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Abstract: In this paper we study the simultaneous planning of the path and leg supports of an eight-legged robot on 
uneven terrain. We use the A-star algorithm (A*), which searches for the shortest path between two points. 
First, the terrain is modelled with a triangular mesh and the triangles are subdivided to take the centroids of 
these triangles as the search space of the A*. Secondly, with respect to the original A*, the stability of the 
robot at each centroid is considered, so that the cost at a centroid is penalised if the robot is unstable (i.e., the 
robot slips and/or tips over), or the cost is zero if it is stable. The stability at each contact point is determined 
by calculating that the ground reaction at that point is contained in a linear approximation of the friction cone. 
Finally, the path, the contact points of each leg, as well as the robot's posture at each position are obtained. 

1 INTRODUCTION 

This paper presents a solution for the path planning of 
an eight-legged modular robot in rough natural 
terrains consisting of different slopes. We determine 
the sequence of positions and orientations that the 
robot must visit in order to move from an initial point 
to a final point of the terrain, including the supports 
or footholds where the robot must place all feet for 
each position of the path, to guarantee stability, i.e., 
to prevent slipping and tipping over. 

For legged robots moving on horizontal planes 
with sufficient friction to prevent slippage, one of the 
most extended stability tests is based on the Zero 
Moment Point (ZMP) (Vukobratović and Borovac, 
2004), which is the point respect to which contact 
moments have no horizontal components. If the ZMP 
belongs to the convex hull of the support points, the 
robot will not tip over. 

For robots with legs supported on different planes, 
or when the ground cannot offer sufficient friction to 
neglect slippage, the ZMP test is insufficient and the 
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Contact Wrench Cone (CWC) (Hirukawa et al., 2006) 
should be studied instead. The CWC is based on the 
idea that, for each point of contact of the robot with 
the ground, there is a reaction force from the ground 
that should be inside a friction cone whose axis is 
normal to the ground and whose aperture depends on 
the coefficient of friction. For computational 
efficiency,  such friction cones are approximated by 
inscribed pyramids. The vectors 𝐟௜௝ along the lateral 
edges of these pyramids, together with their moments, 
constitute a set of 6-dimensional wrenches that, 
counted for all contact points of the robot, span the 6-
dimensional Contact Wrench Cone. If the net wrench 
acting on the robot due to inertia, gravity and external 
forces (excluding reactions from the ground) belongs 
to the CWC, the robot will not tip over or slip. 

The CWC has been widely used to plan the 
dynamically stable locomotion of legged robots, both 
bipedal humanoids (Dai y Tedrake, 2016; Navaneeth, 
Sudheer, and Joy, 2022) and quadrupedal (Aceituno-
Cabezas et al., 2017). Most papers depart from a 
precomputed set of footholds along the terrain, at 
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which the robot should support its legs during the 
trajectory, and then they focus on solving the 
trajectory of the center of mass to guarantee that 
gravito-inertial wrenches are in the CWC within some 
margin, while minimizing centroidal angular 
momentum. Recent papers such as (Aceituno-
Cabezas et al., 2018) or (Jenelten, Grandia, 
Farshidian, and Hutter, 2022) do not assume a 
precomputed set of footholds, which are planned at 
the same time that the global locomotion of the robot, 
solving mixed-integer convex optimization problems 
or using graduated optimization techniques. The 
simultaneous planning of the path of the robot and of 
the footholds yields more optimal and natural 
solutions. Other remarkable works that use the CWC 
are (Orsolino et al., 2018), where the CWC is 
intersected with a polytope that considers limits on 
actuation torques, or Ellenberg and Oh (2014), who 
use the CWC to analyze the stability of humanoids 
climbing ladders, taking into account limits on the 
contact wrenches that the environment can provide. 

