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Abstract: Underwater image, as a kind of important data in underwater wireless sensor networks, can more 
comprehensively and intuitively reflect the state of underwater environment, but the traffic demand of 
which is greater than the demand of the numerical data. However, the underwater acoustic channel has the 
characteristics of high bit error rate, high delay, low bandwidth and so on, and the energy of communication 
nodes is limited, and the position is time-varying, which makes the transmission of underwater image data 
extremely difficult. Aiming at this problem, this paper proposes an adaptive image transfer algorithm for 
underwater wireless sensor networks. The algorithm is based on HAAR wavelet transform algorithm to 
provide multi-resolution image lossless compression, and can adapt to different image transmission bit rates 
according to the changes of underwater transmission conditions. It can intelligently select the transmission 
routes based on reinforcement learning algorithm to achieve reliable and efficient underwater image transfer. 
Experiments show that the algorithm can effectively improve the packet delivery rate of underwater image, 
reduce the transmission delay and energy consumption, and can distinguish the transmission of image 
feature data and detail data, and balance the distribution of communication energy consumption among 
underwater communication nodes. 

1 INTRODUCTION 

Underwater wireless sensor networks are generally 
composed of data centers, water surface sink nodes, 
underwater communication nodes and underwater 
sensor nodes (Qiu, 2020), which rely on the 
self-organizing communication ability between 
nodes to achieve the data transfer. Underwater 
wireless sensor networks are widely used in many 
fields such as accident warning, ecological 
monitoring, hydrological data collection, marine 
resource exploration, auxiliary navigation and so on 
(Qiu T, Jiang S.). At present, underwater 
long-distance wireless communication is still 
dominated by underwater sound. Compared with the 
terrestrial wireless sensor network based on the 
radio, the underwater transmission channel has the 
characteristics of small capacity, large delay, more 
noise and interference factors, and the 
communication node has the characteristics of 
limited energy, difficult supply, and high 
spatiotemporal dynamics (Fattah and Haque), which 
makes it extremely difficult to achieve the reliable 
underwater communication. 

Underwater images can truly, accurately, and 
continuously reflect the real-time situation of the 
monitoring area. They are widely used in the 
monitoring of marine perimeter, important 
underwater facilities, and marine biodiversity. They 
are also an important basis for underwater target 
positioning and recognition (Gupta and Boukerche). 
The quality of underwater images and the 
transmission efficiency from underwater to water 
surface greatly affect the effect of follow-up 
monitoring and research work. Compared with the 
numerical data, the underwater image data is larger, 
and the underwater image data transfer is more 
difficult. However, there is some redundancy in the 
underwater image data. The image compression 
algorithm based on HAAR wavelet transform can 
realize the lossless compression of the underwater 
image data. And it can not only reduce the data 
transfer demand, but also adjust the transmission 
data type and the transmission code rate according to 
the change of transmission conditions and optimize 
the output underwater image quality (Menon and 
Kanagaraj). 
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Reinforcement learning (RL) refers to the 
process in which agents learn a mapping relationship 
from environmental state to behavior by 
continuously interacting with the environment and 
using the reward of environmental feedback [Guo 
W, Chen Y]. Nodes in underwater wireless sensor 
networks can update the status of the transmission 
environment based on the information interaction 
between neighbor nodes, and then determine the 
current reward and cumulative reward after each 
action. By calculating the status value obtained, the 
strategy for performing the next action is determined 
(Zhou Y-Su Y). The transmission route of 
underwater network needs to be dynamically 
selected according to the change of transmission 
conditions. After reinforcement learning algorithm is 
applied to underwater wireless sensor networks, it 
can provide decision-making basis for underwater 
image data when selecting the next hop node 
according to underwater transmission conditions and 
historical data forwarding. 

For the underwater target recognition 
applications, this paper presents an adaptive data 
transfer algorithm for underwater wireless sensor 
networks based on variable bit rate image 
compression and reinforcement learning 
(VRC-ADTA). In this algorithm, HAAR wavelet 
transform is used as variable rate image compression 
algorithm, and Q-learning is used as reinforcement 
learning algorithm. The reward function is designed 
based on the position of underwater communication 
nodes, residual energy, and transmission delay. The 
variable transmission code rate adjustment and 
dynamic routing of underwater image data are 
realized. The simulations show that VRC-ADTA can 
satisfy the accuracy requirements of underwater 
target recognition, improve the efficiency of 
underwater image data transfer, reduce the 
transmission delay, the energy consumption, and 
improve the packet delivery rate. 

