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This paper contains a machine-learning-based approach to detect duplicities in ontologies. Ontologies are
formal specifications of shared conceptualizations of application domains. Merging and enhancing ontologies
may cause the introduction of duplicities into them. The approach to duplicities proposed in this work presents
a solution that does not need manual corrections by domain experts. Source texts consist of short textual
descriptions from considered ontologies, which have been extracted and automatically paraphrased to receive
pairs of sentences with the same or a very close meaning. The sentences in the received dataset have been
embedded into Euclidean vector space. The classification task was to determine whether a given pair of
sentence embeddings is semantically equivalent or different. The results have been tested using test sets
generated by paraphrases as well as on a small real-world ontology. We also compared solutions by the most
similar existing approach, based on GloVe and WordNet, with solutions by our approach. According to all
considered metrics, our approach yielded better results than the compared approach. From the results of both
experiments, the most suitable for the detection of duplicities in ontologies is the combination of BERT with
support vector machines. Finally, we performed an ablation study to validate whether all paraphrasers used to

create the training set for the classification were essential.

1 INTRODUCTION

Increasing use of domain ontologies has led to at-
tempts to construct, extend, or integrate them auto-
matically or semi-automatically, to alleviate the need
for the manual effort of domain experts. During the
last decade, artificial neural networks (ANNs) have
been often used to this end, though nearly always in
simple data-driven methods based on empirical map-
pings. Only recently, several applications of ANNs
to ontologies included knowledge modeling, making
use, for example, of neural machine translation or em-
beddings obtained with representation learning meth-
ods.

This paper is devoted to a specific problem en-
countered during enhancing ontologies and some-
times during their merging: to decide whether a par-
ticular concept is already contained in the existing on-
tology. Our solution to the problem relies primarily
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on transformers, a kind of ANNs developed primar-
ily for the transformation of natural language texts.
The next section describes this problem in more de-
tail. Section 3 outlines our proposed methodology.
Related works are briefly described in Section 4. Sec-
tion 5 deals with experimental validation and is di-
vided into four parts. The first subsection describes
our experimental setup. The second one compares all
considered variants of our approach with respect to
four quality measures. In the third subsection, they
are compared on a dataset created from relevant real-
world ontologies with a similar existing approach. Fi-
nally, the last one is an ablation study for the em-
ployed set of paraphrasers.

2 PROBLEM DESCRIPTION

Automated ontology construction and ontology map-
ping is a complex process, which consists of many
steps. An important step is the merging of the seman-
tic content expressed in an ontology by RDF triples.
A triple consists of three components: a subject, a
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predicate, and an object. These triples may be auto-
matically extracted from scientific texts and enhanced
by descriptions of content. However, the set of ex-
tracted triples may contain many semantic duplicities,
thus merging them into an ontology causes duplicities
in the resulting ontology.

Detecting semantic duplicity manually may be
prohibitive for domain experts because the ontology
may contain too many nodes, relations and descrip-
tions to detect all semantic duplicities manually. Our
objective is, therefore, to detect duplicities in ontolo-
gies automatically.

3 PROPOSED METHODOLOGY

The methodology we suggest does not need a dataset
in which semantic duplicities are marked by domain
experts. It only needs an existing ontology that does
not contain semantic duplicities, and has a sufficient
number of nodes, typically more than a few thousand.
Our methodology extracts content from such an exist-
ing ontology, in particular names and descriptions of
the nodes and relations among them.

From the extracted names and descriptions of the
nodes and relations in a given ontology, a dataset is
prepared that contains for each description a few de-
scriptions with the same meaning. To avoid the neces-
sity to mark such pairs of strings manually by domain
experts, our methodology makes use of paraphrasers,
which are able to create a different sentence with the
same or a very close meaning.

The results from the paraphrasers have been used
to create a 3-column dataset containing: text A, text
B, and a similarity mark. If text A and text B in
one row are 2 different paraphrases of the same orig-
inal text, their similarity is marked as true. Conse-
quently, each such row contains semantically equiva-
lent texts. The same number of pairs have been ran-
domly selected from different node descriptions or
paraphrases, so the similarity of those other pairs is
marked as false. It means the texts in each such row
are semantically different. The dataset is balanced be-
cause we have the same amount of pairs with the same
and with different meanings.

