inference is performed for N 
times with the different batch sizes. Then the IS 
builds the running time ratio lookup table of the 
computed sub-models as shown in Fig. 3. The 
running time ratio of the computed sub-models rp, q 
is: 

rp, q = ∑tp, i ÷ tp, (i = 1, 2, …, q)                    (1) 
where p is the batch size of the input data, q is the 
number of the computed sub-models, tp,i is the 
running time of the sub-modeli with the batch size b 
of p and tp is the total running time of the model 
with the batch size b of p. 

Buffer Data Storage Module: After the 
initialization, LBCI uses a thread to independently 
run the buffer data storage module (DS) which 
receives and stores CNN inference tasks’ samples in 
the memory. We define a state variable f for marking 
a sample at the being-processed or to-be-processed 
state. f = 0 indicates to-be-processed while f = 1 
indicates being-processed. The DS maintains a 
queue of the samples, in which saves the data, the 
arriving time and the state variable f of each sample. 
The DS will check all the state variables in the 
queue while the new samples arrive, and delete the 
samples with f = 1 in the queue. The state variable f 
of each new arriving sample is referred to as 0 by 
default. 

CNN Computing Module: The CNN computing 
module (CNNC) loads the preprocessed model 
which contains several sub-models. The CNNC with 
the certain input data is an instance for the model 
inference. One instance needs an individual thread. 
Please note that the threads separately running the 
different CNNC instances can exist at the same time. 

Assuming that the number of the to-be-processed 
samples in the queue is Nst. If Nst ≥ Nopt, the CNNC 
instance will read Nd = Nopt to-be-processed samples 
from the head of the sample queue and set f = 1. Nd 
is the batch size of the CNNC instance input samples. 
And we will not optimize the instance later in the 
computing process. If Nst < Nopt, the CNNC instance 
will read Nd = Nst to-be-processed samples and set f 
= 1. For the condition, the above CNNC instance can 
be optimized in the computing process. Since the 
batch size of the instance input data is smaller than 
Nopt, the purpose of the optimization is increasing the 
batch size with the constraint of topt. The CNNC 
instance calls the buffer data detection module (DD) 
to detect whether it can be optimized or not, when 
the calculations of each sub-model are completed as 
shown in Fig. 1. Based on the DD’s feedback, if the 
CNNC can be optimized, it will continually be 
processed in the rest of the sub-models with the 
“layer-to-layer” optimal scheduling which is 
described in the section D. Once a CNNC instance is 
optimized, it will not call the DD and be optimized 
again. 

 
Figure 1: The overview of LBCI. 
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Buffer Data Detection Module: The buffer data 
detection module (DD) will count the number Nst of 
the to-be-processed samples in the queue after being 
called by a CNNC instance. If Nst = 0, the DD will 
return 0 to the instance, which means that no to-be-
processed sample in the queue. The instance can’t be 
optimized at the moment. If Nst > 0, the instance can 
be optimized. Then the DD utilizes the prediction 
strategy to predict how many (Nadd) to-be-processed 
samples can be added to the instance while keeping 
the total running time will not over topt. And the DD 
will return Nadd to the instance. The prediction 
strategy is explained in the section C. If Nadd = 0, the 
CNNC instance can’t be optimized now and later, 
and will never call the DD again. If Nadd > 0, the 
CNNC instance will schedule Nadd to-be-processed 
inference task samples to be batching processed with 
Nd being-processed samples. 

3.2 Strategy for Calculating the 
Optimal Number Nopt 

The strategy calculates Nopt on the basis of the test 
data coming from the multiple inference tests. The 
key steps of the strategy are explained as follows. 

•The IS runs the model inference for N times with 
the different input data batch size b (1 ≤ b ≤ N) and 
obtains a set of the average running time per sample 
T = {tb} where tb is the average running time per 
sample while the batch size is b. Then fitting a 
function T = g(b).  

•For each batch size b, the inference is performed 
for n times. The IS gets a running time set {tj|1 ≤ j ≤ 
n } and the average running time tavg of n inferences 
where tavg = ∑tj ÷ n. And calculating the average 
fluctuation ratio rb of the running time per sample by 
(2):  

rb = [ ∑ (|tj - tavg| ÷ tavg)] ÷ n.                 (2) 
Then we obtain the average fluctuation ratio set 

{rb|1 ≤ b ≤ N } and find the maximal ratio rmax in the 
set. Let tOPT = topt × rmax where tOPT is the strict user 
preference delay. 

•With the strict user preference delay tOPT, let T = 
tOPT and substitut in T = g(b). Then b is obtained 
which is the optimal number Nopt of the batch size 
for inference. 

