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Abstract: Speech Command Recognition (SCR), which deals with identification of short uttered speech commands, is
crucial for various applications, including IoT devices and assistive technology. Despite the promise shown
by Convolutional Neural Networks (CNNs) in SCR tasks, their efficacy relies heavily on hyperparameter
selection, which is typically laborious and time-consuming when done manually. This paper introduces a
hyperparameter selection method for CNNs based on the Differential Evolution (DE) algorithm, aiming to
enhance performance in SCR tasks. Training and testing with the Google Speech Command (GSC) dataset, the
proposed approach showed effectiveness in classifying speech commands. Moreover, a comparative analysis
with Genetic Algorithm-based selections and other deep CNN (DCNN) models highlighted the efficiency of
the proposed DE algorithm in hyperparameter selection for CNNs in SCR tasks.

1 INTRODUCTION

Speech Command Recognition (SCR) is a subfield
of Automatic Speech Recognition (ASR) focused
on converting short spoken words into text (Pa-
tra et al., 2023). It’s widely used in Internet of
Things (IoT)-based smart home assistants, command-
controlled wheelchairs for blind and disabled people,
and AI-driven vehicles (Nanavati et al., 2021). Early
SCR systems primarily used Hidden Markov Mod-
els (HMMs) (Naithani et al., 2018), Gaussian Mixture
Models (GMMs) (Saravanan et al., 2020), and Multi-
Layered Perceptron models (MLPs) (Ahad et al.,
2002). Later, Recurrent Neural Networks (RNNs)
(Paul and Paul, 2021) and Long Short-Term Memory
networks (LSTMs) (Oruh et al., 2022) yielded signif-
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icant improvements. However, Convolutional Neural
Networks (CNNs), effective in handling 2D data de-
pendencies, emerged as superior alternatives (Nana-
vati et al., 2021). Various input features have been
considered while dealing with SCR tasks, like using a
Depth-Wise Separable CNN (DS-CNN) for keyword
recognition with mel-frequency spectral coefficients
(MFSS) as input feature (Sørensen et al., 2020), us-
ing mel-frequency cepstral coefficients (MFCC) as in-
put for deploying a CNN for wheelchair control using
speech commands (Bakouri et al., 2022), smoothed-
spectrogram, mel-spectrogram, and cochleagram as
input features for CNN-based voice command detec-
tion (Sharan and Moir, 2018). Kubanek et al. pro-
posed a new approach where MFCC, time and spec-
trum are combined to be used as speech features for
the recognition of speech commands using DCNN
model (Kubanek et al., 2019). However, the perfor-
mance of all these CNNs is highly dependent on se-
lection of several crucial hyper-parameters.

CNN models have hyper-parameters like number
and type of convolution layers, filter count and size,
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pooling type, and activation function, which signif-
icantly influence performance in classification tasks,
including SCR. Typically, hyper-parameters are man-
ually selected based on experience, a process that is
both time-consuming and tedious. Therefore, it be-
comes difficult to obtain the optimal configuration
of a CNN model within a reasonable cost (Elsken
et al., 2019; Liu et al., 2021; Ghosh et al., 2022;
Ghosh and Jana, 2022). The paper employs the Dif-
ferential Evolution (DE) algorithm (Das and Sugan-
than, 2011) (Sen et al., 2023c) (Sen et al., 2023b)
(Mazumder et al., 2023) (Sen et al., 2023a) to opti-
mize CNN hyper-parameters for SCR tasks. Each in-
dividual in the DE algorithm represents a viable CNN
architecture, with optimal hyper-parameters deter-
mined through standard DE operations like mutation,
crossover, and selection. Spectrograms are used as in-
put speech features for the CNN model. The dataset
considered in this work is the Google Speech Com-
mand (GSC) dataset (Warden, 2018). The proposed
DE algorithm-based hyper-parameters selection ap-
proach is compared with the Genetic Algorithm (GA)
(Katoch et al., 2021) based hyper-parameter selection,
as well as with state-of-the-art deep CNN (DCNN)
models namely ResNet-50, Inception-V3, Xception,
VGG-16 and VGG-19 for SCR task. The work main-
tains a consistent basic CNN architecture (with a fixed
number of convolution, pooling, and fully connected
layers) for both DE and GA approaches while imple-
menting automatic hyper-parameter selection. Exper-
imental results demonstrate that the proposed method
outperforms others, achieving higher accuracy.