2 RELATED WORKS 

To overcome the unfavorable conditions of 
underwater network, researchers have studied and 
implemented efficient and reliable data transfer 
routing algorithms for underwater wireless sensor 
networks from different perspectives. Table 1 lists 
several typical routing algorithms and their 
characteristics, among which communication 
efficiency mainly requires routing algorithms to 
control transmission delay and reduce 
communication energy consumption. 

Table 1: Several typical data transfer algorithms for 
underwater wireless sensor networks. 

Algorithm Establishment 
 Method 

Applicatio
n 

Efficien
cy 

VBF 
 [Xie P] 

Routing based on node 
location. 

No 
distinction Low 

QELAR 
 [Hu T] 

Routing based on the 
node location and 
residual energy. 

No 
distinction Low 

RCAR 
 [Jin Z] 

Routing based on the 
delay and residual 
energy.  

Business 
flow Middle 

EP-ADTA 
[Wang B] 

Routing based on the 
node location, the 
delay, and the residual 
energy. 

Content 
prediction High 

VRC-ADT
A 

Routing based on the 
node location, the 
delay, and the residual 
energy. 

Adjustable
code rate High 

The VBF proposed by Xie et al. belongs to the 
geographical routing protocol. According to the 
position vector between the sending node and the 
target node, the node is selected as the next hop, but 
it cannot balance the energy consumption between 
the neighbor nodes, making the nodes closer to the 
position vector consume more energy due to 
excessive forwarding. QELAR proposed by Hu et al. 
builds the transmission routes based on 
reinforcement learning, and adaptively selects the 
best route to reduce the transmission hops and 
balance the energy consumption. Both VBF and 
QELAR can find a suitable underwater route to 
realize data transfer without distinguishing between 
the carried applications. However, it is necessary to 
adjust the transmission route reasonably according 
to the priority of applications and the queue length 
of nodes. 

The RCAR proposed by Jin et al. focuses more 
on the congestion avoidance method in the case of 
large traffic. Through the reinforcement learning 
algorithm, it optimizes the distribution of the delay 
and energy consumption on the transmission route, 
and can well adjust the traffic distribution in case of 
heavy traffic. Although RCAR optimizes the traffic 
layout in time-varying underwater networks and can 
provide a good QoS, it is not enough to only 
consider improving the unfavorable underwater 
transmission conditions. It is also necessary to 
consider how to better integrate the business 
applications to improve the efficiency of underwater 
communication. 
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The EP-ADTA proposed by Wang et al. is 
designed for the transmission of the time series 
monitoring data. While selecting the transmission 
route, it adaptively adjusts the transmission accuracy 
of the monitoring data according to the transmission 
conditions. When the underwater environment is 
good and the transmission route can provide enough 
transmission bandwidth, high-precision monitoring 
data can be transmitted. When the transmission 
environment is bad and the transmission route 
cannot provide enough bandwidth, the transmission 
accuracy of monitoring data shall be appropriately 
reduced to ensure that the characteristic data is 
transmitted to the surface sink node in priority. 
Therefore, EP-ADTA considers the reliability and 
efficiency of transmission. However, EP-ADTA can 
only be applied to the time series data acquisition, 
and is not applicable to the underwater image data. 

Therefore, based on the above research, aiming 
at the fixed 3D underwater wireless sensor network, 
in order to improve the efficiency of underwater 
image data transfer, the research of adaptive data 
transfer algorithm based on variable bit rate image 
compression technology (VRC-ADTA) is carried 
out. 

3 ALGORITHM DESIGN 

VRC-ADTA consists of two parts. One is the image 
compression algorithm based on the HAAR wavelet 
transform, which realizes lossless compression of 
image data and converts the image data into the 
average feature data and the detail coefficient data. 
The image compression algorithm is implemented in 
underwater sensor nodes. The second is the routing 
algorithm based on the reinforcement learning, 
which realizes the optimal underwater transmission 
route selection. The routing algorithm is 
implemented between the underwater sensor node 
and the communication node.  

