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Abstract: A Computing Force Network (CFN) is a distributed computing network that utilizes distributed computing 
power to solve complex computational problems. Unlike traditional computing networks that centralize 
resources in a single location, CFNs distribute processing power across an interconnected network of 
devices. The intelligent devices within CFNs possess computational capabilities and carry varying quantities 
of private training samples. Due to CFNs being provided by different service providers, private data 
between devices cannot be directly shared, which makes it challenging to train models directly using the 
private data. Federated Learning (FL) emerges as a novel distributed training paradigm that enables 
distributed model training while preserving user privacy. This paper presents a K-Means-based 
communication-assured federated learning algorithm for CFNs. It allows for federated training tasks under 
non-iid conditions and selects reliable clients for communication in each round to ensure algorithm 
convergence. Experimental results demonstrate the superior performance of our algorithm compared to the-
state-of-arts. 

1 INTRODUCTION 

With the advancement of information technology 
and the improvement of infrastructure, 
computational power and networking are 
increasingly converging. A new emerging concept 
called computational power network has been 
proposed by IETF and ETSI. The computational 
power network refers to a means of effectively 
allocating computational and storage resources 
among the cloud, edge, and end devices through 
networking, based on the pervasive development of 
computational capabilities. This allocation aims to 
enhance the quality of business services and the user 
experience. Emerging artificial intelligence 
technologies, represented by ChatGPT, are 
profoundly transforming our lives and modes of 
production. However, these artificial intelligence 
technologies consume significant amounts of 
computational resources (Shi X, 2022)-(Gu J, 2022). 
The computational power network leverages the 
pervasive computational resources of the cloud, 
edge, and end devices to provide robust 
computational support for artificial intelligence 
technologies. 

Recently, Federated Learning (FL) has emerged 
as a distributed learning paradigm within the 
computational power network, which aims to 
analyze and process non-iid data. In the 
computational power network, edge devices possess 
not only computational resources but also different 
data samples (such as smart surveillance cameras 
and intelligent streetlights) from the Internet of 
Things (IoT) devices. FL can collaboratively train a 
highly generalized global model by leveraging the 
intelligent edge devices while ensuring the privacy 
and security of private data (Sun, 2023)-(Jing Y, 
2022). This approach effectively alleviates the 
pressure of big data in the IoT and improves 
resource utilization. 

However, the data samples carried by intelligent 
edge devices in the computational power network 
exhibit heterogeneity, often characterized as non-
independent and identically distributed (non-iid). 
This heterogeneity severely impacts the training 
quality of the global model in FL and may even lead 
to the failure of convergence. Additionally, the 
computational power network integrates 
communication environments from various 
scenarios (Chen, 2020)-(Kong, 2022). In wireless 
mobile communication environments, data 
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transmission is susceptible to packet loss, and high 
packet loss rates can result in the loss of gradients 
uploaded by clients during FL training, significantly 
affecting the convergence of the global model. This 
article makes the following contributions: 

1) We propose an optimization problem under 
multiple constraint conditions. 

2) We propose a communication-reliable 
clustering FL algorithm. 

3) Our research experiments demonstrate that the 
proposed method outperforms the existing state-of-
the-art approaches. 

2 SYSTEM MODEL 

The architecture of AI based on computing power 
networks can be divided into three components: the 
infrastructure of integrated computing and 
networking, the unified operation and 
multidimensional scheduling management layer, and 
the distributed and collaborative AI application 
platform. 

Firstly, the integrated computing and networking 
infrastructure is a core component of the AI 
computing power network. It encompasses various 
types of computing resources, such as high-
performance computing servers, GPU clusters, edge 
computing devices, and so forth. These computing 
resources are interconnected through a network, 
forming a unified computing platform. The 
integrated computing and networking infrastructure 
possesses high scalability and elasticity, enabling 
dynamic allocation of computing resources based on 
demand to meet the computational requirements of 
AI tasks at different scales and complexities. 