Rest of the paper is organized as follows. Sec-
tions 2 and 3 provide detailed overviews of the re-
lated work and preliminaries respectively. Section 4
includes the details of the dataset, training details and
experimental setups. In Section 5, the proposed ap-
proach is briefly discussed. In Section 6, experimental
results are presented and discussed. Finally, Section 7
concludes the paper and provides some aspects of the
future research.

2 RELATED WORK

Hyperparameter optimization is a critical research
area for achieving high-performance deep learning
models. Techniques like Random Search, Grid
Search, Bayesian Optimization (Masum et al., 2021),
and Gradient-based Optimization (Maclaurin et al.,
2015) are used to find optimal hyperparameter con-
figurations. Each method offers trade-offs in the
computational efficiency, exploration of search space,
and exploitation of discerned solutions. Genetic Al-

gorithms were first utilized for modifying Convolu-
tional Neural Network architectures in late 1900’s,
subsequently instigating a gamut of applications in-
volving various nature-inspired algorithms in the do-
main of deep learning models. While many works
compare evolutionary algorithms on computational
models, no previous study comprehensively has ap-
plied evolutionary algorithms: Genetic Algorithm,
Differential Evolution, across Convolutional Neural
Networks architecture for isolated speech command
recognition. These algorithms stand out due to their
iterative population-based approaches, stochastic and
global search implementation, and versatility in op-
timizing various problems. In this context, this paper
aims to bridge the gap by conducting a comprehensive
exploration of the application of nature-inspired and
evolutionary algorithms, like Differential Evolution,
in optimizing DCNN architectures for SCR. By delv-
ing into the intricacies of how these algorithms inter-
act with lightweight CNN structures and comparing
the performance in SCR with that of DCNN models,
namely, VGG-16, VGG-19, Resnet-50, InceptionV3,
Xception, this study aims to uncover a clearer under-
standing of their advantages and the limitations for
the various other speech related tasks.

3 PRELIMINARIES

3.1 Differential Evolution (DE)

DE is a population-based optimization algorithm de-
signed for non-linear, multi-modal optimization prob-
lems (Das and Suganthan, 2011). It iteratively re-
fines a population of candidate solutions (individu-
als) through mutation, crossover, and selection opera-
tors, enhancing the individuals based on existing ones
within the population. In order to apply DE, first a
population size of N individuals is created, and each
individual is represented by a d-dimensional vector xi
(where i implies the ith individual). Thereafter, the
population is randomly initialized within the search
space. At each iteration, a new population with N
individuals are generated by applying the following
mutation, crossover and selection operators.
Mutation: In mutation operation, distinct individuals
from the population are selected. A widely used mu-
tation scheme is DE/rand/1, where three distinct in-
dividuals from the population are randomly selected.
Then, a mutant vector (also called donor vector) vg

i is
created as shown in Eq. (1),

vg
i = xg

r1
+F ×

(
xg

r2
−xg

r3

)
. (1)
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In Eq. (1), xg
r1 , xg

r2 , and xg
r3 are three distinct individ-

uals (here, g indicates generation). Whereas, r1, r2,
and r3 means randomly selected indices, and F is the
scaling factor that controls the magnitude of the mu-
tation.
Crossover: In crossover operation, a trial vector ug

i
is generated by combining the donor vector vg

i and
the original vector xg

i using crossover operation. The
crossover operation (binomial crossover) is explained
in details as follows,

ug
j,i =

{
vg

j,i i f jrand(0,1)≤CR or j = δ

xg
j,i Otherwise.