Typically, the stability test based on the CWC is 
computationally demanding, considering that it 
requires many operations to first build a polytope that 
is the convex hull of dozens of 6-dimensional contact 
wrenches, and then check if the gravito-inertial 
wrenches acting on the robot belong to this polytope. 
Some papers have tried to reduce the cost of these 
operations to check stability while controlling the 
robot in real time. Li et al. (2022) present a simplified 
test that approximates the contact polygon by an 
effective segment, sacrificing accuracy for efficiency. 
Caro and Kheddar (2016) change checking the 6D 
polytope for checking if the centroidal acceleration 
belongs to a 3D volume. Finally, Caron, Pham and 
Nakamura (2017) project the CWC on a 2D polygon 
to which the ZMP should belong to guarantee 
stability, generalizing the notion of ZMP to situations 
with insufficient friction or non-coplanary contacts. 

In this paper, we present a solution for the 
simultaneous planning of the path and supports of a 
modular eight-legged robot described in Section 2, 
which should explore natural terrains consisting of 
planes with different orientations where slippage 
cannot be neglected. First, in Section 3, we describe 
the modeling of the terrain, which is approximated by 
a triangular mesh. Next, in Section 4, we present the 
stabilty test, which avoids building the 6-dimensional 
CWC and instead solves iteratively a quadratic and 
underdetermined system of equations using the 
Newton-Raphson method, performing the stability 
test roughly 10 times faster than by building the 
CWC. Section 5 proposes our algorithm to 
simultaneously plan the path and supports of the 

legged robot, which is based on the A-star (A*) 
algorithm, but incorporating instability as a penalty to 
the cost function (among other sub-costs). Then, 
Section 6 illustrates the developed algorithm by 
means of examples. These examples demonstrate the 
feasibility of the paths planned by the proposed 
algorithm, comparing the results obtained when 
considering stability or when ignoring it (in which 
case, the robot would fall down steep inclines). 
Finally, Section 7 summarizes the conclusions and 
suggests future lines of research, which will be 
mainly directed towards speeding up the proposed 
method, so that it can be used in real time. 

2 ROBOT DESCRIPTION 

This section describes the modular walking robot 
whose optimal path is planned in this paper, from an 
initial to a final position in a rugged natural 
environment, also determining the contact points on 
the ground. 

The robot presented in Figure 1 consists of two 
identical modules connected by a spherical or ball 
joint. The modules have a central body that can move 
and orient itself in the x, y, and z axes and four legs 
with three degrees of freedom each (q1, q2, q3) that 
allow it to move efficiently, where q1 provides the 
forward and backward movement of the leg, q2 allows 
the raising and lowering of the leg, and q3 facilitates 
the bending or stretching of the leg. Each module of 
the robot has eighteen degrees of freedom, giving it 
great freedom of movement for moving over rough 
terrain. 

 

Figure 1: Wireframe representation of the studied modular 
legged robot. 

3 TERRAIN MODELLING AND 
SUBDIVISION 

The planning of the robot's path and the determination 
of the points of contact with the environment are the 
objectives of this article. To this purpose, this section 
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describes the modelling and pre-processing of the 
terrain on which the robot moves, considering that all 
the robot's feet will be resting on the ground at each 
position of the planned path. 

The modelled terrain consists of several ramps 
with different inclinations surrounding the 
environment, requiring the robot to climb three ramps 
to reach the highest point. It is important to note that 
the initial terrain is defined by a triangular mesh in 
STL format. To achieve this, we first used 3D design 
software, specifically Autodesk Inventor, to create 
the CAD model of the terrain. Then, we exported the 
model in STL format, as this format is capable of 
representing solid objects by approximating their 
surface with triangles in a graphical manner. In real 
scenarios, a point cloud of the environment may be 
obtained using range sensors, and this point cloud 
may be used as the starting point to model the terrain 
in a similar way as described in this paper. 

To undertake the planning of the robot's path, it is 
necessary to start with a point cloud to identify the 
nodes or points that will be part of the optimal path 
from the initial to the final position. Since the terrain 
is composed of triangles, the centroids of these 
triangles are used as search points for the path. In 
order to obtain a denser mesh of nodes and to achieve 
a more accurate and realistic planning, a recursive 
subdivision of the terrain is performed, dividing the 
triangles into smaller ones. This subdivision process 
continues until each triangle is circumscribed within 
a circle of radius less than 0.2 m. 