BERT (Bidirectional Encoder Representations
from Transformers), which is a kind of artificial neu-
ral network known as a transformer, is widely used
for representation learning. Its ability, in comparison
to more traditional text representation learning meth-
ods, is to embed whole parts of the text, thus to in-
clude also the context of each word. This makes it
possible to achieve top results in text classification
(Devlin et al., 2019). It has impressive transfer learn-
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ing capabilities (Lu et al., 2021), which can be useful
for fine-tuning the model for tasks that fall outside
the data with which it was trained originally. Due to
BERT’s complexity, a pre-trained version is usually
used, which can be fine-tuned using texts relevant to
the topic of interest. For classification, we have de-
cided to use embeddings of the whole class descrip-
tion. The paraphrases of descriptions from the on-
tology were embedded into a Euclidean space by the
transformer as well.

Finally, the task of the classifiers is to decide,
which textual pair has the same meaning and which
has a different meaning. The embeddings of the above
described pairs of texts serve as training data for train-
ing the classifiers, thus the trained classifiers are able
to recognize if a given pair of embedded texts have
the same or different meanings.

4 RELATED WORKS

The closest approach we are aware of is the model
UTtoKB (Salim and Mustafa, 2021). Similarly to
our approach, it relies on representation learning and
searches for coreferences in connection with ontolo-
gies. However, representation learning is performed
with WordNet and GLoVe, i.e. with simpler and more
traditional methods than BERT, and the search is per-
formed not directly in an ontology, but in texts in-
terpreted by means of it. The ontology is combined
with representation learning, semantic role labeling,
and the resource description framework, to find se-
mantic similarities in the texts.

In our opinion, UTtoKB is the only approach that
is so close to ours that it makes sense to experimen-
tally compare them. Still, we recall also several oth-
ers that are somehow related. All of them are similar
to UTtoKB in dealing with coreferences in texts, and
not with coreferences in an ontology as our approach
does. The only one that also uses representation learn-
ing, actually also BERT, is (Trieu et al., 2019). Dif-
ferent to our approach and to UTtoKB, however, it
focuses on syntactic aspects of mentions. What is in
their approach learned, is a syntactic parsing model.

The other approaches are not representation-
learning-based. The system presented in (Chen et al.,
2011) performs coreference resolution in two steps.
At first, all mentions in the text are detected by means
of classification using a maximum entropy classifier,
or alternatively a classification tree or a support vec-
tor machine. Then, those mentions are clustered into
coreference chains. In (Lee et al., 2018), span rank-
ing is combined with searching maximum-likelihood
span pairs. Their approach is based on coarse-to-fine
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inference: in each iteration, it uses the antecedent
distribution to infer later coreference decisions using
earlier coreference decisions. Similarly to UTtoKB,
ontologies are in search for coreferences used to in-
terpret texts also in (Garanina et al., 2018). That
is a multiagent approach, in which for each ontol-
ogy class, there is a specific agent performing a rule-
based check whether a given information object is
consistent with that class. Finally, the Tree Coref-
erence Resolver (Novak, 2017) operates on the tec-
togrammatical layers, which allows a deeper syntax
representation of the text than all previously men-
tioned approaches. However, this representation is
advantageous primarily for pronoun and zero corefer-
ences, whereas duplicities in ontologies rely on nom-
inal groups.