(2)

In this context, ug
j,i represents the jth dimension of

the ith individual at the gth generation. The crossover
rate is denoted by CR, and rand(0,1) represents a ran-
domly generated number between 0 and 1. Addition-
ally, δ refers to a random dimension d selected from
the range (1,d) of ug

i .
Selection: In selection operation, the trial vector ug

i
is compared with the original vector xg

i . If the fitness
of ug

i is superior than xg
i , then replacement of xg

i with
ug

i is carried out in the next generation. Otherwise, xg
i

is kept unchanged. The above three steps are repeated
until a stopping criterion is met (the stopping criterion
varies from problem to problem).

4 EXPERIMENTAL DETAILS

4.1 Dataset Description

The proposed DE-based hyper-parameters selection
approach is trained and tested on google speech com-
mand (GSC) dataset (Warden, 2018). In this work 8
speech commands from GSC dataset are considered
namely “down”, “go”, “left”, “no”, “right”, “stop”,
“up”, “yes”. Here, total 8000 speech samples are
considered by taking 1000 samples belonging to each
speech commands. The dataset is split into train-
ing, validation and test set. In this work, the model
is trained with 6400 training samples and 1000 vali-
dation samples. After the completion of training the
trained model is tested with 600 test samples. The
time span of each audio sample considered is of 1 sec-
ond or less and the sampling rate is 16kHz.

4.2 Experimental Setups

The experiments of this work are implemented in
Python 3.10.11 using three libraries as Tensorflow
2.11.0, Tensorflow built in Keras, and Numpy 1.22.

The audible speech data samples are preprocessed us-
ing Librosa 0.10.0. The experiments were performed
in a Google Colaboratory environment using A100
GPU.

5 PROPOSED APPROACH

This section explicitly describes the proposed DE
algorithm-based hyper-parameter selection of CNN
model for speech command recognition task. In the
pre-processing phase, each speech sample is con-
verted into mel-spectrogram (Akhter et al., 2022) of
shape 124×129, in order to make the input data com-
patible to work with 2D CNN. First, an overall frame-
work of the proposed method is presented followed by
the main components of the method. These include
encoding scheme, population initialization, fitness
evaluation, mutation, crossover, and selection oper-
ation of DE, concerning the optimal hyper-parameter
selection for the CNN model.

5.1 The Overall Framework

The overall framework of the proposed approach is
depicted in Fig. 1. The DE algorithm starts with a
population of N individuals, each representing a CNN
architecture which is trained on the training dataset
(Dtrain) and evaluated for fitness on the validation
dataset (Dvalid) in terms of model accuracy. The asso-
ciated hyper-parameters of CNN models are evolved
through mutation and crossover operations of DE.
These processes are repeated with a maximum num-
ber of generations. The optimal hyper-parameters of
CNN architecture are selected from the best individ-
ual based on their fitness value and tested on the test
dataset to determine the model’s final performance.

5.2 Encoding Scheme

Designing an appropriate encoding process is a diffi-
cult task in any algorithm, as it determines how each
individual is represented as a CNN structure. To ad-
dress this, a standard layer-based encoding scheme is
proposed in this work. This adopts the widely popu-
lar VGG-16 CNN model design (Simonyan and Zis-
serman, 2014). The VGG-16 model is composed of
three types of layers - convolution, pooling, and fully
connected (FC) arranged sequentially. Each individ-
ual’s length is fixed with a total of 16 layers, follow-
ing VGG-16 model. The hyper-parameters for each
layer are determined based on pre-defined ranges for
the purpose of designing and training a CNN model.
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Figure 1: The working mechanism of the DE algorithm based hyper-parameters selection approach for the SCR task.

5.3 Population Initialization

The population in this context refers to the collec-
tion of individuals that are initially spread through-
out the search space. The population is denoted
as P, consists of N individuals represented as P =
{x1,x2,x3, ...,xN}. Every individual is regarded as a
CNN model architecture with a fixed length similar to
the VGG-16 model architecture. In addition, the cor-
responding hyper-parameters of the CNN model are
initialized randomly within a set of pre-defined ranges
defined in Table 1.

Table 1: Hyper-parameters and their ranges considered in
the proposed work.