The subdivision method implemented consists in 
dividing each triangle by connecting the centres of its 
sides, which generates four new triangles. However, 
this method requires multiple subdivisions to get the 
most elongated or flattened triangles to be 
circumscribed within a circle of radius R, as shown in 
Figure 2b. In our case, the flattened triangles are in an 
area of the terrain that the robot will not traverse, 
therefore, this does not affect the path planning. 
However, to obtain a more equiaxial subdivision of 
the triangles which form the terrain, an alternative 
method could be considered. This procedure would 
consist in dividing the longest side of the triangle into 
N segments, using a value of 10 for N, and then 
joining these segments with the opposite vertex.  

Figure 2 below illustrates both the original terrain 
and the subdivided terrain. 

One of the objectives of the article is to identify 
the location of the robot's footholds on the subdivided 
terrain. To achieve this, the triangle of the terrain 
closest to each foot of the robot is found and a 
projection of the foot onto this triangle is made. This 
process is repeated for each of the robot's legs. 

 

 

Figure 2: a) Original terrain. b) Subdivided terrain.  

Initially, a brute force search was used to find the 
closest triangle by checking all triangles in the 
environment. However, this approach proved 
computationally expensive. To improve the search 
process, we decide to examine only triangles that are 
within a short distance of the robot's shoulder. To do 
this, a k-d tree is created using the centroids of the 
subdivided triangles that make up the terrain. 
Through this k-d tree, the centroids that lie within a 
sphere centred at the shoulder of the leg, with a radius 
of r*1.5, are determined. In this case, r has a value of 
0.2, corresponding to the total length of the robot leg 
when fully extended. 

Once the triangle closest to the foot of each leg 
has been identified, the projection of each foot on the 
closest triangle is calculated. This ensures that the 
robot, in each position, has all its legs correctly 
supported on the ground, which makes it possible to 
analyse its stability, as described in the next section. 

4 STABILITY ANALYSIS 

Stability plays a crucial role in the robot's path 
planning, since if it moves along an unstable path, it 
could face tipping or slipping situations, 
compromising both its safety and accuracy in task 
execution. 

In order to guarantee the stability of the robot, it 
is essential to carry out an analysis of the support 
points. The Zero Moment Point (ZMP) is the point at 
which the reaction forces produced at the robot's 
contacts with the ground do not generate any moment 
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in the horizontal direction. In planar horizontal 
grounds with sufficient friction, the ZMP must be 
within the convex hull of the robot's contact points 
with the ground for the robot to be in a stable position. 
However, this analysis becomes more complex for 
robots with multiple non-coplanar contacts, or when 
friction is not sufficiently high to neglect slippage. In 
this context, Hirukawa et al. (2006) proposed a more 
general stability criterion based on the Contact 
Wrench Cone (CWC), which addresses this issue by 
considering the friction constraints between the 
contact points and the ground. 

In this method, the stability of a contact point Ci 
is evaluated by the contact force fi, which is the vector 
sum of the normal reaction along the normal ni at the 
contact point, and the friction force tangent to the 
ground, ffriction. For a contact point to be considered 
stable, the contact force is required to be within the 
friction cone, defined as: 

‖𝐧௜ ൈ  𝐟௜ ൈ 𝐧௜ ‖ଶ ൑  𝜇௜ሺ 𝐟௜ ൉ 𝐧௜ ሻ (1)

where 𝜇௜ is the coefficient of friction. 
In numerous articles, such as (Caron et al. 2017), 

a linear approximation of the friction cone is used due 
to its better computational efficiency in terms of 
computational speed and processing. This 
approximation consists in approximating the cone by 
an inner pyramid whose lateral edges are denoted by 
fij, as shown in Figure 3. To ensure the stability of the 
robot, condition (2) must be fulfilled, which involves 
the fij vectors and their moments, considering the 
position of Ci in relation to the global coordinate 
system, defined as pCi.  