3.1 Image Compression Algorithm Based on 
HAAR Wavelet Transform 

The image, especially the static continuous tone 
image, has great redundancy between adjacent 
pixels. The change of image sample values between 
adjacent pixels is smooth and generally does not 
change suddenly, even if there is a mutation, it is 
only at the edge of the object in the image, which 
makes it possible to compress images. In order to 
compress the image effectively, we must focus on 
the redundancy contained in the signal and reduce its 

redundancy. In the usual image, most of the signals 
are concentrated in the lowest frequency component. 
The higher the frequency, the more the signal 
strength decays. 

Due to the scalable resolution of the discrete 
wavelet transform, the image compression algorithm 
based on wavelet transform can transform the 
resolution repeatedly in space, and reduce the 
redundancy of the image and compress the image. 
HAAR wavelet transform is a typical wavelet 
transform, which takes the average value of two 
adjacent values as the low-frequency coefficient and 
the difference between two adjacent values as the 
high-frequency coefficient [Xiang W, 20]. When the 
adjacent values are equal or the change rate is very 
gentle, the low-frequency coefficient can be used as 
the approximation of the sample value, while the 
high-frequency coefficient is a value close to 0. In 
this way, in some cases, the high-frequency 
coefficient can be discarded and the low-frequency 
coefficient can be directly used to restore the image. 
The restored image cannot reach the quality of the 
original image. In many cases, this loss of image 
quality can fully meet the needs of practical 
applications (Bagmanov V H, Porwik P). 

Suppose a one-dimensional image with a 
resolution of only 4 pixels, and the corresponding 
pixel values are respectively: [9 7 3 5], calculate its 
HAAR wavelet transform coefficients. 

Step 1: calculate the average value. Calculate the 
average value of adjacent pixel pairs to get a new 
image with relatively low resolution, whose number 
of pixels has become 2. That is, the resolution of the 
new image is 1/2 of the original, and the 
corresponding pixel value is [8 4], where 8= (9+7)/2, 
4= (3+5)/2. 

Step 2: calculate the difference value. When this 
image is represented by 2 pixels, the image 
information has been partially lost. To reconstruct 
the original image composed of 4 pixels from the 
image composed of 2 pixels, it is necessary to store 
the image detail coefficients for retrieving the 
missing information during reconstruction. The 
method is to subtract the average value of the pixel 
pair from the first pixel value of the pixel pair. The 
first detail coefficient is (9-8) =1, because the 
calculated average value is 8, which is 1 smaller 
than 9 and 1 larger than 7. Storing this detail 
coefficient can restore the first two-pixel values of 
the original image. Using the same method, the 
second detail coefficient is (3-4) =-1, and the last 
two-pixel values can be restored by storing this 
detail coefficient. Therefore, the original image can 
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be expressed as [8 4 1 -1] with the following two 
average values and two detail coefficients. 

Step 3: repeat steps 1 and 2 to further decompose 
the image obtained from the step 1 into the images 
with lower resolution and the detail coefficients. At 
last, the whole image is represented by the average 
value of one pixel 6 and three detail coefficients 2, 1 
and -1. The decomposition process is shown in 
Table 2. 

Table 2: Schematic diagram of HAAR wavelet transform. 

Resolving 
power 

Average 
value 

Detail 
factor 

4 [9 7 3 5]  
2 [8 4] [1 -1] 
1 [6] [2] 

It can be seen from Table 2 that the image 
composed of four pixels is represented by one 
average pixel value, one first-order detail coefficient 
and two second-order detail coefficients through the 
above decomposition.  

After the underwater image data is compressed 
based on HAAR wavelet transform, the pixel data of 
the image is transformed into a combination of the 
average feature value and the detail coefficient 
values. And the data combination of the average 
value and the detail coefficient values of the 
transmitted image can restore the image of the 
previous level of resolution. Only transmitting the 
average value can retain the feature of the image and 
reduce the demand for data transfer. After the detail 
coefficient data arrives at the later stage, the 
underwater image quality can be further improved. 

3.2 Routing Algorithm Based on 
Reinforcement Learning 

Reinforcement learning is a machine learning 
algorithm aimed at finding the optimal mapping 
strategy from state to action, typically used to solve 
problems related to Markov decision processes 
(MDP) (Dugaev, 2020). The process of 
reinforcement learning is usually represented by five 
tuples ሺ𝑆,𝐴,𝑃,𝑅, γሻ (Jin Z, Shen Z), where S is the 
environment, A is the action, P is the transition 
probability, R is the reward, and γ is the discount 
rate.  