Hyper-parameters Hyper-parameters range
Convolution filter size {3×3, 5×5}
Number of filters {16, 32, 64, 128, 256, 512}
Activation function {‘ReLU’, ‘SELU’, ‘ELU’}
Optimization function {‘SGD’, ‘Adam’, ‘Adagrad’,

‘Adamax’}
Drop-out rate {0.1, 0.2, 0.3, 0.4, 0.5}
Number of neurons {128, 256, 512}

A layer-based approach is used to configure the
hyper-parameter of each layer type, including convo-
lution filter size, number of filters, activation function,
optimizer, drop-out value and number of neurons in
FC layers. In this work, the hyper-parameters of the
pooling layer are considered as same as the VGG-16
model. Fig.2 shows an example of a genotype along
with its corresponding phenotype.

5.4 Fitness Evaluation

In the proposed method, each individual in the popu-
lation is evaluated based on their fitness. To calculate
the fitness, every individual in the population P trans-
forms itself into a CNN architecture and trains it with
the training dataset Dtrain. The trained model is then
evaluated on the validation dataset Dvalid using sparse
categorical cross-entropy (Dan et al., 2022) as the fit-
ness function due to its excellent performance in the
SCR tasks.

5.5 Mutation

In DE, a mutant or donor vector is obtained by ap-
plying different mutant operations to the original vec-
tor of the current generation. In this study, the
DE/rand/1 mutation scheme is used for simplicity
and greater diversity in the hyper-parameters of CNN
architecture at each generation. During the muta-
tion phase, as described in Eq. (1), a basic differ-
ence calculation is employed to compare the hyper-
parameters of the chosen CNN model. In the pro-
posed approach, two individuals (xr2 ̸= xr3 ) are se-
lected randomly from the population P which are dif-
ferent from the original vector xi. Then, the difference
(xr2 -xr3) is calculated based on the hyper-parameter
values for each layer of CNN. After performing the
difference calculation, the range of hyper-parameters
for each layer is checked by boundary checking to
ensure that they fall within specified limits. Next,
the proposed approach selects another random indi-
vidual, denoted as xr1 and performs the computation
with (xr2 -xr3) to generate a donor vector (also called

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

318



FS NOF ACT OPT DP NON
index index index index index index

(a) Genotype

INPUT OUTPUT

Convolution Layer Pooling Layer Fully-Connected Layer

FS NOF ACT OPT DP NON
index index index index index index

(b) Phenotype

Figure 2: An example of genotype with its phenotype. The acronym used in genotype is: FS (Convolution Filter Size),
NOF (Number of Filters), ACT (Activation function), OPT (Optimization function), DP (Drop-out rate), NON (Number of
Neurons).

a mutant vector) vi based on a scaling factor F . For
this purpose, a random number r[0,1] is generated for
each dimension of xr1 . If r ≤ F , the proposed method
chooses a layer from xr1 .

Otherwise, it selects a layer from (xr2 -xr3). Eq.
(3) specifies the mutation operation, where v j,i rep-
resents the jth dimension of the ith individual in the
population P.

v j,i =

{
x j,r1 i f r ≤ F
|x j,r2 -x j,r3 | Otherwise

(3)

Since we cannot calculate (xr2 -xr3) for activa-
tion functions, as there is no defined “difference” be-
tween them, we follow an encoding and rounding off
strategy, encoding the activation functions with inte-
gers and then performing rounding off and boundary
checking while decoding.

5.6 Crossover

To boost population diversity, a crossover operation
follows the mutation operation in DE, exchanging
components between the donor vector v j,i and target
vector x j,i to form a new trial vector ui. Binomial
crossover is employed, with the trial vector forma-
tion guided by crossover rate CR and a random num-
ber δ. We defines δ value randomly one of the jth

component of vi. Another random number jrand(0,1)
is assigned for each dimension ( j) of ui that has the
same length of vi. If the randomly generated number
jrand(0,1) is less than or equal to the crossover rate
CR, or if j is equal to δ, then the jth value from the
donor vector vi is selected. Otherwise, the jth value is
taken from the target vector xi.