Secondly, the unified operation and 
multidimensional scheduling management layer 
serve as the management and scheduling plane of 
the AI computing power network. It is responsible 
for the unified management and scheduling of 
computing resources within the integrated 
computing and networking infrastructure, aiming to 
achieve efficient resource utilization and rational 
task allocation. This layer encompasses various 
management and scheduling algorithms that enable 
intelligent resource allocation and task scheduling 
based on factors such as task priorities, resource 
availability, and performance requirements. Through 
the unified operation and multidimensional 
scheduling management, the AI computing power 
network can maximize the utilization of computing 
resources, reduce task waiting time, and enhance 
overall computational efficiency. 

Finally, the distributed and collaborative AI 
application plane is the application layer of the AI 
computing power network. It involves collaborative 
computing and data sharing among multiple 
participants. In this plane, participants can share 
their computing resources and data, and engage in 
collaborative computing to achieve more complex 
and advanced AI applications. Large-scale 
distributed and collaborative computing necessitates 
addressing issues of data security and privacy 
protection to ensure the security of data sharing and 
computational processes among participants. 
Federated learning applications are deployed within 
this layer. 

2.1 Federated Learning Framework 
Based on CFN 

As described in the previous section, federated 
learning applications are deployed in the distributed 
AI application layer, involving multiple service 
providers. In this layer, there is a central server 
manager overseeing different federated learning 
clients. Different federated learning participants 
carry distinct data samples, which are considered 
private and cannot be shared with other participants. 
Each participant can choose to train a private model 
using their local data and then upload their model 
parameters to the central server for weighted 
aggregation with the model parameters of other 
participants. This collaborative training process aims 
to create a globally generalized model with 
enhanced performance. 

In the CFN scenario, we consider the mobile 
devices can collect the images, LiDAR data and 
IMU data as the training samples (Cui Q, 2022)-(Yu 
Z, 2020). We assume that mobile device V୬collects a 
matrix X୬ = [x୬ଵ, x୬ଶ, . . . , x୬୩౤]  input data, where K୬  is the number of training samples of mobile 
device 𝑉୬. For simplicity, the label of samples can be 
denoted as 𝑌௡ =  [𝑦௡ଵ,𝑦௡ଶ, . . . ,𝑦௡௞೙]. Moreover, we 
denote 𝑤௜  as the weight related to the local FL 
model that trained by samples 𝑥௜௞. 

The whole training process can be divided into 
three phases: 

1) Training Task assignment: Firstly, the edge 
server will select a set of mobile devices 𝒱 ⊆ 𝑉 to 
participate in federated learning. Then, the edge 
server conforms the relevant parameters, such as the 
object of training task and the initialization 
parameters. Finally, edge server sends the model to 
the FL participants. 

2) Local Training: Each client in 𝒱 download the 
model from edge server, and uses its samples to train 
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the model. The purpose of local training is to find 
optimal parameters of local model after t iterations 
which minimizing the loss function: 

  𝑤௜௧∗ = argmin               ௪ 𝐿(𝑤௜௧ , 𝑥௜ ,𝑦௜)                  (1) 

Then, the client uploads the local model 𝑤௜௧  to 
the edge server.  

3) Edge Aggregation: The edge server will 
calculate the weighted average of received local 
model from the participated client in 𝒱  , and uses 
them to update global model (Duan M, 2019):   𝕃(w୧୲ାଵ, x୧, y୧)  = ଵ|𝒱|෌ L(w୧୲, x୧, y୧)       |𝒱|୬ୀ଴         (2) 

Repeat the steps of 2 and 3 until the global model 
coverage. 

2.2 Transmission Model 

The transmission model contains two phases, uplink 
and downlink. We assume that each vehicle 
equipped with an on-board unit(OBU), which can 
communication with CFN server with orthogonal 
frequency division multiple access (OFDMA) 
technique (Hard A, 2018). The uplink transmission 
rate and transmission time can be formulated as: 

     𝑟௡ = 𝐵௡𝑙𝑜𝑔(1+఍೙௉೙ௗ೙షೌேబ )                    (3) 

  𝑇௡௦ =               |௪೙೅||௥೙|                              (4) 

