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Abstract: Traditional process monitoring generally assumes that process data follow a Gaussian distribution with 
linear correlation. Nevertheless, this sort of restriction cannot be satisfied in reality since many industrial 
processes are nonlinear in nature. This work provides an enhanced multivariate statistical process 
monitoring technique based on the Stacked Sparse AutoEncoder and K-Nearest Neighbor (SSAE-KNN). 
This approach consists of developing a model by using Stacked Sparse AutoEncoder (SSAE) to get the 
residual space, which is the main tool in detecting and reconstructing the potential missing data by residual 
space. The monitoring statistics in this space are constructed using KNN rules; the threshold values for 
SSAE-KNN process monitoring are estimated utilizing the Kernel Density PDF Estimation (KDE) method, 
and an enhanced Sensor Validity Index (SVI) is proposed to detect faulty data based on the reconstruction 
approach. The experimental results using actual data from a photovoltaic power station connected at the site 
of OuedKebrit, located in north-eastern Algeria, reveal the effectiveness of the proposed scheme and show 
its capacity to detect and identify sensor failures. 
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1 INTRODUCTION 

Data mining can extract hidden and usable 
information from massive datasets, where possible 
correlations may be utilized for automated anomaly 
detection and associated issue root cause 
identification. In general, Statistical Process Control 
(SPC) charts enable the visualization of process 
development and the identification of abnormal 
changes (Qin S. J., 2012 and Yin S. et al, 2014). 
However, most standard SPC methods like PCA 
(Principal Components Analysis) work well only if 
the correlations are linear, which is a poor 
approximation of the real world. Deep learning is an 
unsupervised approach that can provide a better 
representation using a deep learning algorithm and 
has recently proved extremely effective in several 
fields (Hinton G. E. et al, 2006). As part of deep 
learning approaches, we present the Stacked Sparse 
AutoEncoder (SSAE) to reconstitute the input data 
(Xu J. et al 2016). The K-nearest neighbor rule is one 

of the population-based learning strategies, which 
uses the closest samples to classify objects in an n-
dimensional feature space. It is the simplest way of 
learning; the number of k defines how numerous 
nearest neighbors will be grouped for classification 
with the Euclidean distance metric commonly used 
to compute the distance between data points (Wang 
G. et al, 2015). The Squared Prediction Error (SPE) 
index is used to identify detection. It is developed by 
introducing the KNN rule and its associated control 
limits established by Kernel Density Estimation 
(KDE) (Odiowei P. E. et al, 2010). Additionally, the 
Sensor Validity Index (SVI) is proposed as a way of 
detecting faulty sensors. The findings reveal that, 
when compared to the contribution plot, the 
proposed technique is more effective at diagnosis the 
faulty sensor. In this paper discusses the application 
of a Stacked Sparse AutoEncoder (SSAE) that has 
been trained to recreate the input data acquired 
during normal operation. Then, using KNN, create 
monitoring statistics in the residual space of the 
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SSAE model. The paper is structured as follows: A 
brief overview of basic concepts is presented in 
Section 2. The recommended approaches for 
multimode process monitoring are shown in Section 
3. The validation of the methods is realized by 
experiments conducted in section 4, utilizing real 
data from solar power plants. The last section 
concentrates on a discussion of the results obtained 
and conclusions. 

2 METHODS USED 

2.1 Stacked Sparse AutoEncoder 

Deep Learning has recently demonstrated 
outstanding performance on a variety of tasks. It has 
been utilized in the past for visual analysis and 
picture identification, but not for process 
monitoring. Models of deep neural networks with a 
hidden layer called the bottleneck layer are used to 
extract features. To begin, the input data Xi = 1, 2, 
3,....N is translated as follows into a hidden layer 
represented by the function hi shown as follows: 

hi = f(xi) = sigm(W1x+b1) (1)

Where b1 and W1 are respectively the bias and the 
weight between the input part and the hidden layer 
and sigm(x) is a sigmoid function chosen to get more 
bounded and uniformly distributed embedding. In 
the decoding layer, hi is translated to the output 
represented by x. In this stage, we employ the 
activation function shown below: 

xi = g(hi) = sigm(W2h+b2) (2)

Where W2 and b2 are respectively the bias and the 
weight between the hidden layer and the output layer 
(x). The bottleneck network whose learning criteria 
contain a sparsity penalty in the bottleneck part is 
named Stacked Sparse AutoEncoder (SSAE) (Yin  J. 
et al, 2019). The aim of this network is to estimate its 
output (prediction of the input) as similarly as 
possible to its input, thus through optimizing the cost 
function described by: 

 (3)

Where λ and β are respectively the coefficient that 
establishes the weight decay and the sparsity penalty 
terms, m: is the number of the hidden nodes. 
Equation (3) consist of the reconstruction error, the 
regularization term and the last term is sparsity 
penalty, where KL(ρp̂j) is the Kullback-Leibler 
divergence, it is used to compute the difference 

between ρ and p̂i, those are the constraint utilized 
during learning. The back propagation algorithm is 
utilized to find the appropriate parameters W1, W2, 
b1, b2 and to minimize the cost function. 

