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Abstract: Computing Force Network (CFN) is a new type of information infrastructure that allocates computing, 
storage and network resources on demand and flexibly schedules computing, storage and network resources 
among cloud, edge and terminal according to service requirements. Accurate matching between user 
resource demand and computing resource is a key problem in CFN. Elastic resource scaling enables elastic 
scheduling of computing resources based on service requirements to meet real-time service requirements 
and improve computing utilization. Resource elastic scaling based on prediction is a common scaling 
strategy. We first proposed a new knowledge distillation method, and then used the relatively advanced time 
series prediction algorithm Informer as the basic model to propose a time series prediction model KD-
Informer based on knowledge distillation. Finally, we proposed a predictive elastic telescopic algorithm (P-
HPA). We verified through experiments that our proposed knowledge distillation method improved by 
about 10% compared with the existing knowledge distillation algorithm, KD-Informer prediction model 
improved the prediction accuracy and reduced the model memory occupation compared with the existing 
model, and P-HPA improved the QoS compared with the default HPA. 

1 INTRODUCTION 

In recent years, the traditional network architecture 
has evolved from large-scale cloud data centers to 
distributed multi-access edge computing (MEC) 
servers scattered across different locations and 
mobile intelligent devices, forming a three-layers 
network architecture consisting of cloud, edge, and 
end (Kong, 2022)-(Garg, 2021). Therefore, how to 
integrate ubiquitous and heterogeneous computing 
resources with the network to achieve accurate 
matching of user needs and computing resources has 
become an important research direction for the 
future development of networks. In the opportunity 
of the integration of computing power and network 
development, European Telecommunication 
Standards Institute (ETSI) have proposed the 
concept of Computing Force Network (CFN). 

CFN is a new type of information infrastructure 
that flexibly allocates and schedules computing, 
storage and network resources according to business 
needs among cloud, edge, and end (Zhou, 2023). 
there are many business scenarios with high 
elasticity demands for resources. Although advanced 
resource scheduling strategies and mature 

microservice architectures can be used to achieve the 
matching of resource demand and supply, existing 
static resource scheduling mechanisms and 
microservice scheduling mechanisms cannot meet 
the dynamic and precise matching of business needs 
and resource supply for performance burst scenarios.  

Resource elasticity scaling is a technology that 
flexibly and dynamically adjusts resource supply 
based on real-time resource demands of users(Toka 
L, 2020), which can dynamically adapt to user 
demand. When user resource demand decreases, 
resource allocation is reduced to lower enterprise 
costs and increase cluster resource utilization. 
According to the type of elasticity scaling, elasticity 
scaling can be mainly divided into vertical scaling 
and horizontal scaling. Vertical scaling is mostly 
used for small-scale applications, which do not 
require any modifications to user applications and 
directly change the resource quota of the server 
where the user application is located. Horizontal 
scaling is a more common scaling method, which 
mainly involves increasing the number of servers 
rather than changing the resource quota of a single 
server when the business peak increases. The 
management and scheduling of resources in the 
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computing network mainly rely on the Kubernetes 
resource orchestration platform. The open-source 
version of Kubernetes provides HPA and VPA 
policies. Among them, HPA adopts a polling 
mechanism to obtain the CPU utilization rate of each 
Pod from the metrics server, then calculates the 
average resource utilization rate of the cluster, 
compares it with the user-defined CPU resource 
utilization threshold during the decision-making 
phase, and finally calculates the expected number of 
Pod replicas. To some extent, HPA solves some 
elasticity requirements in the computing network. 
However, the open-source version of HPA is a 
reactive scaling strategy, which passively adjusts 
resource allocation based on changes in application 
load, resulting in a certain degree of lag and 
increasing the SLAs violation rate (Shin S H, 2023)-
(Paulo Pereira, 2019). 