Assuming that the underwater wireless sensor 
network is composed of m nodes, the nodes can be 
expressed as: N = ሼ𝑛ଵ,𝑛ଶ,⋯ ,𝑛௠ሽ (1) 

Where, 𝑛௜  represents underwater wireless 
sensor network nodes, and m represents the number 
of nodes. Each the node of the underwater network 
can obtain its own coordinate. Then, the candidate 
relay node set of the current node 𝑛௜  can be 
expressed as: 𝑁௥ሺ𝑖ሻ = ൛𝑛௝หൣ𝑁|𝑑൫𝑛௝൯ − 𝑑ሺ𝑛௜ሻ ≤ 0൧∩ 𝑛𝑒𝑖ሺ𝑛௜ሻൟ (2) 

Where, 𝑁௥(𝑖)  is the set of candidate relay 
nodes, 𝑛𝑒𝑖(𝑛௜) is the neighbor nodes set covered 
by one hop, ൛𝑁|𝑑൫𝑛௝൯ − 𝑑(𝑛௜) ≤ 0ൟ represents the 
node set which is shallower than the depth of the 
current node.  

If the packet is located at the node 𝑛௜ , the 
current environment state S can be defined as: S = ሼn୧ሽ ∪ N୰(i) (3) 

The action A can be defined as: A = ൛a୨|n୨ ∈ Sൟ (4) 
If the current packet is at the node 𝑛௜ and 𝑛௝ is 

selected as the relay node, the reward function is: 𝑅௡೔௡ೕ௔ೕ = −𝑅଴ − ሾ𝜑௘ × 𝑐𝑜(𝑒)+ 𝜑௧ × 𝑐𝑜(𝑡)ሿ (5) 

The reward function R includes fixed cost, 
residual energy cost of neighbor node and 
transmission channel delay cost in three parts. 

The significance of 𝑅0  is that the fixed cost 
needs to be increased every time the data forwarding 
of a hop node is experienced. The existence of 𝑅0 
can help the agent to select the route with fewer 
hops. 

The significance of 𝑐𝑜(𝑒) is that selecting the 
node with large residual energy as the next hop node 
is beneficial for extending the service time of the 
underwater networks. The existence of 𝑐𝑜(𝑒) can 
help the agent select the node with greater residual 
energy as the next-hop node. It can be expressed as: co(𝑒) = 1 − 𝐸௥௝∑ 𝐸௥௞௞∈ேೝ(௜)  (6) 

Where, 𝐸௥௝ represents the residual energy of the 
next-hop node, and ∑ 𝐸௥௞௞∈ேೝ(௜)  represents the total 
residual energy of the candidate node set, 𝜑௘ is the 
sensitivity coefficient for the 𝑐𝑜(𝑒).  

The significance of 𝑐𝑜(𝑡)  is to select the 
transmission channel with smaller transmission 
delay to reach the next-hop node, and the smaller 
transmission delay shows that the transmission 
channel is more stable, reliable, has less bit error rate 
and congestion. It can be expressed as: 
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𝑐𝑜(t) = 1 − 1𝑡௧௜→௝ + 1 (7) 

Where, 𝜑௧  is the sensitivity coefficient of the 𝑐𝑜(𝑡), 𝑡௧௜→௝ is the total transmission delay of the 
packet. 

If the current packet is at the node 𝑛௜ , the 
transition probability of the node 𝑛௜  to the node 𝑛௝  is defined as: P୬౟୬ౠୟౠ = R୬౟୬ౠୟౠ∑ R୬౟୬ౡୟౡ୬ౡ∈ୗ  (8) 

In order to embody the impact of the next state 
on the current state, the overall reward is defined as: 𝑅௧ = 𝑟௧ + 𝛾𝑟௧ାଵ + 𝛾ଶ𝑟௧ାଶ + ⋯= ෍𝛾௝𝑟௧ା௝  ஶ

௝ୀ଴  (9) 

According to the Q-learning, the state action 
function under the policy π is defined as: 𝑄గ(𝑠,𝑎) = 𝐸గሼ𝑅௧|𝑠௧ = 𝑠,𝑎௧ = 𝑎ሽ (10) 

Assuming that sum is the next action a′ and the 
next state s′, the optimal solution 𝑄∗(𝑠,𝑎) in the 
state 𝑄గ(𝑠,𝑎)  can be expressed as the iterative 
equation: 𝑄∗(𝑠, 𝑎)= 𝑟௧+ 𝛾෍ 𝑃௦௦ᇲ௔ ቄmax௔ᇲ 𝑄∗(𝑠ᇱ,𝑎ᇱ)ቅ௦ᇲ∈ௌ  