2.2 K-Nearest Neighbor 

Firstly, the KNN rule is a supervised classification 
algorithm that is nonparametric. The goal of 
supervised classification is to predict the unknown 
sample of data using a set of labeled samples. The 
detection approach works on the assumption that a 
sample under control will take values in the 
neighborhood of the training data. Then, if a new 
sample deviates too much from the data under 
control, it considers out-of-control. A cumulative 
distance between new sample and its k closest 
neighbors included in the learning sample is 
computed to analyze the distance between each new 
sample and the data under control. Because the KNN 
rule is a nonlinear classifier, it could address many 
limitations such as process nonlinearity. 

Furthermore, since the FD-KNN technique finds 
flaws based on local neighbors of comparable 
batches, it is ideally suited for multimodal data sets 
in which batches may be divided into subgroups 
with distinct characteristics (Ren  Z. et al, 2021). 

2.3 Kernel Density Estimation 

KDE is a method for generating a smooth PDF 
(Probability Density Function) from a collection of 
random samples and fitting it to a data set. It’s often 
used to estimate PDFs, particularly for univariate 
random data. The KDE may be used with the Q and 
T2 statistics since they are both univariate, despite 
the fact that the process they describe is multivariate. 
The PDF g(y) of a random variable y may be 
estimated from its m samples, yj, j = 1,...,m, as 
follows: 

 
(4)

Where h is the bandwidth while K is a kernel 
function. The significance of bandwidth selection 
and strategies for achieving an optimal value are 
detailed in (Xiong L. et al, 2007). The probability is 
obtained by integrating the density function across 
a continuous range. Assuming the PDF g(y), the 
likelihood of y being smaller than c at a given 
significance level, a is given by: 

 
(5)
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As a result, the threshold of the monitoring statistics 
Q can be determined using their corresponding PDF 
estimates: 

 
(6)

2.4 Contribution Plot 

There are numerous approaches for fault isolation. 
Contribution plots may be used for this purpose 
(Bougheloum W. et al, 2019). This technique is often 
based on the contribution rate from each variable to 
determine which variable contributes the most to the 
Q statistic; the contribution of variable j is computed 
as follows: 

 
(7)

Where :       

2.5 Sensor Validity Index 

This method is based on the principle of 
reconstructing all the variables from the moment of 
detection by calculating the validity indexes of the 
sensors. The reconstructed measurement can be 
obtained iteratively, estimated, and re-estimated 
until convergence, as indicated in Figure 1. This is 
why, and similarly, in order to restructure the faulty 
data, it is essential to detect the fault in a unique. 

 
Figure 1: The schema of the reconstruction principal used. 

The method requires predicting the process 
measurement   by substituting the jth process variable 
with the predicted one and continuing the procedure 
until the algorithm converges as follows: 

 (8)

Where:  ,  
ϕT

j is the jth column of the identity matrix. 
The Sensor Validity Index (SVI) is a sensor 

effectiveness assessment in which, regardless of the 
number of principal components of the faults, a 
specified range should be present (Bouzenad K. et al., 
2017), it is defined as follows: 

 
(9)

SPEj is the jth quadratic prediction error calculated 
after reconstruction, while SPE is the quadratic 
global prediction error computed before 
reconstruction. A faulty sensor’s validity index must 
converge towards zero. 

3 FAULT DETECTION BASED ON 
SSAE-KNN 

The suggested technique is consisted of offline 
modelling and online monitoring. The specified 
stages are explained as follows: 

3.1 Offline Modeling 

Offline modeling steps’ include the following:  
1. Training data is collected and normalized under 

normal conditions. 
2. The model is trained using the SSAE cost 

function, deep nonlinear and dynamic features are 
extracted from the input data. 

3. The monitoring statistic is built using the 
extracted feature with the model’s reconstruction 
error. 

4. In the extracted feature, finding k nearest 
neighbors for input data x. 

5. Calculate the KNN squared for each sample. The 
KNN squared distance of sample i ( 𝐷ଶ ) is 
described as: 

 
(10)

Where 𝑑ଶ indicates the squared Euclidean distance 
between sample i to its jth closest neighbor. 
6. KDE establishes a 𝐷ଶ  threshold for fault 
detection. The threshold 𝐷ఈ  with a significance level 
α may be established because the distribution of 𝐷ଶ 
can be approximated by a noncentral chi-square 
distribution (Verdier G. et al., 2011). 

3.2 Online Monitoring 

The fault detection section for an incoming 
unclassified sample x has five steps: 
1. The samples used for the test is standardized. 