         ൤
𝐟

𝛕ை
൨ ൌ ෍ 𝜆௜௝

௜௝

ቈ
𝐟௜௝

𝐩஼೔
ൈ 𝐟௜௝

቉     𝜆௜௝ ൒ 0  (2)

where the subscript i iterates over the contact points 
(i = 1 … 8 for the legged robot described in Section 
2) and j iterates over the edges used in the 
approximation of the friction cones by pyramids. 

Equation (2) establishes that the resultant of the 
external forces 𝐟  and moments 𝛕ை  (due to gravity, 
inertia, etc.) that could cause the robot to tip over or 
slip, must be a linear combination of the vectors fij 
and their moments, multiplied by non-negative 
coefficients 𝜆௜௝. This ensures the stability of the robot 
by guaranteeing that the fi reactions are within the 
friction pyramid. In this article, 10 fij vectors have 
been used to approximate the friction cone at each 
contact point, although for simplicity only 6 edges are 
represented in Figure 3. 

 

Figure 3: Stable Contact Ci. 

Typically, the stability test consists in building the 
6-dimensional CWC cone represented by the right-
hand side of (2), and checking if the left-hand side of 
(2), i.e., the 6-dimensional vector [𝐟 ; 𝛕ை], belongs to 
this CWC, in which case the robot is stable. However, 
building the CWC is a costly operation, and in this 
paper we will use a simpler method to check if (2) 
admits a solution consisting of non-negative 𝜆௜௝ for a 
given wrench [𝐟 ; 𝛕ை], as explained next. 

The stability test employed in this paper begins by 
transforming the inequality constraints of (2) into 
equivalent equalities, by defining a new auxiliary 
variable 𝑡௜௝  for each 𝜆௜௝ , and then replacing each 
inequality 𝜆௜௝ ൒ 0  by its equivalent quadratic 
equation: 

𝜆௜௝ ൌ 𝑡௜௝
ଶ     (3)

After this, (2) becomes a quadratic system of six 
equations with many more than six unknowns 𝜆௜௝ and 
𝑡௜௝ (e.g., if each friction cone is approximated by a 10-
sided pyramid, and having eight contact points, we 
have 80 ൈ 2 unknowns 𝜆௜௝  and 𝑡௜௝ ). This 
underdetermined system is solved by the iterative 
Newton-Raphson method, using the pseudoinverse of 
the Jacobian matrix that gives the least norm solution.  

If we make several attempts (e.g., 10) to obtain a 
converging solution using the Newton-Raphson 
method as explained above, where each attempt starts 
from a different random value of 𝜆௜௝ and 𝑡௜௝, and all 
attempts fail to converge after a reasonable number of 
iterations, then we conclude that the robot is unstable, 
as it is impossible to find non-negative 𝜆௜௝ that satisfy 
(2) for the given left-hand side [𝐟 ; 𝛕ை]. Otherwise, if 
at least one attempt converges to a solution, then we 
conclude that the robot is stable. 

By running several examples where stability was 
tested using the described Newton-Raphson method 
or the typical method that requires building the 6-
dimensional CWC, we checked that both methods 
always gave the same verdict of stability, but the 
Newton-Raphson method performed roughly 10 
times faster, and it was easier to implement. This 
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higher speed is advantageous if the stability test must 
be repeatedly performed many times, as it will be 
required in the path-planning algorithm described in 
the next Section. Therefore, in the following, we will 
test stability using the Newton-Raphson method 
described above.  

5 PLANNING THE PATH AND 
CONTACT POINTS 

The aim of this paper is to perform simultaneous 
planning of the path and locations of footholds of the 
multi-legged robot introduced in Section 2. To 
achieve this, we implement the A-star search 
algorithm (A*), which searches for the path with the 
lowest cost from an initial position to a final position. 
We use the A* algorithm to find a sequence of 
waypoints of the terrain at which the robot can be 
positioned and oriented stably without suffering 
tipping over or slipping, with all its eight feet 
supported on the terrain. We do not solve, however, 
the sequence of movements that the robot needs to 
execute to move from one waypoint to the next one, 
i.e., lifting and swinging each leg to move the robot 
while other legs rest on the terrain. This latter 
problem is left for future work. 