(11) 

The V value function will select the Q value that can 
obtain the maximum benefit, which is defined as: V௧∗(𝑠) = max௔ 𝑄∗(𝑠,𝑎) (12) 

At the initial stage, the Q value table of each 
agent is initialized according to its neighbor 
relationship and the position to improve the 
convergence speed of the Q value. The initial setting 
of Q value is: 𝑄௡೔→௡ണത௜௡௜ = −10 ,       𝑛௜ ,𝑛ఫ̅ ∈ 𝑁,𝑛ఫ̅∉ 𝑁௥(𝑖) 

(13) 

As the Q values and V values are gradually 
updated and converged according to formulas (11) 
and (12), a good data transmission strategy will 
eventually emerge. 

The reinforcement learning adjusts the degree of 
"exploration" and "utilization" by exploring 
probability 𝜀 to ensure that the best strategy can be 
used without missing the global best strategy 

(El-Banna A A A, 2021). When the exploration 
probability 𝜀 is small, the reinforcement learning 
algorithm will choose more random strategies to 
explore new transmission route. When the 
exploration probability 𝜀 is large, the reinforcement 
learning will use more existing optimal strategies to 
achieve more efficient and reliable data transfer. 
When transmitting the average value data, because it 
contains the core features of the image, we choose a 
larger probability of exploration 𝜀, use the existing 
optimal strategy for transmission, and increase the 
data retransmission threshold 𝑡𝑖𝑚𝑒𝑠௧ℎ௥௘ௗ  to 
improve the reliability of the image feature data 
transfer. When transmitting the detailed data, choose 
a smaller exploration probability 𝜀, and try more 
random strategies to reduce the energy consumption 
of the optimal path. At the same time, try to obtain 
the global optimal path and reduce the data 
retransmission threshold 𝑡𝑖𝑚𝑒𝑠௧ℎ௥௘ௗ . The 
corresponding relationship between the explore 
probability 𝜀 , the retransmission threshold 𝑡𝑖𝑚𝑒𝑠௧ℎ௥௘ௗ  and the image data type, which is 
defined as: 𝜀= ቐ𝜀௠௔௫   𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 average 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑            𝜀௠௜ௗ ,𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑑𝑒𝑡𝑎𝑖𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑  𝜀௠௜௡,𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑡𝑎𝑖𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 (14)

 𝑡𝑖𝑚𝑒𝑠௧௛௥௘ௗ= ቐ𝑡𝑖𝑚𝑒𝑠௠௔௫,     𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 average 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑          𝑡𝑖𝑚𝑒𝑠௠௜ௗ ,   𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑑𝑒𝑡𝑎𝑖𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑𝑡𝑖𝑚𝑒𝑠௠௜௡,   𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑡𝑎𝑖𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒 (15)

3.3 Simulation and Performance 
Analysis 

The simulation is based on the underwater fish 
activity monitoring application. The simulation is set 
as a three-dimensional underwater area. One sensor 
node is deployed in the underwater area center to 
collect image data, and several communication 
nodes are randomly deployed in the water to forward 
the monitoring data. One sink node is deployed in 
the surface center to collect the data.  

3.4 Simulation and Parameter Setting 

In the simulation, the underwater network topology 
is generated randomly. Each underwater node 
communicates based on the acoustic channels. 
Underwater nodes move randomly around their 
original positions under the influence of water flow. 
Each pixel of the image is represented by 1 byte, and 
each packet encapsulates 50-pixel data for 
transmission. The simulation environment and the 
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parameter settings of VRC-ADTA are shown in 
Table 3. 

Table 3: Simulation and the parameter settings. 