S EXPERIMENTAL VALIDATION

The ontologies used in our experiments come from a
chemical domain, namely from catalysis. The con-
sidered ontologies for paraphrasing their textual con-
tent are listed in Table 1. The Allotrope Foundation
Ontology (AFO) has rich textual descriptions of the
classes and relations. The BioAssay Ontology (BAO)
is focused on biological screening assays and their re-
sults. Certain concepts in the BAO concern the chemi-
cal roles of substances (e.g. catalysts). The Chemical
Entities of Biological Interest (CHEBI), and Chem-
ical Methods Ontology (CHMO) are closely related
to the chemical domain and contain concepts related
to chemical experiments in laboratories. In contrast,
the Systems Biology Ontology (SBO) concerns sys-
tem biology and computational modeling. We have
taken it into consideration as it includes also relations
regarding substances and general laboratory contexts,
which are contained in texts from catalysis. The
IUPAC Compendium of Chemical Terminology (IU-
PAC) and the National Cancer Institute Thesaurus
(NCIT) cover vast amounts of chemical species and
domain-specific chemical knowledge. Contrary to the
other ontologies investigated, the NCIT does not con-
tain relationships between classes as it is constructed
to serve as a thesaurus rather than as an ontology. In
order to be processed properly, all ontologies were
used in the OWL file format. Based on the above-
outlined content of the considered ontologies, we de-
cided to use the AFO and the SBO for experimental
validation.
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Table 1: The initial pool of ontologies from which the con-
sidered ontology SBO and AFO were selected. This table
also shows the count of textual descriptions of nodes and
relations in each ontology.

Ontology name Count of items

with textual definitions

AFO 2894

BAO 7514
CHEBI 176873
CHMO 3084
SBO 694
TUPAC 7038
NCIT 166212

5.1 Experimental Setup

We have extracted content from two ontologies, from
the AFO for training and from the SBO for indepen-
dent testing, using the Owlready2 Python package.
We have chosen those two ontologies, due to their
rich text descriptions and size. For each description of
node and relation, taken from them, we have prepared
different texts with the same or very close meaning.
We divide the employed paraphrasers into four
groups by the original transformer and tuning data
source, by which final paraphrasers have been cre-
ated: Bart, Pegasus, Paws, and TS paraphraser. Al-
together, we employed the following paraphrasers:

» Eugenesiow/Bart-paraphrase (Bart) (available
from (Huggingface, 2019a), based on (Lewis
et al., 2019))

* TunerO07/Pegasus-paraphrase (Pegasus) (avail-
able from (Huggingface, 2019b), based on (Zhang
et al., 2019a))

e Vamsi/T5-paraphrase-paws (Paws) (available
from (Vamsi, 2019), based on (Yang et al., 2019;
Zhang et al., 2019b))

e PrithivirajDamodaran/Parrot-paraphraser (Paws)
(Damodaran, 2021)

* Humarin/Chatgpt-paraphraser-on-T5-base (TS5
paraphraser) (Vorobev and Kuznetsov, 2023)

* Ramsrigouthamg/T5-large-paraphraser-diverse-
high-quality =~ (TS5  paraphraser) (Ram-
srigouthamg, 2022a)

* Ramsrigouthamg/T5-paraphraser (TS5 para-
phraser) (Ramsrigouthamg, 2022b)

* Valurank/T5-paraphraser (TS paraphraser) (Val-
urank, 2022)



The following example illustrates the possibility to
paraphrase a description from chemical domain by
paraphrasers:

Source Text: If sodium metal and chlorine gas mix
under the right conditions, they will form salt. The
sodium loses an electron, and the chlorine gains
that electron. This reaction is highly favorable
because of the electrostatic attraction between the
particles. In the process, a great amount of light
and heat is released.

Paraphrased Text: If sodium metal and chlorine gas
are mixed in appropriate conditions, they will cre-
ate salt. Sodium surrenders an electron, and chlo-
rine gains this particular electron. This reaction
occurs favorably due to the electrostatic pull be-
tween the particles. Throughout this process, a
substantial amount of light and heat is emitted.

All textual outputs from the paraphrasers have
been embedded using the state-of-the-art sentence
transformer named all-MiniLM-L6-v2 (Reimers and
Gurevych, 2019). It is able to make embedding of the
whole description or its paraphrase. Behind this trans-
former is SBERT (Thakur et al., 2021), which is the
modification of the BERT using siamese and triplet
networks that is able to derive semantically meaning-
ful sentence embeddings.

In our approach, we have used the following clas-
sifiers from the Scikit-Learn library for the classifica-
tion of pairs of embeddings: random forest, gradient
boosting, Gaussian process, multi-layer perceptron,
support vector machine, their team with hard voting,
and their team with soft voting. Hard voting sums
predictions for each class, and the team decides based
on the highest count of votes. Soft voting takes proba-
bility distribution over the classes from each classifier
in the team, then sums them per class and makes the
decision based on the highest value of the sum of pre-
diction probabilities.