In our approach, we start from a terrain 
subdivided into triangles, whose known centroids 
form a grid of points that serves as the search space 
for the algorithm. Using these points, a k-d tree is 
constructed and used at the beginning of the 
algorithm to find the initial and final nodes closest to 
the desired initial and final positions provided by the 
user or high-level path planner. In addition, while the 
algorithm executes the steps described later, the same 
k-d tree is also used to find the n nearest neighbour 
nodes to the current node, where in this example, n is 
equal to 10. The use of k-d trees allows us to make 
these searches more efficiently compared to an 
exhaustive brute-force search. 

In this paper, in order to obtain the optimal route, 
the A* algorithm is used to carry out an exploration 
along all the centroids (nodes) of the triangles 
representing the terrain. A variant of the conventional 
A* algorithm is used, where the distances or costs 
associated with each node are modified, taking into 
consideration both the stability of the robot and the 
similarity between the configurations or postures 
adopted by the robot between neighbour nodes. The 
algorithm implemented in this article can be 
summarised in the following steps: 

1) The algorithm explores all the nodes that are 
part of the terrain map, starting with the initial 
node and prioritising the search among those 
nodes with the lowest cost 𝑓 (the definition of 
cost 𝑓 will be provided later). 

2) After that, the 10 nearest neighbour nodes to 
the current node are determined (initially, the 
current node is the initial node). 

3) The costs 𝑓 and 𝑔 are obtained for each of the 
neighbouring nodes that have not been 
previously evaluated or explored. 

𝑔 ሺ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ሻ ൌ 𝑔ሺ𝑐𝑢𝑟𝑟𝑒𝑛𝑡ሻ ൅ 𝑑 ൅ 𝑞 ൅ 𝑒 

𝑓ሺ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ሻ ൌ 𝑔ሺ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ሻ ൅ ℎ 
(4)

where: 
- 𝑔ሺ𝑥ሻ represents the real cost of reaching node 

“𝑥” from the initial node. 
-  𝑓ሺ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ሻ is an estimate of the total cost of 

going to the destination node from the initial node, 
passing through the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  node. This cost is 
calculated using a distance heuristic ℎ that must not 
overestimate the actual distance. In this case, for 
simplicity, the straight-line distance between the 
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 and the destination is used as the heuristic 
ℎ. 

- 𝑑  is the actual distance between the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
node and the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟. 

- 𝑞  represents the difference between the 
configurations adopted by the robot when resting at 
the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  node and at the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  node. The 
difference in positions and orientations of the robot's 
modules, as well as the joint angles rotated by its legs, 
between the posture at the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node and at the 
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  node is considered. The objective is to 
minimise 𝑞 to try to achieve continuity in the postures 
adopted by the robot along the various nodes it travels 
during the path. 

- 𝑒 is a penalty for lack of stability. By applying 
the method described in Section 4, the stability of the 
robot when placed on the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  node is 
evaluated. In situations where instability is identified, 
a significantly high value is assigned to 𝑒 as a penalty, 
so that the A* algorithm will discard that node as part 
of the potential path to the destination node. In 
contrast, if the robot is stable, 𝑒 is set to 0. 

It is important to consider that 𝑞  and 𝑒  are 
dependent on the orientation adopted by the robot 
when it is positioned over the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 node. To 
tackle this, four orientations separated by 45 degrees 
are explored, as it will be explained later. The 
orientation that yields the lowest value for the sum of 
𝑞 and 𝑒 is selected. 

The next subsection details the process of 
"building" the robot's posture as it is placed over each 
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𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 node. This is done in order to evaluate all 
the previously mentioned costs. 