Where 𝐵௡  is the bandwidth, and 𝑃௡  is the 
transmission power. 𝑑௡  is the Euclidean distance 
between 𝑉  and CFN server. 𝜁௡  is the Rayleigh 
channel coefficient with a complex Gaussian 
distribution. a is the path-loss exponent and 𝑁଴ is the 
power noise.  𝑤௡்  is the size of local model 
parameters of 𝑉  in 𝑇௧௛  global iterations. Since the 
action of vehicle upload data to CFN is 
instantaneous rather than continuous, the uplink 
transmission energy consumption is related to the 
instantaneous power for 𝑉  to transmit local model 
parameters: 

  𝐸௡௦ =              𝜁௡𝑃௡                             (5) 

Where 𝜁௡  is the transmission energy 
consumption factor. Similarly, the downlink data is 
the CFN server broadcasts the training model to the 
vehicles which are selected to participate in 
federated learning, and the download date rate and 
the model download time are given by: 

        𝑟௡஽ = 𝐵௡஽𝑙𝑜𝑔(1+఍೙௉ವௗ೙షೌேబ )                              (6) 

   𝑇௡௦ =              |஽೙|| ௥೙ವ|                                     (7) 

Where  𝐵௡஽  is the bandwidth of CFN server 
broadcast the global model to each 𝑉௡, and 𝑃஽ is the 
transmission power of the CFN server. And the 
energy consumption of downlink transmission is 
given by: 

  𝐸௡஽ =              𝜁௡𝑃஽                          (8) 

2.3 Packet Error Rates 

In the real wireless scenario, the data packet maybe 
lost while the vehicle download or upload model. 
For simplicity, we assume that the global model and 
the model parameters can be packed in a package 
respectively. The packet error rate is denoted as: 

  𝑞௡ =              𝔼௛೙(1 − 𝑒𝑥𝑝(−௠஻ேబ௉೔௛೙ ))                  (9) 

Where 𝔼௛೙(·) is the expectation with respect to ℎ௡ , and ℎ௡ = 𝜁௡ 𝑑௡ି௔ . m is a waterfall threshold. 
Since the transmission power of CFN is large 
enough, the packet error rate of downlink can be 
ignore.  

2.4 Problem Formulation 

In this work, we formulate an optimization problem 
to minimize total latency and energy cost of vehicle 
in FL. Moreover, we consider the maximum latency 
and energy consumption that user can tolerate, the 
model quality and the packet error as constraints. In 
particular, we optimize the client selected set that 
participate in FL, the transmission power of client 𝑃 = (𝑃ଵ,𝑃ଶ, . . . ,𝑃௡), the OBU computation resources 𝑓௩ = (𝑓ଵ௩,  𝑓ଶ௩, . . . ,  𝑓௡௩)  to minimize the model 
transmission and computation time and energy 
consumption in FL. Since the VEC updates the 
global model after the aggregation phase, the actual 
time cost is: 

 𝑇௧௢௟ = argmin               ௏೙∈𝒱 ( 𝑇௡௦ +  𝑇௡஽)        (10) 

However, the form of 𝑇௧௢௟  is non-smooth and 
non-linear, which is difficult to be solved with 
optimization techniques. Thus, we take the 
expectation total time cost, which is the average of 𝑇௧௢௟: 𝔼(𝑇௧௢௟) = ଵ|𝒱|෌ 𝑎௡( 𝑇௡௦ +  𝑇௡஽)       |𝒱|௡ୀ଴          (11) 

Where 𝑎௡ ∈ {0,1} and 𝑎௡ = 1  indicates that 
client 𝑉௡  is selected to participate in FL, otherwise 
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𝑎௡ = 0. Similarly, the expectation of total energy 
cost is given by: 
 𝔼(𝐸௧௢௟) = ଵ|𝒱|෌ 𝑎௡( 𝐸௡௦ +  𝐸௡஽)       |𝒱|௡ୀ଴       (12) 

Above of all, the optimization problem is given by: 
 

 𝑃1:    min               ௉೙,௔೙ 𝔼(𝐸௧௢௟ + 𝑇௧௢௟)     )                 

s.t        
ಲబ಼𝔸஻బି಴బ಼𝔸 ≤ 𝜀                (C1) 

s.t      𝑇௡௦ +  𝑇௡஽ ≤  𝑡௡௥               (C2) 

s.t     𝐸௡௧௢௟ ≤  𝐸௡௠௔௫             (C3) 

s.t    0 ≤ 𝑃௡ ≤  𝑃௡௠௔௫                        (C4) 𝔸 = ෌ 𝐾௡(1 − 𝑎௡ + 𝑞௡𝑎௡)       |𝒱|௡ୀ଴           (13) 