For tuning the hyperparameters of those clas-
sifiers, we have considered hyperparameter values
shown in Table 2. The optimal values, marked bold
in Table 2, have been selected by grid-search using 3-
fold cross-validation on 15 % descriptions randomly
selected of the paraphrased sentences obtained from
the AFO.

For testing, we have selected the descriptions of
nodes and relations of the SBO ontology. These texts
we have paraphrased by the same paraphrasers de-
scribed above. The received texts have been embed-
ded by the same sentence transformer all-MiniLM-
L6-v2 (Reimers and Gurevych, 2019). A balanced
testing dataset has been created from these embed-
dings by random sampling. The whole dataset from
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the AFO was randomly divided into 5 datasets as in-
put to the 5-fold cross-validation. For each of the
above-listed classifiers with the most suitable com-
bination of parameters, a 5-fold cross-validation was
performed and the model with the best precision score
on validation data was selected, in order to mitigate
overfitting on training data.

5.2 Statistical Comparison of Employed
Classifiers

To compare results obtained with different classifiers
on validation data, we have randomly split the dataset
of the generated paraphrases from the SBO’s descrip-
tions into 23 datasets in such a way that their content
could be considered approximately independent. This
was the lowest number of datasets with such an ap-
proximate independence property. We have compared
the employed classifiers with respect to four quality
measures, namely accuracy, precision, recall, and F1-
measure. The resulting distributions of those quality
measures are depicted as box plots in Figure 1. The
worst result has been achieved by the multi-layer per-
ceptron classifier. Very low standard deviations have
been achieved by the gradient-boosting classifier and
by both used teams.

Firstly, we have performed a Friedman’s test to
check, for the measures, the hypothesis that the as-
sessment of all considered classifiers by the respec-
tive quality measure is the same. This hypothesis has
been rejected for all considered quality measures, the
achieved significance levels, a.k.a p-values, were the
following: for accuracy 3.43 x 10~'2, for precision
2.75 x 1071, for recall 3.43 x 10’12, and for F1-
measure 4.40 x 10712,

After the hypotheses of the same assessment of
all classifiers were for all quality measures rejected,
we performed Wilcoxon signed rank test to compare
them with the classifier that achieved the best result
with respect to the considered quality measure. Ta-
ble 3 shows the results of all classifiers for all quality
measures based on the 23 considered datasets. Ac-
cording to these results, the team with hard voting
achieved the best results among all the considered
classifiers and teams combining them. The multi-
layer perceptron has achieved the worst results. This
may be caused by its sensitivity to a domain differ-
ent from the domain corresponding to its training data
because the domain of the ontology SBO differs a lot
from the domain of the ontology AFO.
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Table 2: Considered hyperparameters of the considered classifiers (hyperparameters selected by grid search cross-validation
are marked bold).

Random forest

Classifier Hyperparameter | Considered values
max depth 3,5,7,9,11
min samples split | 5

criterion

entropy, gini

n estimators

50, 100, 150, 200, 250

max features sqrt, log2
bootstrap False, True
max depth 3,5,7,9,11
learning rate 0.05,0.1,0.2
Gradient boosting criterion friedman mse, squared error
n_estimators 50, 150, 250
max_features sqrt, log2

C 0.001, 0.01, 0.1, 1, 10, 100
Support vector machine | gamma 0.001, 0.01, 0.1, 1, 10, 100
kernel rbf, sigmoid, poly
1*RBF(0.1), 1*RBF(1.0), 1*RBF(10),
. 1*DotProduct(0.1), 1*DotProduct(10),
Gaussian process kernel

1*Matern(), 1*RationalQuadratic(),

Multi-layer perceptron

1*WhiteKernel()
random state 0,1
max iter 500, 1000

activation function

identity, logistic, tanh, relu

solver

Ibfgs, sgd, adam

hidden layer sizes

16, 32, 64, 128, 256, 512

alpha

0.00001, 0.001, 0.1, 10.0, 1000.0

learning rate

constant, invscaling, adaptive

Measures of all test datasets
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Figure 1: The quality measures with a standard deviation of the considered classifiers on independent datasets extracted from
SBO. All considered classifiers were compared with respect to the accuracy, precision, recall, and F1 score.
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Table 3: Comparison of accuracy, precision, recall, and F1 score results on the 23 independent sets extracted from SBO. The
values in the table are mean values + standard deviation. The green cells (values in bold) mark the highest value in a particular
metric. The white cells (values in italics) mark classifiers for which the difference to the classifier with the highest score is
not significant according to the Wilcoxon signed rank test after Holm correction for multiple hypotheses testing and the red

cells mark classifiers for which that difference is significant.