5.1 Building the Posture of the Robot 
at Each Node 

To calculate the different costs involved in (4), the 
robot must be placed at a given position with all eight 
feet resting on the ground. This requires defining the 
footholds for all feet, the position and orientation of 
the central body of each of the two modules that 
integrate the robot, and the joint angles of every leg. 
This subsection will describe the calculations that 
allow us to define a reasonable and feasible posture 
of the robot when placed over each node visited by 
the A* algorithm. This feasible posture will be 
obtained by first building a tentative posture, and later 
refining it using Newton-Raphson iterations, to 
guarantee that all feet of the robot rest on the ground.  

First, the spherical or ball joint connecting the two 
robot modules, called C, is placed at a distance a from 
the node or centroid of the triangle being evaluated, 
along the direction normal n to the triangle. Then, a 
principal axis called ep is defined, which is taken as 
any vector perpendicular to the normal n. This vector 
ep represents the main axis of the robot, i.e., the axis 
along which both bodies depicted in Figure 1 would 
be aligned if the robot adopted a posture so symmetric 
and “straight” as that shown in Figure 1. Evidently, 
since the terrain over which the robot moves is not 
flat, the final posture adopted by the robot at each 
node (this final posture will be constructed in the 
following paragraphs of this section) will not be so 
symmetric and straight as in Figure 1, but it will still 
be somewhat oriented in the direction of ep. 

After aligning the bodies with the principal axis 
ep, the coordinate frames of each body, which define 
the orientation of each body, are calculated as shown 
in Figure 4. To this end, the bodies are arranged 
perpendicular to the normal nbi of the triangle located 
directly below the centre of each body i. The normal 
of the body corresponds to the z-axis, while the x-axis 
is defined as the normalized projection of the 
principal axis ep on the plane of the body. Finally, the 
y-axis is obtained by the cross product of the z-axis 
and the x-axis. 

In addition, the centres of the bodies are 
determined as the intersection between each of the x-
axes of the bodies (regarded as infinite lines passing 
through the spherical joint C) and a sphere of radius 
𝑅, centred at C, as illustrated in Figure 5. 

The intersection points between the sphere and the 
x-axes gives: 

 

𝑥௕௜ ൌ 𝑥௢ ൅ 𝑅 ൉ 𝑥ଵ,௕௜ 
𝑦௕௜ ൌ 𝑦௢ ൅ 𝑅 ൉ 𝑥ଶ,௕௜ 
𝑧௕௜ ൌ 𝑧௢ ൅ 𝑅 ൉ 𝑥ଷ,௕௜ 

(5)

 

where 𝑅 ൌ 𝑙 ൅ 𝐿௖/2 is the sum of the length 𝑙 of the 
little segment that joins each body to the spherical 
joint C, and LC is the length of each body along its x-
axis. On the other hand, xo, yo and zo correspond to 
position of joint C, while the coordinates 𝑥௕௜, 𝑦௕௜, 𝑧௕௜ 
represent the centre of body i. 𝑥ଵ,௕௜ , 𝑥ଶ,௕௜ , and 𝑥ଷ,௕௜ 
are the components of the unit vector of the x-axis of 
each body i. 

 

Figure 4: Central bodies of the robot without legs in the ep 
direction. 

 

Figure 5: Intersection of the sphere centred at C with the x-
axis of each body. 

After defining the position and orientation of each 
body, the four legs are added to each body. Initially, 
these legs are added forming exactly a right angle 
with respect to the body, similar to the legs of the 
yellow body shown in Figure 6. Note that, if the 
terrain under the bodies of the robot is not flat for the 
node that is being evaluated, in general, some of the 
feet may not be in contact with the terrain after 
placing the legs at right angles as indicated here. 
Indeed, if the terrain below the body is concave, some 
legs may penetrate under the terrain, and if the terrain 
is convex, some feet may be in the air above the 
terrain, not touching it. However, this is not a problem 
because the final posture of the robot will be corrected 
using the Newton-Raphson method as explained later, 
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so that it correctly rests on the terrain, with all feet in 
contact with the ground. 

The penultimate operation to build the tentative 
posture of the robot when placed over each node 
consists in finding the points of contact where each 
foot should be placed (as said in the previous 
paragraph, some feet may be under the terrain if it is 
concave, or over it if it is convex). This is done by 
finding the projection of each foot on the closest 
triangle of the terrain, as explained at the end of 
Section 3. These projections are the footholds where 
each foot should be placed. 