 
Where   𝑃௡௠௔௫  and  𝐸௡௠௔௫  are the maximum 

transmission power of 𝑉௡ and the maximum energy 
consumption that user can tolerate for federated 
learning, respectively. We utilize the convergence 
result into approximate the convergence constraint 
of federated learning in wireless communication 
environment, which is demonstrated as (C1). (C2) is 
the latency constraint, the total time cost can not 
exceed the time that 𝑉௡ driving within the coverage 
of CFN. (C3) is the energy constraint, which 
regulates total energy cost in federated learning must 
satisfy user requirements. (C4) is the physical limit 
of 𝑉௡ transmission power. 

This problem is a mixed integer programming 
problem that cannot be solved using conventional 
optimization techniques. Firstly, we assume that all 
clients are selected to participate in federated 
training, which means 𝑎௡=1 The original problem is 
then transformed into a standard optimization 
problem. By utilizing the Hessian matrix, we can 
prove the convexity of the transformed problem, 
making it amenable to optimization techniques. We 
can optimize the problem and substitute the obtained 
solution back into the original problem. By 
employing linear programming, we can determine 
the set of clients selected to participate in the 
federated training task. 

2.5 Federated Clustering Problem 

In this section, we formalize the problem of 
federated clustering aggregated learning. In 
federated learning, N clients collaborate to train a 
shared global model. Let i denote the index of a 

client. Each client i maintains an arbitrary local 
dataset 𝐷௜. We choose the classical cross-entropy as 
the training loss function 

In scenarios where the data is sampled by 
individual clients from their respective distributions, 
the overall data distribution, denoted as 𝑃௜, emerges 
as a composite of all local data distributions. 
Mathematically, it can be expressed as 𝑃 = ∑ 𝑤௜𝑃௜ ே௜ . 
Here, each client's weight in the aggregation 
depends on the size of their local dataset. In the ideal 
case of Independent and Identically Distributed (IID) 
data, it is assumed that all clients' data, represented 
by 𝑃௜ , follows the same distribution. However, 
practical applications often deviate from the IID 
assumption. In such cases, for different clients i and 
j, their respective data distributions are not equal. 
This situation is commonly referred to as a Non-
Independent and Non-Identically Distributed (Non-
IID) data distribution. 

The presence of non-IID data prevents the global 
model 𝜃 from attaining the minimum empirical loss 
function 𝐿 across all clients. As a result, there has 
been an increased interest in exploring personalized 
solutions. Prior research has primarily concentrated 
on integrating personalized insights gleaned from 
clients' local data into the overarching shared global 
model (Luo B, 2021). However, as highlighted 
earlier, in highly diverse settings, relying solely on a 
single global model may prove to be inefficient. To 
tackle this challenge, we suggest the utilization of 
multiple shared global models distributed among 
clients. More specifically, we advocate the use of 
multiple federated sub-models. 

In a formal sense, we introduce a collection of K 
global models, with each global model being shared 
among a distinct group of clients. Within each client 
group, there exists a single global model. These 
global meta-models serve as the basis with well-
initialized parameters for the individual models. 
Consequently, clients have the flexibility to select 
the global model that aligns most effectively with 
their respective local data distributions, facilitating 
personalized execution. This reshapes our global 
objective as follows 

 

 min థ೒೔∈ః,ణ೔∈ఏ ଵே෍ ℒ௜([𝜙௚೔ ,𝜗௜];𝐷௜)       ே௜ୀଵ       (13) 

where 𝑔  represents the identification of the 
global model for the 𝑖 -th client, 𝛷  represents the 
parameter space of the global model, and 𝐺௞ 
represents the set of client indices in the k-th group. 
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3 SOLUTION 

In this section, we present the overall framework of 
the algorithm. Firstly, we have the client selection 
phase. In this phase, the parameter server collects 
information from each client, such as the number of 
samples carried by each client, available computing 
resources, and communication transmission power, 
among others. In wireless networks, communication 
links are often unreliable, and there is a certain 
probability of data loss. In severe cases, it can 
prevent the convergence of federated learning 
training. Therefore, we need to consider the 
reliability of federated training in wireless 
environments to ensure its convergence. This paper 
proposes a client selection algorithm based on 
optimization principles. We initially assume that all 
clients participate in federated training and then 
optimize the transmission power of each client. The 
client set participating in federated learning is then 
determined based on convergence conditions. 