The challenges of CFN is presented as follows. 
1) Scaling decisions are typically based solely on the 
observations from the current scaling period, 
primarily focusing on average CPU usage. However, 
considering a broader historical perspective could 
provide a more accurate understanding of what lies 
ahead.2) The default capacity expansion mechanism 
is lagging behind. When user resource requirements 
change rapidly, the default capacity expansion 
mechanism reduces user QoS. 3) The existing 
prediction algorithms have some problems, such as 
insufficient prediction accuracy and large memory 
consumption. Moreover, we propose a predictive 
HPA mechanism, on the one hand to monitor the 
traffic, on the other hand to achieve early expansion 
before load burst. The contributions of this paper are 
summarized as follows. 
 We proposed a new knowledge distillation 

method and it is experimentally verified that 
the proposed knowledge distillation method 
improves the model accuracy compared to 
existing knowledge distillation methods.  

 Based on the knowledge distillation method 
and the existing time series prediction model 
Informer, a new time series prediction model 
KD-Informer is proposed in this article. It is 
experimentally verified that the proposed 
model improves the prediction accuracy 
compared to Informer, Reformer, and other 
time series models.  

 We propose P-HPA based on the above time 
series prediction model. Experiment results 
show that the P-HPA improves the scaling 
accuracy and reduces the SLAs violation rate 
compared to the default HPA. 

 

2 RELATED WORK 

Elastic resource scaling is not a unique concept to 
the computing power network, which has always 
been a key factor to consider in cloud computing. 
We have conducted research and summarized the 
current state of research on resource elasticity 
scaling, and Classified it as follows. 

Threshold-Based: (Yahya Al-Dhuraibi, 2017) 
and (Gourav Rattihalli, 2019) improved vertical 
elasticity in lightweight virtualization technology 
cloud systems using threshold-based scaling rules. 
(Hamzeh Khazaei, 2017) proposed Elastic Docker, 
an autonomous solution based on IBM's MAPE-K 
principle, which enables autonomous vertical 
elasticity for Docker containers. In (Zhicheng Cai, 
2022), the authors introduced an automatic scaling 
system based on resource utilization, enhancing 
Kubernetes' VPA and dynamically adjusting 
container allocation in Kubernetes clusters. Both 
papers explore container migration and investigate 
vertical scaling possibilities, while our proposed 
solution focuses on enhancing horizontal 
autoscalers. (Toka, 2020) demonstrated the 
architecture and initial implementation of Elascale, 
which provides automatic scalability and monitoring 
as a service for any cloud software system. Elascale 
makes scaling decisions based on a tunable linear 
combination of CPU, memory, and network 
utilization. 

Forecast-Based: Short-term demand forecasting 
has been extensively studied in various domains 
(Kader, 2022)-(Punia, 2020). In the energy sector, 
accurate prediction of electricity generation from 
wind turbines is crucial. Li et al. (H. Arabnejad, 
2017) proposed a four-input neural network that 
outperformed traditional single-parameter methods. 
For predicting electricity market prices, Catalao et 
al. introduced a three-layer feedforward neural 
network approach, which proved to be superior to 
the previously proposed autoregressive integrated 
moving average (ARIMA) methods in terms of time 
efficiency and ease of implementation. Inspired by 
Tan's work (Horovitz, 2018), who designed a 
predictive HPA using the AdaBoost-LSTM 
algorithm with improved QoS, we adopt a 
prediction-based approach in our system. We aim to 
select the most suitable scaling method by 
leveraging prediction techniques. 

Reinforcement Learning-Based: Arabnejad et 
al. (Sherstinsky, 2020) proposed a resource 
allocation approach for virtual machines (VMs) by 
combining Q-learning and the SARSA algorithm 
with an adaptive fuzzy logic controller. They 
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focused on dynamic resource allocation. Similarly, 
Horovitz et al. (Vaswani A,2017) introduced a 
threshold-based horizontal container autoscaling 
solution that utilized Q-learning to adjust scaling 
thresholds. 

3 SOLUTIONS 

In this section, we propose new load prediction 
algorithm and prediction HPA algorithm (P-HPA). 
We will select a basic model from several time 
series prediction models, and a new knowledge 
distillation method is used to improve the above 
model. 

3.1 Time Series Prediction Model 

LSTM: LSTM(Forecasting, 2021) is a common 
time series prediction model. There are three kinds 
of LSTM gates: forget gate, input gate, and output 
gate. A gate is a structure that enables information to 
pass through selectively. LSTM selects to update or 
delete information using the gate structure, and 
transmits useful information to the latest decision 
unit through cell state for reference. Although this 
design method of LSTM solves the problem that 
RNN is easy to forget long-term historical 
information, LSTM can only solve sequences of 100 
orders of magnitude, and the performance of LSTM 
is not good for sequences of longer orders of 
magnitude. Moreover, since each unit of LSTM has 
four fully connected layers, LSTM can be very time 
consuming if the network is very deep and the 
sequence length is very long. 