Finally, the last operation to complete the 
calculation of the posture of the robot when placed 
over each node of the terrain, consists in defining a 
set of loop-closure equations that represent the 
following constraints: each foot of the robot should 
be placed at the corresponding closest foothold, and 
both bodies should be joined by the spherical joint C. 
These constraints define a system of nonlinear 
equations whose unknows are the position and 
orientation coordinates of each body, as well as the 
joint angles (q1, q2, q3) of each leg (recall these joint 
angles in Figure 1). This nonlinear system is solved 
using the Newton-Raphson method, starting the 
iterations from the tentative posture built by 
following all the operations described in this 
subsection 5.1. The result of these iterations is a 
realistic and feasible posture of the robot with both 
bodies joined at C and all feet resting on the ground, 
as illustrated in Figure 6. This feasible posture will be 
similar to the tentative posture which is used as the 
seed of the Newton-Raphson iterations. 

 

Figure 6: The robot with all its legs resting on the ground. 

Once the robot adopts a feasible posture on the 
ground, its stability is tested using the method 
described in Section 4, obtaining the sub-cost 𝑒 used 
in (4). The difference between this posture at the 
current node and that at its neighbour is also 
calculated, to obtain the value of the sub-cost 𝑞 used 

also in (4). All calculations described in this 
subsection 5.1 are repeated three more times, but each 
time rotating the main axis ep about n by 45º with 
respect to the previous time, so that different postures 
of the robot are tested to roughly cover all possible 
orientations about axis n, finally retaining the posture 
that gives a smaller value of 𝑒 ൅ 𝑞. This is added to 
the sub-costs 𝑑  and ℎ  of (4), to complete the 
calculation of the cost at each node, making it 
possible for the A* algorithm to determine the 
shortest route to move from a starting point to an end 
point. 

After executing the A* algorithm, it returns the 
centroids of the subdivided triangles of the terrain that 
form part of the optimal path, the information of the 
posture of the robot at each node of the optimal path 
(orientations and positions of the central bodies and 
joint angles of the legs), and the support points for all 
legs, at each node. This will be illustrated with some 
examples in the next section. 

6 RESULTS 

The evaluation of the effectiveness of the algorithm 
A* for calculating the path and the determination of 
the robot positions and contact points has been carried 
out in this Section 6. For this purpose, two examples 
have been studied, which are significant and 
representative for the method because they require the 
robot to climb or descend an irregular terrain with 
several slopes. For each example, an initial and a final 
position have been defined, and the resulting paths 
have been compared, considering or ignoring the 
influence of the stability of the robot in each position 
until the target position is reached. In the study, a 
friction coefficient of 0.4 has been considered. 

In the first study, the robot must ascend the first 
ramp and reach an intermediate position on the 
second ramp (PA [0, 0.75, -0.2]), starting from an 
initial position in the lowest part of the terrain (PO [0, 
0, -0.5]). To evaluate the optimal path from PO to PA 
without taking stability into account, Figure 7a, the 
A* algorithm takes 135 seconds to find the path (this 
algorithm was implemented in Matlab 2015a on 
Windows, and it was run on an Intel(R) Core(TM) i7-
8750H CPU @ 2.20 GHz processor with 16 GB 
RAM). The red dots in Figure 7 represent the 
centroids of the triangles forming part of the optimal 
path where the projection of the centre of the robot's 
bodies, C, would be placed and the robot's position 
would be constructed as explained in section 5.1. The 
path obtained (Figure 7a) shows how the robot goes 
straight up to PA on the steep part of the second ramp, 
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where we should expect that the robot would lose 
stability and tip over or slip, as the next simulation 
confirms.  

On the other hand, when stability is taken into 
account for optimal path finding, Figure 7b, the robot 
goes up the ramps that have an inclination that does 
not compromise its stability, even though this implies 
a longer path. In that case, the algorithm requires a 
response time of 544 seconds to find the optimal path. 
However, this path ensures that the robot is stable 
throughout the entire route, avoiding possible tipping 
or slipping problems. 