The whole process of our algorithm is proposed 
as follows: 

Algorithm 1: Proprosed FL in CFN. 
1. Input: The data size of FL model,  𝑷𝒏𝒎𝒂𝒙 and 

the task distribution of each mobile device,  
related network and energy lllll   parameters. 

2. Output:  𝑷𝒏∗  , 𝒂𝒏∗ , 𝜽𝒏∗  
3. Initialize variable: set 𝒂𝒏=1 
4. Obtain  𝑷𝒏∗  by solving the original problem. 
5. Put  𝑷𝒏∗  into original problem, and obtain  𝒂𝒏∗  
6. Selecting client according to  𝒂𝒏∗  
7. Encoding the tasks representation of each 

client 
8. Using K-mean clustering problem to group the 

selected clients by tasks representation 
9. Each group start local training 
10. group uploads parameters and  aggregates 

model in the group server 
11. Central server performs a aggregation for each 

group. 
12. Central server broadcasts group model to its 

clients. 
13. Repet step 9 to 12 until global model is 

convergence 
 

The initialization phase involves a 
comprehensive approach to capturing the 
relationships between clients. Initially, we employ 
an autoencoder to acquire task representations from 
each client, facilitating the subsequent grouping of 
clients based on these representations. To 
accomplish this, each client retrieves the 
autoencoder's architecture from the server. The 
autoencoder's primary objective is to distill low-

dimensional vectors, known as task representations, 
from local data. Subsequently, clients transmit these 
task representations to the server, where they serve 
as input for the K-Means clustering algorithm. As a 
result, we obtain K cluster centers, which play a 
pivotal role in identifying client groups during the 
federated optimization phase. Furthermore, it's 
noteworthy that the meta-models within each group 
share the same model initialization. 

The aggregation phase involves optimizing the 
models within each group. Without loss of 
generality, this phase follows the standard process of 
federated learning. Specifically, each client first 
downloads the corresponding group's model from 
the server and performs local optimization of the 
group's model using its local data. Additionally, we 
utilize a pre-trained encoder to obtain task 
representations of the training data. Finally, the 
clients send the updated group meta-models and task 
representations to the server. The server completes 
the grouping process by measuring and comparing 
the similarity between task representations and the K 
cluster centers. Subsequently, the server performs 
model aggregation for each group to obtain new 
global models for the next round of communication. 
This process is repeated until certain termination 
criteria are met, such as a finite number of 
communication rounds. 

 
Figure 1: 𝐸௔௩௚ with different algorithm. 

 
Figure 2: 𝑇௔௩௚ with different algorithm. 
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4 SIMULATION 

In this section, we evaluate the performance of the 
proposed FL algorithm. First, we introduce the 
settings of the experiment parameters and 
environment. Then, we analyze the accuracy rate of 
proposed FL algorithm, and compared the latency 
and energy cost with the baseline. Finally, a series of 
comparative experiments show that our algorithm 
can significantly reduce total latency and energy 
consumption. 

 
Figure 3: 𝐸௧௢௟ with different algorithm. 

The experiments are simulated in a Python-based 
desktop with 16 GB memory. The CPU is Intel Core 
i7-8700, and the proposed FL algorithms is 
simulated by using an open source Python machine 
learning library Pytorch. The MNIST and Cifar-10 
datasets are used in this simulation. 

The MNIST dataset is a standard benchmark 
dataset in machine learning and computer vision. It 
consists of 60,000 training images and 10,000 
testing images of handwritten digits (0-9). Each 
grayscale image is 28x28 pixels. MNIST is widely 
used for evaluating image classification algorithms 
due to its balanced distribution and accessibility, 
making it an essential resource for research and 
development in the field. 