Transformer: Transformer (Zhao, 2022) is a 
deep learning model based on self-attention. 
Compared with LSTM model, Transformer can pay 
more attention to historical information and improve 
the prediction accuracy. However, for long time 
series, the calculation time and memory 
consumption are huge. When the original 
Transformer model deals with the sequence length 
of N time series, Both time and space complexity are 
O(N2). 

Informer: Informer(Kang, 2022) is an improved 
model based on Transformer model, mainly to solve 
the problem of long time sequence prediction. 
Informer uses ProbSparse self-attention mechanism 
and distillation mechanism to shorten the training 
time of Transformer model and improve the 
predictive performance. In this paper, the Informer 
model will be used as the basic model, and we used 
knowledge distillation method to improve the 

prediction performance of the model. And we call 
the final model KD-Informer. Next we will 
introduce the process of knowledge distillation. 

3.2 Knowledge Distillation 

Knowledge distillation refers to the process of 
"distilling" the knowledge learned by a complex and 
powerful large model and transferring it to a smaller 
model with a relatively simpler structure. In 
knowledge distillation, the large model with high 
complexity and strong learning ability is called the 
teacher model, while the smaller model generated by 
the large model with a simple structure and fewer 
parameters is called the student model. The most 
common application of knowledge distillation is to 
enable the student model with fewer parameters and 
a smaller structure to learn the knowledge of the 
teacher model with a more complex structure and 
higher accuracy, and deploy the student model on 
devices with limited computing power instead of the 
teacher model. 

Since the proposal of knowledge distillation, 
there have been many research achievements in the 
field of classification. Zhao et al.(Takamoto, 2020) 
reconstructed the classic KD loss into two parts, 
namely Target Class Knowledge Distillation 
(TCKD) and Non-Target Class Knowledge 
Distillation (NCKD), and then proposed 
Disentangled Knowledge Distillation (DKD), which 
enables TCKD and NCKD to play their roles more 
effectively and flexibly, and ultimately demonstrated 
the effectiveness of the method in image 
classification and object detection tasks. Kang et 
al.(Xu, 2022) proposed a new deep neural network-
based class incremental learning method, which 
effectively solves the problem of catastrophic 
forgetting. These algorithms aim to solve 
classification problems. Regression problems are 
different from classification problems. Regression 
problems are unbounded, which means that the 
predicted values of the teacher model may deviate 
significantly from the true labels, causing negative 
effects on the student model. For regression 
problems, Makoto Takamoto et al.(Chen, 2017) 
proposed a new method for knowledge distillation 
for regression problems, which first defines a new 
loss function, and uses the predicted values of the 
teacher model to detect abnormal labels in the 
original data, thus increasing the robustness of the 
student model. Xu et al.(Kitaev, 2020) proposed a 
Contrastive Adversarial Knowledge Distillation 
(CAKD) for time series regression tasks where the 
student and teacher use different architectures. The 
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core idea is to use a novel contrastive loss to achieve 
instance alignment between the student and teacher. 

It can be seen that in regression problems, the 
current research mainly designs new loss functions 
to make the student model imitate the output of the 
teacher model, thus achieving the goal of knowledge 
distillation. In this article, a new method is proposed, 
which does not adjust the loss value of the student 
model, but uses the weighted sum of the predicted 
values of the teacher model and the true labels as the 
real labels for training the student model based on 
the predicted accuracy of the teacher model. The 
purpose of this approach is to enable the student 
model to imitate the output of the teacher model and 
learn the generalization ability of the teacher model 
on the one hand, and on the other hand, to reduce the 
impact of abnormal values in the true labels on the 
student model and improve the prediction accuracy 
of the model. 