Values Gaussian Gradient Multi-
are in % process boosting layer
perceptron

Accuracy 96.4 96.5 90.6
+1.42 +1.36 +2.64

Precision 96.6 96.6 92.0
+1.34 +1.28 +1.96

Recall 96.4 96.5 90.6
+1.42 +1.36 +2.64

F1 96.4 96.5 90.5
measure +1.43 +1.36 +2.71

5.3 Comparison with the Most Similar
Existing Approach

To compare our method with an existing approach,
we have manually prepared a dataset based on an-
notations from BAO, CHEBI, CHMO, NCIT, SBO,
and IUPAC ontologies. The dataset considers de-
scriptions of equivalent classes that appear at least in
two considered ontologies. This dataset contains ap-
proximately 400 unique descriptions of classes and
for each of them on average 4 equivalent descriptions
with the same meaning from all considered ontolo-
gies. From all those sentences and phrases, we have
randomly combined 3200 pairs of descriptions, thus
for each pair, it is known whether both sentences or
phrases in the pair are equivalent or not.

Results from our experiment are presented in Ta-
ble 4. We have compared our approach in vari-
ants with all considered classifiers, including classi-
fier teams, to the only approach indicated in Section 4
as sufficiently similar, i.e. (Salim and Mustafa, 2021),
which is based on GloVe and WordNet. The best re-
sults have been achieved by the multi-layer percep-
tron (MLP) and by the support vector machine. The
MLP achieves substantially better results in this ex-
periment than in the experiment in Subsection 5.2.
In our opinion, this is due to the fact the domains of
most of the ontologies employed in this experiment
are much closer to the domain corresponding to train-
ing data than the domain of the ontology SBO em-
ployed in Subsection 5.2.

Random Support Team with Team with
forest vector hard soft
machine voting voting
95.6 96.0 96.5 96.4
+1.56 +1.63 +1.29 +1.49
95.7 96.2 96.7 96.5
+1.53 +1.39 +1.18 +1.39
95.6 96.0 96.5 96.4
+1.56 +1.63 +1.29 +1.49
95.6 96.0 96.5 96.4
+1.56 +1.64 +1.29 +1.49

5.4 Ablation Study of the Employed
Paraphrasers

To assess the importance of using particular para-
phrasers and groups of paraphrasers to generate the
training data for the classifiers sets of paraphrases, we
have used the same testing dataset as in the experi-
ment described in Subsection 5.2. We have performed
the ablation study of the employed paraphrasers sep-
arately for each of the considered quality measures
accuracy, precision, recall, and Fl-measure. Each
experiment uses paraphrases generated by all para-
phrasers from the list in Subsection 5.1, except a par-
ticular one or a particular group.

Results from our experiment are presented in Ta-
bles 5 and 6. The results with all paraphrasers
were better than with one paraphraser or a group of
paraphrasers missing. The support vector machine
achieved better results when some paraphraser was
missing in comparison to other classifiers. As ex-
pected, leaving out any of the two considered groups
of paraphrasers Paws or T5 decreased the values of
the measures more than leaving out only one para-
phraser from that group. A significant impact had the
missing Eugenesiow/Bart-paraphraser. These results
confirm our expectations that combinations of more
papaphrasers have a potential to reach better results.