Parameter Value 
Underwater network 500m×500m×500m 

Sound speed 1500 m/s 
Sound frequency 10 kHz 

Communication distance 150m 
Number of nodes 100, 200, 300 

Maximum distance of 
node movement 0, 5, 10 

Initial energy 30000 J 
Transmission power 10 W 

Receiving power 3 W 
Channel interruption 

probability 0, 0.01,0.1 

Image Original Size (300,500), single 
channel 

Resolution ratio of images 
(Origin:1level:2level) 16:4:1 

Packet transmission rate 10,15,20 
packets/minute 

Origin data packet size 100Bytes 
Mac protocol S-FAMA 𝑅଴ -1 𝜑௘ ,𝜑௧ 0.8, 0.2 𝜀௠௜௡, 𝜀௠௜ௗ , 𝜀௠௔௫ 0.7, 0.8,0.9 times௠௜௡, times୫୧ୢ, times୫ୟ୶ 0,1,3 

 
The environment is built by Python. The basic 

state of the environment is that the number of nodes 
in the underwater network is 100, the data transfer 
rate is 10 packets/min, the transmission channel is 
uninterrupted, and the node position is unchanged. 

3.5 Image Compression Performance 
Analysis 

As shown in Figure 1-(a), the original image is taken 
by an underwater camera. The main body of the 
image is fish swimming in the water, and the 
background is underwater reef. As shown in Figure 
1-(b), the size of the image (1level) after one 
compression based on HAAR wavelet transform is 
reduced to 1/2 of the size of the original image, and 
the pixel data to be transmitted becomes 1/4 of the 
original image, but the fish swimming in the water 
can still be clearly identified. As shown in Figure 
1-(c), the size of the image (2level) after twice 
compression based on HAAR wavelet transform is 

reduced to 1/4 of the size of the original image. The 
pixel data to be transmitted becomes 1/16 of the 
original image, and the fish swimming in the water 
can still be recognized. Therefore, image 
compression based on HAAR wavelet transform 
retains the characteristic information of the image. 
When the transmission channel is bad and a large 
amount of data is not allowed to upload, the image 
average data generated by HAAR wavelet transform 
retains the main characteristics of the image and can 
meet the basic needs of image monitoring. Because 
the image compression based on HAAR wavelet 
transform belongs to lossless compression, after the 
transmission channel is restored, continue to 
transmit the image detail coefficient data, which can 
completely restore the resolution of the original 
image. 

 
Figure 1: Comparison of image compression effects with 
different resolutions. 

Where, Figure 1-(a) is the original underwater 
image; Figure 1-(b) shows the image after one 
compression based on HAAR wavelet transform; 
Figure 1-(c) shows the image after twice 
compression based on HAAR wavelet transform. 

3.6 Data Transfer Performance 
Analysis 

VRC-ADTA, QELAR and VBF are used as routing 
algorithms to forward the image packet in 
underwater wireless sensor networks, and their 
transmission performance is compared. 

1) Comparison of the packet delivery rate 
According to the different conditions, in underwater 
wireless sensor networks, VRC-ADTA, QELAR and 
VBF are used to transmit a group of image data 
(including 1500 packets), and the average packet 
delivery rate of the image packets transmitted from 
the underwater sensor nodes to the surface sink 
nodes is calculated. The comparative results are 
shown in Figure 2. 
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Figure 2: Comparison of the average packet delivery rates. 

100-Nodes, 150-Nodes, and 200-Nodes respectively 
indicate that the network contains 100, 150 or 200 
communication nodes; DD-5 and DD-10 indicate 
that the dynamic range of node position movement 
in the network per minute is 5 meters or 10 meters; 
OP-0.01, OP-0.1 indicate that the interruption 
probability of each data transfer is 0.01 or 0.1; 
TF-15 and TF-10 indicate that 15 or 10 packets are 
sent per minute. 

Figure 2 shows that under the different 
conditions, the blue data column representing 
VRC-ADTA is higher than the green data column 
representing QELAR and the red data column 
representing VBF. This shows that the average 
delivery rate of image data in VRC-ADTA is higher 
under different conditions. Due to the 
comprehensive consideration of transmission hops, 
transmission delay, residual energy, and service type, 
VRC-ADTA can provide more reliable data transfer 
with the support of the adaptive improved 
Q-learning. 

2) Comparison of the Transmission Delay 
VRC-ADTA, QELAR and VBF are used to forward 
a group of image data, and the transmission delay of 
a single image packet from the sensor node to the 
sink node is calculated. The comparative results are 
shown in Figure 3. 

 

 
Figure 3: Comparison of the transmission delay of a single 
packet transmitted. 