Due to the unbounded nature of time series 
prediction, the predicted values from the teacher 
model can be arbitrary. In the process of knowledge 
distillation, we hope that the student model can take 
into account both the true label and the predicted 
value provided by the teacher model. When the 
predicted value from the teacher model is close to 
the true label, the student model should avoid 
completely fitting the true label and learn the 
generalization ability of the teacher model. When 
the predicted value from the teacher model deviates 
significantly from the true label, the student model 
should try to discard the erroneous knowledge 
provided by the teacher model. Most existing 
knowledge distillation methods for regression 
problems add distillation losses to the student model 
based on the difference between the predicted value 
from the teacher model and the true label, so as to 
make the student model's predicted value closer to 
the teacher model's predicted value. In this paper, 
based on the above idea, we propose to dynamically 
adjust the target of the student model based on the 
prediction error of the teacher model, instead of 
adding additional losses to the student model. 
Formula(1) reflects the relationship between the 
predicted value from the teacher model, the true 
label, and the label used for training the student 
model. 𝑦^ ൌ 𝜆𝑦௧  ሺ1 − 𝜆ሻ𝑦 ሺ1ሻ 𝑦௧represents the predicted output of the teacher 
model, y represents the true label, and y^ represents 
the actual label used during the training of the 
student model. λ is a weight coefficient between 0 
and 1, where a lower value of λ indicates that the 
student model is less influenced by the teacher 

model, and vice versa. The formula for calculating 
the weight coefficient λ is as follows: 𝜆 ൌ 1 −ඨ│𝑦௧ − 𝑦│2 ሺ2ሻ 

Formula(2) reflects the relationship between the 
predicted output of the teacher model and the true 
label, where both 𝑦௧ and y are values normalized to 
the range [-1,1], and the absolute difference between 𝑦௧and y can take any value within the range [0,2], 
reflecting the error between the predicted output and 
the true label. When the error between these two 
values is larger, the value of λ becomes smaller. The 
process of knowledge distillation algorithm is as 
follows. 

Algorithm 1: Knowledge distillation algorithm. 
1. Training teacher model with big dataset. 
2. Initialize the student model S 
3. While there are samples that haven’t been 

trained do 
4.         sample← ሺ𝒙,𝒚ሻ 
5.         𝒚𝒕 ← 𝑷𝒓𝒆𝒅𝒊𝒄𝒕ሺ𝑻,𝒙ሻ 
6.         𝝀 ← 𝑭ሺ 𝒚𝒕,𝒚ሻ 
7.         𝒚^ ← 𝑷ሺ 𝝀,𝒚𝒕,𝒚ሻ 
8.         Train(S,x, 𝒚^) 
9. end While 
10. return S 

3.3 P-HPA 

In order to meet the elastic demands of the 
computing network, We proposed P-HPA to solve 
this problem, which architecture diagram of P-HPA 
is presented as follows. 

 
Figure 1: P-HPA architecture diagram. 

The monitoring module is the foundation of the 
prediction and scaling modules in the elastic scaling 
system. The monitoring module collects various 
real-time computing network data through 
Prometheus and stores it in a persistent database. 
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The prediction module obtains historical data 
collected by the monitoring module and stored in the 
database for training the prediction model. After the 
prediction model is trained based on this historical 
data, it is not directly deployed and predicted. 
Instead, the knowledge distillation method is used to 
compress the pre-trained large model into a small 
model, which is then deployed and provides 
prediction results for the scaling module. After the 
scaling module obtains the prediction results from 
the prediction module, the P-HPA calculates the 
expected number of replicas, and the deployment 
performs the scaling operation. 

To ensure the normal operation of the predictive 
HPA, two parts of work need to be done: deploying 
monitoring components to obtain target metric 
values, and using load prediction algorithms for 
prediction. In this system, the target metric is QPS 
(Query Per Second), specifically the number of http 
requests per second. QPS is a custom metric that 
cannot be obtained by existing monitoring 
components in the cluster, and the metrics server can 
only provide core metrics such as CPU and memory 
information. To solve the problem of obtaining 
custom metrics, a set of Prometheus Custom Metrics 
monitoring system needs to be deployed.  