Our last two experiments present results artifi-
cially paraphrased descriptions in a real environment.
These data came from a real ontology. Hence, the ob-
tained results confirm that it is possible to use artifi-
cial paraphrasers to generate paraphrases for training
models to detect duplicities and use them in a real en-
vironment. So the results in the table 4 show achiev-
able values in considered metrics in the real ontology
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Table 4: Comparison of all variants of our approach with the most similar existing approach (Salim and Mustafa, 2021). The
dataset for this experiment is based on descriptions of classes encountered in at least three from the ontologies BAO, CHEBI,
CHMO, NCIT, SBO, and IUPAC. The results obtained with that approach are in the bottom part of the table.

ACCURACY | Precision | Recall | F1 score
Gradient boosting 75 % 83% | T5% 74 %
Gaussian process 78 % 84 % | 78 % 77 %
Multi-layer perceptron 84 % 85% | 84 % 84 %
Random forest 74 % 82% | T4 % 72 %
Support vector machine 79 % 8% | 79% 78 %
Team with hard voting 77 % 84 % | 1T % 76 %
Team with soft voting 77 % 84 % | 11 % 76 %
GloVe with cosine distance 66 % 66 % | 66 % 66 %
GloVe with Euclidean distance 65 % 65% | 65 % 65 %
WordNet 71 % 81 % | 71 % 68 %

environments.

6 CONCLUSION AND FUTURE
WORK

In the automated construction of ontologies, it is often
necessary to merge knowledge extracted from scien-
tific articles with the knowledge already contained in
the ontology. Merging parts of text from such arti-
cles with the text from that ontology can easily in-
troduce duplicities into the ontology. The removal of
duplicities in an ontology is often a manual process
and automated solutions save the time of domain ex-
perts. This process means that two or more terms oc-
curring in different ontologies are associated to unify
ontologies. The automated mappings encountered so
far focused on the detection of similar class labels or
the same URIs of the classes, for example in the bio-
ontology bio portal mapping!. However, the detection
of similar classes based on their description is rather
new. In this research, we have focused on the meaning
of nodes, relations, and descriptions occurring in on-
tologies. Our main objective was to mitigate manual
effort in dataset preparation to train a model that clas-
sifies text in ontologies with respect to their semantic
equivalence.

To achieve that objective, we have taken the tex-
tual content of an ontology existing for the considered
domain. To preprocess the data, we have used para-
phrasers, which automatically generate paraphrases
with the same or very close meaning. These para-
phrases have been embedded using BERT and the em-
beddings were used to train classifiers to detect dupli-
cates in the ontology.

We have compared our approach with the most

Uhttps://www.bioontology.org/wiki/BioPortal_Mapping

46

similar existing approach (Salim and Mustafa, 2021)
based on WordNet and GloVe. The best results have
been achieved using the combination of BERT with
the multi-layer perceptron or the support vector ma-
chine. Both these combinations yielded better results
than the existing WorNet-based and GloVe-based ap-
proaches. Due to the better consistency between the
results from both experiments, we consider support
vector machines to be the most suitable kind of clas-
sifiers for the detection of duplicates in ontologies.

To assess the importance of using particular para-
phrasers and groups of them to generate the training
data for the classifiers sets, we have performed the
ablation study. The results show the highest impact
brought by missing the whole group of paraphrasers
or a paraphraser that was alone in its group. In com-
parison to other classifiers, the support vector ma-
chine has been able to keep very good results of all
metrics in case one or more paraphrasers were miss-
ing. Using all paraphrasers was for almost all combi-
nations of quality measures and classifiers better than
with one paraphraser or a group of paraphrasers miss-
ing.

In the future, our approach can be improved by
further kinds of paraphrasers. The paraphrasers are
its core part. Another improvement of our approach
may be the usage of some corpus providing a wider
range of synonyms. However, this may bring some
issues. It is, however, not possible to replace words
by synonyms from different domains. For example,
the words “array” and “field” may be viewed as du-
plicities in the IT domain, but not in the physics do-
main. The problem when different text parts of an
ontology can be viewed as duplicities, and therefore
are replaceable without deteriorating their meaning,
definitely requires further research.
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Table 5: Comparison of precision and recall results on the 23 independent sets extracted from SBO. The columns with italic
names mark where only one of several members of a paraphraser group was removed. The values in the table are mean

values =+ standard deviations. Green cells (values in bold italic) mark results obtained by the combination of all paraphrasers.
White cells (values in italics) mark where the difference to the complete set of paraphrasers is not significant according to

the Wilcoxon signed-rank test with correction by the Holm method, and red cells (values in bold) mark where the difference
is significant. Pink cells (normal font) mark where mean values are higher than values obtained by the combination of all

paraphrasers and the differences are not significant.