The proposed crossover operation is mathemati-
cally represented in Eq. (4), where trial vector u j,i

represents the jth dimension of the ith individual for
the target vector xi.

u j,i =

{
v j,i if jrand (0,1)≤CR or j = δ

x j,i Otherwise (4)

5.7 Selection

The selection stage chooses either the target vector xi
or trial vector ui for the next generation based on their
fitness values f, ensuring a constant population size
across generations for stability. Each xi in the popu-
lation P is evaluated for its fitness, denoted as f (xi),
using the fitness function. Also, the fitness of gener-
ated ui is calculated using the same fitness function
as for each xi and represented as f (ui). For the sub-
sequent generation, i.e., (g+ 1), the individual with
higher fitness value is selected. Eq. (5) mathemati-
cally presents the proposed selection strategy used in
our proposed work.

xg+1
i =

{
ug

i i f f (xg
i )≤ f (ug

i )

xg
i Otherwise

(5)

A pseudocode implementation of the proposed
Differential Evolution Algorithm is as follows:

6 RESULTS AND DISCUSSION

The parameters setting of the proposed work is based
on the literature review of the conventional DE (Das
and Suganthan, 2011) and deep learning (DL) (Guo
et al., 2016) implementations along with our limited
computational resources. The population size and
maximum generation are fixed at 10 throughout the
proposed algorithm1. DE scaling factor is fixed at 0.6.
Furthermore, to train the generated CNN models, we
have used Xavier weight initialization (Chang et al.,
2020) with the learning rate 0.001 due to its effective
utilization in the domain of DL. To enhance the train-
ing speed, we have incorporated batch normalization
(BN) (Ioffe and Szegedy, 2015) with a batch size of
32, along with a 25% dropout rate. The fitness cal-
culation is conducted for each epoch throughout the
evaluation procedure. The final CNN model archi-

1Code implementation of the proposed work
is available at: https://github.com/Techie5879/
Hyperparameter-Optimization-CNN-Differential-Evolution
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Algorithm: Differential Evolution.

Input : Population Size N = 15, Dimension
D, Scale Factor F , Crossover
Probability CR, Termination
Criterion

Output: Best individual
1 Initialize the population with N random

individuals in the search space;
2 while Termination Criterion is not met do
3 for each individual xi in the population

do
4 Select three distinct individuals xr1 ,

xr2 , and xr3 from the population;
5 Generate a trial vector vi by mutating

xr1 , xr2 , and xr3 using the differential
weight F ;

vi = xr1 +F × (xr2 − xr3) (6)

6 Perform crossover between xi and vi
to produce a trial individual ui with
the crossover probability CR;

u j,i =

{
v j,i, if prand(0,1)≤CR
x j,i else

}
(7)

7 if the fitness of ui is better than the
fitness of xi then

8 Replace xi with ui in the
population;

9 end
10 end
11 end
12 return the best individual in the final

population;

tecture obtained from this proposed method is tested
using the test dataset to evaluate its performance.

In Fig.3, the generation wise performance for
the best networks of the proposed DE-based hyper-
parameters selection approach are shown. The best

Figure 3: Generation wise accuracy plot for the proposed
DE-based hyper-parameters selection approach.

networks for each generation indicate the best selec-
tion of hyper parameters belonging to the respective
CNN networks. As shown in Fig.3, the highest test
accuracy obtained is 0.915 (i.e. 91.5%) for the gener-
ation number 3. In Fig.4, the hyper-parameters for the
CNN model are presented for which the highest accu-
racy is obtained. The proposed approach is also com-

FS NOF ACT OPT DP NON
index index index index index index

Figure 4: Hyper-parameters of the best CNN model
(in terms of accuracy) obtained using DE-based hyper-
parameters selection approach.

pared with the GA-based hyper-parameter selection
approach. In GA based approach, each chromosome
is selected in each generation from the population size
15. The generation-wise accuracy plot for the GA-
based hyper-parameters selection approach is shown
in Fig.5. From Fig.5, it can be observed that the high-
est accuracy obtained is 0.877 (i.e. 87.7%) for the
generation number 10. In Fig.6, the hyper-parameters

Figure 5: Generation wise accuracy plot for the proposed
GA-based hyper-parameters selection approach.

for the CNN model are presented for which the high-
est accuracy is obtained. However, from both Fig.3
and Fig.5 it can be clearly observed that the perfor-
mance (in terms of accuracy) of the DE-based hyper-
parameter selection approach is better than the GA-
based hyper-parameter selection approach. The per-
formance of both DE and GA approaches are also
compared with ResNet-50, Inception-V3, Xception,
VGG-16, and VGG-19 models for the SCR task con-
sidering the test dataset.