Firstly, node-exporter and Prometheus are 
deployed, where node-exporter acts as a client to 
collect monitoring data from various nodes in the 
cluster, and Prometheus acts as a server to store the 
collected data in a time-series format. However, the 
data collected by Prometheus is incompatible with 
the data actually used in Kubernetes. Therefore, the 
kube-state-metrics component needs to be deployed, 
which converts the monitoring data in Prometheus 
into a format that can be used in Kubernetes. At this 
point, the monitoring system can monitor the core 
metrics in Kubernetes, but to obtain custom metrics 
such as QPS, the Prometheus-adapter component 
needs to be deployed, which provides an API for 
obtaining custom metrics. In order to observe the 
cluster status information clearly, the Grafana 
visualization component is also deployed. 

At this point, the cluster already has the ability to 
obtain custom metrics. However, the predictive HPA 
still cannot function properly because it does not 
know what custom metrics it needs to obtain. 
Therefore, the Config Map file of Prometheus-
adapter needs to be modified to include the rules for 
obtaining the QPS metric. 

4 EXPERIMENT 

In this section, we first introduce the dataset used in 
this article and the data processing process. Then we 
provide the experimental results of KD-Informer and 
P-HPA on the dataset. 

4.1 Dataset 

The dataset is the access volume dataset of the UK 
academic backbone network, which can well 
represent web applications with seasonal features. 
The dataset contains two dimensions, timestamp and 
access volume, with a time span of more than two 
months and a sampling time of 5 minutes. The 
original dataset was divided into three parts: training 
set, validation set, and test set, with a ratio of 8:1:1. 
There are only 20,000 pieces of data in this data set, 
and it is difficult for the model to get better 
performance when the amount of data is small. 
Therefore, we propose to expand the data set by data 
enhancement. The specific methods are as follows. 

Algorithm 2: Data enhancement algorithm. 
1. Divide the original data set into m child data 

sets 
2. Randomly selected from all child data set data 

set 𝑆𝑎𝑚𝑝𝑙𝑒௧ 
3. 𝑆𝑎𝑚𝑝𝑙𝑒௧ weight for 𝛼, others weight for β, 

β =  (1 −  α)/(m −  1)  
4. for s in S except 𝑆𝑎𝑚𝑝𝑙𝑒௧ do 
5.      𝑆*+= 𝛽 ∗ s 
6. end for 
7. 𝑆𝑎𝑚𝑝𝑙𝑒ାଵ = S ∗/m 
8. Adding gaussian noise 
9. return 𝑆𝑎𝑚𝑝𝑙𝑒ାଵ 

We used the above data enhancement algorithm to 
extend the original data from 20,000 to 64,172. 
Before the start of the experiments, we took the 
consecutive 20,000 data as the incremental dataset. 
The complete extended dataset was used to train the 
Informer ensemble model as the teacher model, the 
baseline model trained on the incremental dataset 
was used for comparison, as well as the KD-
Informer trained on the incremental dataset with the 
teacher model. 

The evaluation metrics used in this chapter are 
mean squared error (MSE), mean absolute error 
(MAE), and model memory usage. We first 
compares the proposed knowledge distillation 
method with the knowledge distillation methods 
proposed in references (Chen,2017) and (Lai, 2018). 

The teacher models of the three algorithms are 
all ensemble Informer models, and the training sets 
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all use the incremental dataset. The student models 
have the same parameters and structure. Table I 
shows the experiment results. From the experimental 
results, we can see that the knowledge distillation 
methods proposed in this paper and in (Chen, 2017) 
have significantly improved the prediction accuracy 
of the student model. The former reduced the MSE 
loss by 10.8% and the MAE loss by 11.8% 
compared to the latter. This result demonstrates the 
effectiveness of the proposed knowledge distillation 
method. 

Table 1: Knowledge distillation experiment. 

Metrics KD-Informer (Lai, 2018). (Chen, 2017) none 

MSE 0.0222(±0.002) 0.0260(±0.002) 0.0249(±0.002) 0.0266(±0.003) 

MAE 0.1069(±0.006) 0.1238(±0.06) 0.1212(±0.006) 0.1245(±0.01) 

We compare the performance of KD-Informer 
with Informer, Reformer, LSTNet, MTGNN under 
different prediction horizons of 36, 72, and 144. We 
set the encoder and decoder of KD-Informer to 2 and 
1, and the encoder and decoder of informer and 
Reformer to 3 and 2, The results are obtained from 
the experiments conducted in this study. Table II 
shows the experiment results. The experimental 
results show that KD-Informer outperforms the 
baseline Informer model in terms of both prediction 
accuracy and model memory consumption under 
different prediction horizons. Specifically, for 
prediction horizons of 36, 72, and 144, KD-Informer 
achieves MSE reductions of 16.5%, 15.0%, and 
13.6%, and MAE reductions of 12.0%, 13.3%, and 
30.2%. Based on these experimental results, we can 
conclude that KD-Informer can learn the 
generalization ability of the teacher model and 
improve the prediction accuracy, and achieve similar 
results to the teacher model using a small amount of 
data and smaller memory. 