ACCURACY All para- Without Without
phrasers all all TS
PAWS

Gaussian 95.8 95.4 94.6
process +1.41 +2.02 +1.97

Gradient 87.0 88.5 84.9
boosting +2.10 +2.71 +£2.78

Multi-layer 89.8 88.5 86.9
perceptron +3.47 +3.43 +3.71

Random forest 86.8 88.1 84.6
+2.30 +2.48 +2.91

Support vector 96.3 95.8 95.6
machine +1.78 +1.94 +1.85

Team with 95.3 95.1 94.4
hard woting +1.52 +1.91 +1.87

Team with 94.8 94.8 93.8
soft voting +1.25 +1.98 +1.92

F1 All para- Without Without
phrasers all all TS
PAWS

Gaussian 95.8 95.4 94.6
process +1.41 +2.02 +1.97

Gradient 86.8 88.4 84.6
boosting +2.19 +2.76 +2.89

Multi-layer 89.7 88.4 86.7
perceptron +3.56 +3.56 +3.89

Random forest 86.6 87.9 84.3
+2.40 +2.53 +£3.02

Support vector 96.3 95.8 95.6
machine +1.78 +1.95 +1.86

Team with 95.3 95.1 94.4
hard woting +1.52 +1.91 +1.88

Team with 94.8 94.8 93.8
soft voting +1.26 +1.98 +1.92

Without

Pegasus

94.5
+2.28

84.7
+2.75

89.0
+£2.83

84.5
+£2.83

95.8
+1.97

94.0
+£2.37

93.9
+£2.77

Without
Pegasus

94.5
+2.29

84.4
+2.90

88.9
+2.88

84.2
+3.02

95.8
+1.98

94.0
+2.38

93.9
+£2.78

Without
BART

94.9
+1.92

87.0
+£2.96

86.2
+3.34

86.5
+£2.77

95.5
+1.49

94.7
+1.91

94.4
+1.91

Without
BART

94.9
+1.92

86.8
+3.10

86.0
+3.54

86.3
+2.91

95.5
+1.49

94.7
+1.91

94.4
+1.92

Without
Ramsri-
gouthamg

95.1
+2.51

86.6
+3.08

89.8
£2.09

86.2
+£3.42

95.2
+2.30

94.4
+2.56

93.9
£2.68

Without
Ramsri-
gouthamg

95.1
+2.51

86.4
+3.17

89.8
£2.12

86.0
+3.56

95.2
+2.31

94.4
+2.57

93.9
£2.69

Without
Humarin

95.3
+1.66

86.7
+3.05

89.9
+3.05

86.3
+3.33

95.9
£1.77

94.9
+1.73

94.6
+2.33

Without

Humarin

95.3
+1.67

86.4
+3.21

89.8
+3.16

86.0
+3.54

95.9
+1.77

94.9
+1.73

94.6
+2.36

Without
Large

95.5
+1.60

86.3
+2.89

87.6
+3.21

86.0
£2.55

96.1
+1.99

95.3
+1.54

94.5
+1.88

Without
Large

95.5
+1.60

86.0
+3.02

874
+3.34

85.8
£2.66

96.0
+2.00

95.3
+1.54

94.5
+1.88

Without
Valurank

95.4
+1.62

87.3
+2.92
89.8
+3.01

87.0
+£2.89

95.6
+1.60
95.0
+1.71
94.8
+1.70

Without
Valurank

95.4
+1.63

87.1
£3.06

89.7
+3.07

86.8
+3.06

95.6
+1.60

95.0
+1.72

94.8
+1.71

Without
Parrot

95.6
+1.64

88.7
+2.48
89.6
+3.24

88.1
+2.54

96.0
+1.80

95.2
+1.67

95.1
+1.98

Without
Parrot

95.6
+1.65

88.6
+2.54

89.5
+3.32

88.0
+2.61

95.9
+1.81

95.2
+1.68

95.1
+1.99

Without
Vamsi

95.6
+1.70

87.9
+3.23

90.0
+2.13

87.8
£3.00

96.3
+1.61

95.2
+1.69

95.2
+1.84

Without
Vamsi

95.5
+1.71

87.8
+3.42

90.0
£2.18

87.6
+3.18

96.3
+1.61

95.2
+1.70

95.2
+1.84
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Table 6: Comparison of precision and recall results on the 23 independent sets extracted from SBO. The columns with italic