 

Figure 7: a) Optimal path of the robot from PO to PA without 
stability (red dots). b) With stability. 

Furthermore, the A* algorithm simultaneously 
provides the robot's positions and the contact points 
at each node of the obtained path. Figure 8 shows 
some of the robot positions along the path shown in 
Figure 7b, considering the stability and orientation of 
the robot. 

 
Figure 8: Positions and contacts of the robot in the path to 
PA. 

In the second example studied, the optimal path is 
calculated for the robot to descend from the highest 
point of the terrain PB [-1, -0.4, 0.2] to the point PO, 
Figure 9. Note that this example requires the robot to 
traverse most of the terrain and, therefore, it includes 
other example paths in which the robot may need to 
travel between intermediate points of the terrain. 

On the one hand, similar to the previous example, 
the robot path is calculated using the A* algorithm 
without taking stability into account, Figure 9a. In 
this case, the algorithm takes 247 seconds to 
determine the path with the lowest cost, which is the 

one that goes straight to PO down the ramp with a 
steep slope where the robot would evidently not be 
stable and would tip over.  

On the other hand, when considering the stability 
of the robot in the path calculation (Figure 9b), the 
response time of the algorithm increases significantly, 
reaching approximately 1 hour and 9 minutes. This is 
because the robot must avoid going straight down the 
steep ramp to maintain its stability. Instead, it needs 
to travel a longer path, involving more nodes, to reach 
the end point safely. 

 

Figure 9: a) Optimal path of the robot from PB to PO without 
stability (red dots). b) With stability. 

Figure 10 shows some of the robot positions 
(postures and contact points) going through the 
optimal robot path obtained by algorithm A* to reach 
PO from the position PB, ignoring robot stability, 
Figure 10a, and considering stability, Figure 10b. 

 

Figure 10: a) Positions and contacts of the robot in the path 
to PO without stability. b) With stability. 

The algorithm was run again to plan a path from 
PO to PB, i.e. to climb the terrain instead of descend 
it, and it took 1hour and 42 minutes, which is about 
30 minutes more than the time taken to compute the 
descending path. More simulations were run between 
initial and final points near PO and PB, and in all of 
them we observed that the time to find an ascending 
path was slightly higher than to find a descending 
one. This can be explained by the fact that, when 
starting up, many of the nodes of the terrain belong to 
steep slopes at which the robot is unstable, so the 
search is more directed than when starting down, 
where the nodes yield stable postures and there are 
more options to explore. 
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7 CONCLUSIONS 

This paper describes a method for path planning of 
multi-legged robots in irregular environments. To 
tackle this challenge, a method has been proposed that 
starts with the creation of a triangular mesh to define 
the contact points of the legs and establish a mesh of 
nodes for path planning. After this, the A* algorithm 
has been used to find the optimal path from an initial 
position to the target position, ensuring that the robot 
maintains stability along the path and adopts realistic 
and coherent configurations. 

This method has also made it possible to identify, 
at each point in the path, the robot's contact points and 
postures, providing a representation of its positions in 
the environment. 

However, considering that the robot will need to 
plan the next path while it executes the current one, it 
will be crucial to improve the search times of the 
current algorithm. In this context, a promising 
strategy to increase efficiency is to explore the use of 
Rapidly Exploring Random Trees (RRT) instead of 
the A* algorithm. Although the A* algorithm is 
capable of finding the absolute optimal path, its high 
computational cost limits it in applications requiring 
real-time computations. On the other hand, the RRT 
algorithm offers faster search times, although the 
solutions found may be sub-optimal compared to the 
exhaustive approach of the A* algorithm. 

As another future line of research, it will be 
necessary to address the planning of the movements 
between successive postures, i.e.: for every two 
neighbouring postures of the optimal path obtained by 
the algorithm, it will be necessary to determine a 
sequence of movements to transform one posture into 
another (sequence of raising and swinging legs, etc.), 
while keeping stability. 
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