3.3 Prediction Strategy of Buffer Data 
Detection Module 

The prediction strategy produces Nadd being return to 
the CNNC instance. Assuming that the CNN model 
has x sub-models. The key of the prediction strategy 

is that (3) should be valid while Nadd is as large as 
possible: 

tall = twait + tdone + tadd + tk+1 and tall < topt,       (3) 
where tall is the predicted total time, twait is the 
waiting time for Nadd to-be-processed samples lining 
up in the queue, tdone is the elapsed running time of 
Nd being-processed samples in the thread, tadd is the 
predicted running time of Nadd to-be-processed 
samples from the sub-model1 to the sub-modelk (1 < 
k < x) and tk+1 is the predicted running time of (Nd + 
Nadd) samples from the sub-modelk+1 to the sub-
modelx. The key steps of the strategy are explained 
as follows. 
•Initializing Nadd = 1 by default. Since we recorded 
the arriving time of the samples in the queue, the DD 
can directly calculate twait. And tdone can be obtained 
from the thread running time by calling some system 
functions. 

 

 
Figure 2: The IS refers several sequential convolutional 
layers as a sub-model. 

 
Figure 3: The IS builds the running time ratio lookup table 
of the computed sub-models. 

•Let batch size b = Nadd and substitut in T = g(b), 
predicting average running time per sample for b = 
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Nadd. In the running time ratio lookup table of the 
computed sub-models, the DD finds rp, q, (p = Nadd, q 
= k). tadd can be predicted by (4): 

tadd = Nadd × g(Nadd) × rp, q          (4) 
•Let batch size b = Nd + Nadd and substitut in T = 

g(b), predicting average running time per sample for 
b = Nadd. In the running time ratio lookup table of the 
computed sub-models, the DD finds rp, q, (p = Nd + 
Nadd, q = k +1). tk+1 can be predicted by (5): 

tk+1 = (Nd + Nadd) × g(Nd + Nadd) × (1 − rp, q)     (5) 
•Then the DD calculates tall by (3). If tall < topt, 

Nadd = Nadd +1 and going back to the step 2. If tall ≥ 
topt, it means that the DD finds the final Nadd at the 
sub-modelk and ends the prediction. At last, the DD 
will return Nadd = Nadd - 1 to the CNNC instance. 

3.4  “Layer-to-Layer” Optimal 
Scheduling 

Assuming that the CNNC instance calls the DD 
when the calculations of the sub-modelk are 
completed. After getting the DD feedback, the 
CNNC instance is aware of that Nadd (Nadd > 0) to-
be-processed samples can be added to the instance 
while keeping the total running time will not over topt. 
The specific steps of “layer-to-layer” optimal 
scheduling are described as follows. 

•The batch processing of Nd being-processed 
samples in the instance are paused before the sub-
modelk+1 calculations begin. The instance stores Nd 
outputs produced by the sub-modelk in the memory. 

•The CNNC instance reads Nadd to-be-processed 
samples from the head of the queue maintained by 
the DS and modifies the state variable f of these 
samples to 1. Then the instance processes these Nadd 
samples in batch from the sub-model1 to the sub-
modelk and generates Nadd outputs. 

•Then the instance loads Nd outputs from the 
memory and concatenates (Nd + Nadd) outputs 
produced by the sub-modelk as a new batch. The 
new batch will be calculated by the rest of the sub-
models until outputting (Nd + Nadd) results in the 
CNNC instance. 

4 EVALUATION 

We verify the effectiveness of LBCI in two 
perspectives: the effectiveness of strategy for 
calculating the optimal number Nopt and the 
comparison with two typical batching inference 
methods on the time and throughput. The 

verification experiments use AlexNet (Krizhevsky, 
2017) as the inference model with the test dataset 
ImageNet-2012. We deploy AlexNet by "web 
server" method, which is implemented with the 
lightweight web framework Flask of Python. The 
web page sends the inference requests, and the 
backend server receives and responses the requests. 
The inference platform is a multi-core CPU platform 
with Intel(R) Core (TM) i7-8700 CPU and L1 
384KB, L2 1.5MB, L3 12MB. 

4.1 Effectiveness of Strategy for 
Calculating the Optimal Number 
Nopt 

The IS runs the AlexNet inference for N = 256 times 
with the different input data batch size b (1 ≤ b ≤  
256) and obtains a set of the average running time 
per sample T = { tb } where tb is the average running 
time per sample while the batch size is b. We 
consider that the four-parameter equation fits best. 
Then the fitting four-parameter function is: 
g(b) = b × [(z1 − z2) ÷ (1+ (b ÷ z3)z4) + z2],   (6) 

where z1, z2, z3 and z4 are the parameters of the 
fitting function.  

Then we rerun the AlexNet inference for 100 
times with the different input data batch size b (1 ≤ b 
≤  100) and record the real running time per samples 
of each time. The real time and the predicted time 
calculated by (6) are close as shown in Fig. 4(a), 
which preliminarily verifies the effectiveness of (6). 

And we calculate the strict user preference delay 
tOPT and the optimal batch size Nopt with (6) on the 
basis of the strategy. The running time of performing 
the AlexNet inference with b = Nopt for 100 times is 
shown in Fig. 4(b). The blue line denotes that the 
user preference delay topt = 500ms. Only 1% of the 
inference running time are larger than topt, which 
verifies the effectiveness of the strategy for 
calculating the optimal number Nopt. 