Table 2: Prediction Model Experiment. 

Model Metrics 36 72 144 

Informer 

MAE 0.1245(±0.01) 0.1601(±0.02) 0.1768(±0.03) 

MSE 0.0266(±0.004) 0.0412(±0.008) 0.0580(±0.01) 

MEMORY 93.7 

Reformer 
MAE 0.1583(±0.02) 0.2080(±0.03) 0.2162(±0.04) 

MSE 0.0493(±0.003) 0.0683(±0.004) 0.0713(±0.01) 

LSTNet 
MAE 0.1175(±0.02) 0.1726(±0.04) 0.2308(±0.06) 

MSE 0.0437(±0.008) 0.0999(±0.010) 0.1524(±0.015) 

MTGNN 
MAE 0.1103(±0.04) 0.1652(±0.04) 0.2219(±0.08) 

MSE 0.0283(±0.004) 0.0660(±0.005) 0.1172(±0.01) 

KD- MAE 0.1096(±0.006) 0.1388(±0.008) 0.1528(±0.01) 

Model Metrics 36 72 144 

Informer 

MAE 0.1245(±0.01) 0.1601(±0.02) 0.1768(±0.03) 

MSE 0.0266(±0.004) 0.0412(±0.008) 0.0580(±0.01) 

MEMORY 93.7 
Informer MSE 0.0222(±0.002) 0.0350(±0.004) 0.0405(±0.005) 

MEMORY 62.7 

We compare the experimental results of the Informer 
model without knowledge distillation and the model 
with knowledge distillation to verify the 
effectiveness of knowledge distillation. Table III 
shows the experiment results. The experimental 
results are shown as follows. From the experimental 
results, we can see that the addition of knowledge 
distillation greatly improves the predictive 
performance of the model compared with the default 
Informer.  

According to the experimental results in Fig. 2, 
we can see that compared with default HPA, P-HPA 
can realize the capacity expansion in advance when 
the traffic surges. Therefore, in the computing 
network, P-HPA proposed in this paper can 
effectively avoid the situation of QoS reduction 
caused by insufficient resource supply. As shown in 
Fig.3, we can also see that P-HPA based on KD-
Informer and the P-HPA based on Informer can 
basically achieve capacity expansion before load 
burst, but the expansion ratio of the former is more 
accurate than that of the latter. At the same time, it 
also proves that KD-Informer has improved the 
prediction accuracy compared with Informer 
algorithm. From the above experimental results and 
analysis, we can draw the following conclusions: 
Compared with the default HPA mechanism, the P-
HPA can realize capacity expansion before load 
changes, effectively ensure the QoS of user 
applications, and provide a solution to the resource 
elastic scaling problem under the computing 
network. 
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(b) sequence 2 

Figure 2: Comparison between P-HPA and default HPA. 

 
(a) sequence 1 

 
(b) sequence 2 

Figure 3: Comparison between P-HPA and based on 
KD-Informer and Informer. 

5 CONCLUSION 

In this paper, we proposed a new knowledge 
distillation method, a advanced time series 
prediction model and a predictive HPA. A new 
knowledge distillation method is proposed to solve 
the problem that the prediction model occupies a 
large memory and requires a large number of 

training samples. In order to achieve advance 
expansion, we proposed a time series prediction 
model and predictive HPA mechanism, and our 
method achieves advance accurate scaling compared 
with the existing methods. The experiment results 
have shown that our methods are better the state of 
arts. 

In future work, we plan to apply our P-HPA in a 
real cloud container cluster and try to improve the 
accuracy of P-HPA. In addition, we can also try to 
design more advanced knowledge distillation 
algorithm to address the challenges in CFN. 
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