Figure 3 shows that under different conditions, 
the blue data column representing VRC-ADTA is 
lower than the green data column representing 
QELAR and the red data column representing VBF. 
This shows that the VRC-ADTA consumes less time 
to transmit a single packet under different conditions. 
VRC-ADTA can provide faster data transfer. Figure 
3 also shows that the increase of interruption 
probability has a significant impact on the 
underwater data transfer. With the increase of 
interruption probability, the data needs to be 
retransmitted for many times, resulting in the 
increase of the transmission delay. 

3) Comparison of the Energy Consumption 
VRC-ADTA, QELAR and VBF are used to transmit 
a group of image packet, and the communication 
consumption required to transmit a single image 
packet from the sensor node to the sink node is 
calculated. The comparative results are shown in 
Figure 4. 

 
Figure 4: Comparison of the energy consumption of a 
single packet transmitted. 

Figure 4 shows that under different conditions, 
the blue data column representing VRC-ADTA is 
lower than the green data column representing 
QELAR and the red data column representing VBF. 
It shows that under different conditions, the 
VRC-ADTA requires the least energy consumption 
for each node of the underwater network to transmit 
a single packet. This is mainly because the 
VRC-ADTA requires less transmission hops, 
indicating that VRC-ADTA can provide more 
efficient data transfer. Figure 5 also shows that with 
the increase of the number of nodes in the network, 
the energy consumption required to transmit a single 
image packet increase. 

4) Comparison of the Residual Energy Variance 
VRC-ADTA, QELAR and VBF are respectively 
used to transmit a group of image data, collect the 
residual energy of each communication node, 
calculate its average and variance of the distribution, 
and form a comparison result, as shown in Figure 5. 
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Figure 5: Comparison of the average and variance of 
residual energy distribution. 

Figure 5 shows that VRC-ADTA and QELAR have 
a larger average of the residual energy than VBF, 
indicating that the two algorithms are more efficient. 
The variance of residual energy distribution 
corresponding to VRC-ADTA is smaller, indicating 
that VRC-ADTA uses more energy evenly than 
QELAR and VBF, which is conducive to extending 
the overall life of underwater network. 

4 CONCLUSION 

The variable rate image compression based adaptive 
data transfer algorithm (VRC-ADTA) for 
underwater wireless sensor networks proposed in 
this paper contains three innovations. Firstly, it is to 
introduce the image compression algorithm based on 
HAAR wavelet transform into underwater image 
transmission. Because HAAR wavelet transform 
retains the image features in the process of image 
compression, even after the image data is greatly 
compressed, the monitoring object is still clear and 
recognizable in the image. Because the image 
compression based on HAAR wavelet transform 
belongs to lossless compression, whether to transmit 
the detail coefficient data can be selected according 
to the change of transmission channel quality. After 
the detail coefficient data is supplemented, the 
monitoring image resolution can be restored to the 
initial state. Secondly, it is to realize underwater 
network routing based on the reinforcement learning. 
In the process of the next hop selection, the depth 
and residual energy of the relay node, the 
transmission channel delay are comprehensively 
considered to improve the quality of transmission 
routing. Thirdly, it based on whether the content of 

the underwater transmission data is the average 
value data of the monitoring image or the detail 
coefficient data, the exploration probability and the 
retransmission threshold in the routing algorithm are 
dynamically selected, so that the average value data 
containing image features can be delivered to the 
destination by the more efficient and reliable route, 
while the detail coefficient data that helps to 
improve the image resolution are delivered by the 
suboptimal routing, in order to reduce the energy 
consumption of nodes on the optimal route and 
optimize the distribution of the residual energy of 
nodes. Therefore, VRC-ADTA can adaptively select 
the transmission routes and the resolution of the 
image data according to the changes of underwater 
transmission conditions. When the transmission 
environment is stable, the transmission channel error 
rate is low, and the delay is small, it can transmit 
high-resolution high-rate image data. When the 
transmission environment is unstable and the 
transmission channel quality is poor, it can transmit 
low-rate image data containing image features, when 
feature data and detail data are transmitted at the 
same time, it can provide more efficient and reliable 
transmission routes for the image feature data. 

Simulation shows that VRC-ADTA can provide 
efficient and reliable transmission routes under 
different node densities, dynamic ranges of node 
locations, interruption probabilities of transmission 
channels and traffic flows. Compared with QELAR 
and VBF, the VRC-ADTA can increase the packet 
delivery rate by 3% -20%, reduce the transmission 
delay by 10% -50%, reduce the energy consumption 
by 18% -60%, and reduce the variance of residual 
energy of nodes by 16% -75%. 
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