4.2 Time and Throughput Comparison 

We use two typical batching inference methods to 
comprise with LBCI: (1) sequential processing one 
task at a time like Amazon Rekognitio inference 
server (AMAZON, 2022) referred to as Serial. (2) 
Batch processing by setting the maximum allowed 
batch size m and a batching time window (Choi, 
2021) referred to as Batchsize(m). The web page 
sends the requests per second to the backend server 
producing four traffics (20/s, 40/s, 60/s and 80/s). 
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1)The single-sample inference task: The request 
with a single-sample inference task is the most 
common. The average delay time per batch for LBCI 
is always below Serial and Batchsize(10) as shown 
in Fig. 5(a). At the low traffic (20/s), the average 
delay time per batch for Serial and LBCI is much 
less than Batchsize(10). At the medium, high and 
heavy traffics (40/s, 60/s and 80/s), since the poor 
efficiency of Serial the sequential processing, many 
requests are waiting, which causes the larger 
increasing of the average delay time per batch for 
Serial. With Batchsize(10), the backend server 
always processes a batch of the requests after 
collecting 10 requests. Therefore, the average delay 
time per batch for Batchsize(10) is relatively stable 
at four traffics (20/s, 40/s, 60/s and 80/s). 

The throughput of LBCI is higher than Serial and 
Batchsize(10) at the low, medium and high traffics 
(20/s, 40/s and 60/s) as shown in Fig. 5(b). LBCI 
sacrifices the throughput for the lower average delay 
time per batch at the heavy traffic (80/s). But the 
throughput at the heavy traffic (80/s) is still higher 
than that at the 20/s and 40/s. At the low traffic 
(20/s), LBCI reduces the average delay time per 
batch by 26.12% and improves the throughput per 
second by 20.3% compared with Serial. At the 
medium and high traffics (40/s and 60/s), LBCI 
reduces the average delay time per batch by 52.43% 
and 19.43%, and improves the throughput per 
second by 16.96% and 9.56% compared with 
Batchsize(10). Since the average delay time per 
batch hardly exceeds the user preference delay topt, 
we only assess the timeout ratio at the high traffic 
(60/s), as shown in Fig. 6. The probability for the  
average delay time per batch of  LBCI exceeding the 
user preference delay topt is 11.67% at topt = 500, 
which is much lower than Serial and Batchsize(10). 

2)The multi-sample inference task: For the 
request with a multi-sample inference task, since 
Batchsize(m) may divide a request to form a batch of 
m samples, it loses the original advantage. Hence, we 
compare LBCI with Serial. The web page sends the 
requests with num samples per request to backend 
server per 100 ms for 10 times. We respectively 
conduct three tests to process the num samples and 
record the running time of each test. For each test, 
num is randomly generated from the different ranges. 
The range of [1, 10] means the small data; [1, 25] 
means the medium data; [1, 50] means the big data. 
As shown in Fig. 7, compared with Serial, LBCI 
reduces the running time per test by 22.76% at the 
small data, 10.08% at the medium data and 4.32% at 
the big data. And the average delay time per batch of 
LBCI and Serial is always below the user preference 

delay topt at the small data and the medium data. At 
the big data, the average delay time per batch of 
LBCI occasionally exceeds topt, which can be 
accepted. From the analysis results, LBCI is more 
suitable for the inference requests 

 

                  
(a)   

 
   (b) 

Figure 4: (a) Comparison between real time and predicted 
time. (b) The running time of performing the AlexNet 
inference with b = Nopt for 100 times. 
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   (b) 

Figure 5: Comparison between LBCI, Serial and Batchsize 
(10) on average delay time per batch and throughput per 
second at four traffics (20/s, 40/s, 60/s and 80/s). 

                  
Figure 6: The probability for the average delay time per 
batch of LBCI exceeding the user preference delay topt. of 
the small data and medium data. 

 
Figure 7: The running time of tests for the 
small/medium/big data. 

5 CONCLUSION 

In the cloud server providing the services, the arrival 
time and the sample number of the inference 
requests are unpredictable. And the running 
inference tasks with the small batch size can’t fully 
utilize the computation resources of the multi-
threading in CPU. Based on the mentioned above, 
we propose a layered batch inference optimization 
method for CNN based on CPU (LBCI). LBCI 
executes "layer-to-layer" optimal scheduling for 
being-processed and to-be-processed CNN inference 
tasks. It conducts the dynamic batch inference by 
"layer-to-layer" optimal scheduling during the 
processing. The experimental results show that for 
the request with a single-sample inference task, 
LBCI reduces the inference time by 10.43%-52.43% 
compared with the traditional method; for the 
request with a multi-sample inference task, LBCI 
reduces the inference time by 4.32%-22.76% 
compared with the traditional method. 
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