The CIFAR-10 dataset is a well-known 
benchmark dataset in the field of computer vision 
and machine learning. It consists of 60,000 color 
images, with each image belonging to one of ten 
classes, namely airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck. The dataset is 
divided into 50,000 training images and 10,000 
testing images, each of size 32x32 pixels. CIFAR-10 
has been widely used for evaluating and comparing 
various image classification algorithms due to its 
diverse object categories and realistic images, 
making it an important resource for research and 
development in computer vision. 

4.1 Latency and Energy Consumption 

Fig. 1, Fig. 2 and Fig. 3 present the latency and 
energy cost of the algorithms with different number 
of devices in MNIST dataset. We can find that the 
average energy consumption of all algorithms 
decreases as the number of vehicles increases. 
Because the impact of high-energy devices on the 
average energy consumption decreases as the 
number of devices increases 

As shown in Fig. 2, the average latency of 
proposed FL is significantly lower than the random 
algorithm, and it is the lowest one whatever the 
number of device is. It is worth mentioning that the 
transmission power and computation resources of 
greed algorithm is given by proposed FL. Therefore, 
the difference in performance between the greedy 
algorithm and the proposed FL is not particularly 
pronounced. However, the performance of the 
proposed FL is still better than greedy algorithm 
with different number of device, and it completely 
proves that it is importance to optimize the set of 
device selection. 

Fig. 3 presents the total energy consumption of all 
algorithms. Obviously, our proposed FL save the 
most energy in different number of vehicles, and the 
energy consumption of proposed FL is about 14% 
lower than random algorithm when the number of 
device is 25. This is because the proposed FL will 
not blindly increase the number of FL-tasks device. 
Compared to greedy algorithm, we can know that 
the proposed FL can effectively reduce energy 
consumption by the proper selection. 

4.2 Accuracy 

In this section, we compare the proposed federated 
learning algorithm with the baseline algorithms, 
FedAvg and the popular FL algorithm, Per-FedAvg. 
We conduct our evaluation on the CIFAR-10 dataset. 
To create non-i.i.d. (independent and identically 
distributed) data, we divide the CIFAR-10 dataset 
into 20 sets, with varying numbers of samples in 
each set, as shown in Table 1. Our proposed 
algorithm achieves significantly higher accuracy 
compared to the other two algorithms. It improves 
the accuracy by approximately 25% compared to 
FedAvg and around 50% compared to Per-FedAvg. 

Why does Per-FedAvg perform poorly in this 
case? This can be attributed to the fact that Per-
FedAvg is suitable for small-sample learning and 
works best when the learning task is not very 
challenging. Typically, it performs well only on the 
MNIST dataset. FedAvg, on the other hand, is a 
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classical federated learning algorithm. However, in 
our experiment, we intentionally set the CIFAR-10 
dataset as non-i.i.d., where the private datasets of 
different clients have minimal or no intersection. 
This lack of intersection leads to suboptimal 
performance of FedAvg. 

Table 1: Main Notation. 

Method Test accuracy of No-iid Cifar-10 
Per-Fedavg 21.45% 

30.15% 
40.13% 

Fedavg 
Proposed-FL 

In contrast, our proposed federated learning 
algorithm groups clients based on their data 
distributions, effectively mitigating the impact of 
non-i.i.d. data. The experimental results demonstrate 
that our algorithm significantly improves the 
accuracy of the global model. 

5 CONCLUSION 

In this paper, we investigate a novel distributed 
learning framework that enables the implementation 
of FL algorithms in CFN. We formulate a MIP 
problem that considers device velocity, wireless 
packet transmission errors, resources allocation and 
client selection for minimization of FL learning 
time, energy consumption and training loss. To 
address this problem, we utilize Lagrangian 
multiplier method and gradient method to iteratively 
calculate the optimal transmission power and on-
board CPU frequency under the given clients 
selection. Then, we put above results into primal 
problem and slack the 0-1 selection variables, which 
transforms the primal problem into LP problem, and 
it can be solved by multiple optimization techniques. 
The numerical results illustrate that the performance 
of the proposed FL algorithm significantly 
outperforms other baseline algorithms in terms of 
average latency and total energy consumption. 
Moreover, the performance of proposed FL is more 
stable and efficient with the different number of 
devices.  
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