2. The dynamic enhanced data are transmitted into 
a well-trained SSAE, which calculates the 
residual feature and reconstruction error. 

3. Dଶ and SPE statistical quantities are calculated. 
4. The problem is detected using the threshold 
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determined in step 6. If the statistical quantity 
exceeds the threshold, the fault has occurred. 

5. Using the contribution plot and sensor validity 
index SVI to identify the faulty sensor. To 
provide a more intuitive picture, the flow chart of 
the proposed multimode process monitoring 
technique based on the Stacked Sparse 
AutoEncoder and K nearest neighbour scheme is 
summarized in Figure 2. 

4 CASE STUDY OF 
IMPLEMENTATION 

4.1 Process Description Used 

The case study is about the solar power plant of 
Oued Keberit, which is located near the city of 
Souk-Ahras in north-eastern Algeria; close the 
Tunisian border, shown in Figure 3. It is located in 
latitude 35°55’28” north and longitude 7°55’1” East 
(Toumi R. et al, 2019). The temperature varies 
between 22.9 and 26.3 degrees Celsius in the 
summer and as low as 10.2 degrees Celsius in the 
winter. This gives an ideal setting for solar energy 
project development. In our study, the model inputs 
consist of solar power plant parameters, the hidden 
layer that represents learned features, and the output 
layer with the same dimension of the input layer that 
represents reconstruction (Soualmia A. et al., 2016). 

 
Figure 2: Flow chart of proposed fault detection method. 

 
Figure 3: Photovoltaic Power Station of Oued Kebrit. 

To demonstrate the usefulness of the suggested 
technique, we examine data from the grid-connected 
photovoltaic solar plant at Oued Kebrit. This data 
includes the following parameters: Total Radiation, 
Temperature, Wind Speed, Humidity, and Pressure, 
we have a total of 05 parameters, indicating that we 
have five sensors monitoring the observations 
throughout a thirty-day period (2018). To develop 
the SSAE model, a data matrix X was constructed 
using N = 633 observations indicating the process 
normal functioning. The data in such a matrix are 
centered and scaled using the data means and 
standard deviations. For the monitoring model, a 
vector of measures comprised of the 05 variables 
described previously was selected. 

4.2 Simulations Results 

In this context, we will present the results of the 
suggested multimode process monitoring technique, 
which is primarily used to identify sensor problems. 
To show the monitoring method’s validity and the 
advantages of fault detection, we created a 
multimode monitoring model using a dataset from a 
 

 
Figure 4: Evolution of the SPE index in normal state. 
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solar power plant that had five variables and 633 
samples. Under normal conditions, both the standard 
technique based on SPE statistics and the SSAE-
KNN monitoring statistics suggest that all samples 
are contained within the relevant zones depicted in 
Figure 4-5. 

 
Figure 5: Evolution of the SPE index in faulty state. 

After discovering a fault, it is required to determine 
which sensor is faulty; this is accomplished using 
the contribution plot. The evolution of the 
contribution plots in the presence of a problem 
affecting the first sensor measuring total radiation 
and the fourth sensor measuring humidity is shown 
in Figure 8(a)-(b). The usual technique fails to 
identify the infected fourth sensor. Then, using the 
reconstruction approach, we used the enhanced 
sensor validity index (SVI). The fault localization of 
all faulty variables is depicted in Figure 9(a)-(b). 
Consequently, SVI based on reconstruction 
approaches of the offending variable measures is 
effectively used and gives better performance 
compared to the conventional approach. 

 
Figure 6: Evolution of the monitoring index based on 
KNN in normal state. 

 
Figure 7: Fault detection using SSAE-KNN. 

The proposed SSAE-KNN method gives better 
performance in fault detection, which appears 
clearly in false alarm detection in the validation and 
the test steps. 

 
(a) Evolution of Contribution plot of the 1st sensor. 

 
(b) Evolution of Contribution plot of the 4th sensor. 

Figure 8: Localization of fault based on Contribution plot. 
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(a) Evolution of Sensor validity index of the 1th sensor. 

 
(b) Evolution of Sensor validity index of the 4th sensor. 

Figure 9: Localization of fault based on Sensor Validity 
Index. 

5 CONCLUSIONS 

This work proposes a multimode process monitoring 
approach based on the Stacked Sparse AutoEncoder 
(SSAE) and K-Nearest Neighbour (KNN). The input 
data is rebuilt using SSAE, and monitoring statistics 
are generated using the KNN rule, with their related 
thresholds determined using Kernel Density 
Estimation (KDE). To detect malfunctioning 
sensors, an improved Sensor Validity Index (SVI) 
based on the reconstruction technique is proposed. 
The experimental findings from a solar power plant 
indicate the usefulness of the proposed system and 
its ability to detect and diagnose sensor failures. 
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