Table 2 presents the average precision, recall, F1-
score, and test accuracy of all models considered,
highlighting the superior performance of the proposed
DE-based CNN model. While the ResNet-50 model
also performs significantly better than other consid-
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Figure 6: Hyper-parameters of the best CNN model
(in terms of accuracy) obtained using GA-based hyper-
parameters selection approach.

ered DCNN models, it is outshined by the proposed
model.

Table 2: Precision, Recall, F1-Score and Accuracy for all
the considered models (averaged over 10 runs).

Models Precision Recall F1-Sore Accuracy
ResNet-50 0.917 0.907 0.908 0.908

InceptionV3 0.892 0.887 0.884 0.886
Xception 0.804 0.802 0.802 0.808
VGG-16 0.828 0.820 0.819 0.823
VGG-19 0.798 0.789 0.789 0.795
GA-best 0.875 0.786 0.871 0.877
DE-best 0.916 0.914 0.913 0.915

However, from Table 2 it is clearly observed that
the accuracy of the CNN model obtained from the
proposed approach is higher than ResNet-50 model
for the SCR task. Fig.7 shows the confusion ma-
trix obtained from evaluating the model’s class wise
prediction accuracy for the DE approach on the test
dataset. From Fig.7, it can be concluded that the

Figure 7: Confusion matrix of the best model obtained from
the proposed approach.

CNN model obtained from the proposed approach has
shown significant performance (in terms of accuracy)
for all the considered classes.

The superior performance of the DE-optimized
CNN model is due to its effective exploration of the
search space, utilizing parameter vector differences
to exploit promising regions for optimal solutions,

unlike genetic algorithms that may converge to lo-
cal minima. The mutation operator prevents early
convergence through random perturbations, while the
crossover operator accelerates convergence by ex-
changing useful features. The selection operator pre-

Table 3: Precision, Recall, F1-Score and Accuracy for all
the considered GSC Dataset Speech Commands.

Commands Precision Recall F1-Sore
left 0.871 0.971 0.918

down 0.952 0.821 0.882
stop 0.942 0.928 0.935
up 0.970 0.857 0.910
yes 0.965 0.988 0.976

right 0.938 0.987 0.962
go 0.831 0.862 0.846
no 0.859 0.897 0.877

serves the fittest individuals, enhancing the quality of
solutions. Therefore, in Table 3 the class wise pre-
cision, recall, F1-score are also provided to show the
performance of the obtained CNN model for all the
considered speech commands of the GSC dataset.

7 CONCLUSION

This paper proposes an efficient Differential Evolu-
tion (DE)-based approach for selecting CNN hyper-
parameters automatically, aiming to enhance Speech
Command Recognition (SCR) tasks. Unlike tedious
manual selection, DE, a global optimization algo-
rithm, avoids local optima entrapments common in
Grid Search, promoting more efficient promoting
more efficient global optimum identification. Fur-
thermore, evolutionary algorithms like DE inherently
minimize user bias - when hyper-parameters are man-
ually selected, they are often influenced by an individ-
ual’s past experiences or preconceived notions, which
can skew the optimization process. The proposed
DE-based hyper-parameter selection approach out-
performed the GA-based approach and other consid-
ered DCNN models in SCR tasks. The improved per-
formance is attributed to DE’s superior search space
navigation and global maxima identification abilities.
Unlike GA, DE requires fewer control parameters and
has demonstrated robustness across various optimiza-
tion problems. Additionally, the proposed approach
surpassed other DCNN models. Future work may
extend this approach to evolutionary algorithm-based
speech feature selection for diverse speech-based ap-
plications.
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