names mark where only one of several members of a paraphraser group was removed. The values in the table are mean
values =+ standard deviations. Green cells (values in bold italic) mark results obtained by the combination of all paraphrasers.
White cells (values in italics) mark where the difference to the complete set of paraphrasers is not significant according to
the Wilcoxon signed-rank test with correction by the Holm method, and red cells (values in bold) mark where the difference
is significant. Pink cells (normal font) mark where mean values are higher than values obtained by the combination of all
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paraphrasers and the differences are not significant.

PRECISION All para- Without ~ Without ~ Without ~ Without Without Without Without Without Without Without

phrasers all all TS Pegasus BART Ramsri-  Humarin Large Valurank Parrot Vamsi
PAWS gouthamg
Gaussian 95.8 95.5 94.7 94.7 95.0 95.2 95.4 95.6 95.5 95.7 95.6
process +1.39 +1.96 +1.90 +2.17 +1.84 +2.43 +1.59 +1.59 +1.52 +1.56 +1.70
Gradient 89.1 89.7 87.4 87.3 88.9 88.4 88.9 88.4 89.2 90.0 89.6
boosting +1.75 +2.41 +2.43 +2.08 +£2.19 +2.65 +2.08 +£2.32 +1.99 +2.04 +2.19
Multi-layer 91.1 90.1 88.7 90.0 88.3 90.8 90.9 89.3 91.0 90.9 91.1
perceptron +2.73 +2.46 +2.91 +2.56 +2.27 +1.88 +2.40 +2.41 +2.50 +2.63 +1.71
Random forest 89.0 89.4 87.2 87.2 88.6 88.2 88.6 88.2 89.0 89.7 89.4
+1.93 +2.28 +2.54 +2.02 +£2.11 +2.83 +2.09 +2.14 +1.90 +1.99 +2.07
Support vector 96.4 95.9 95.7 95.9 95.6 95.3 96.0 96.1 95.8 96.1 96.4
machine +1.68 +1.78 +1.78 +1.92 +1.48 +£2.27 +1.67 +1.92 +1.48 +1.72 +1.57
Team with 95.4 95.2 94.5 94.2 94.8 94.6 95.1 95.4 95.1 95.4 95.3
hard woting +1.49 +1.86 +1.81 +2.24 +1.84 +2.44 +1.63 +1.54 +1.61 +1.58 +1.66
Team with 94.9 94.9 94.0 94.1 94.6 94.1 94.9 94.6 95.0 95.2 95.3
soft voting +1.17 +1.92 +1.82 +£2.59 +1.82 +2.51 +2.00 +1.87 +1.56 +1.94 +1.80
RECALL All para- Without Without Without Without Without Without Without Without Without Without
phrasers all all TS Pegasus BART Ramsri-  Humarin Large Valurank Parrot Vamsi
PAWS gouthamg
Gaussian 95.8 95.4 94.6 94.5 94.9 95.1 95.3 95.5 95.4 95.6 95.6
process +1.41 +2.02 +1.97 +2.28 +1.92 +£2.51 +1.66 +1.60 +1.62 +1.64 +1.70
Gradient 87.0 88.5 84.9 84.7 87.0 86.6 86.7 86.3 87.3 88.7 87.9
boosting +2.10 +2.71 +£2.78 +£2.75 +2.96 +3.08 +£3.05 +2.89 £2.92 +2.48 +3.23
Multi-layer 89.8 88.5 86.9 89.0 86.2 89.8 89.9 87.6 89.8 89.6 90.0
perceptron +3.47 +3.43 +3.71 +2.83 +3.34 +2.09 +3.05 +3.21 +3.01 +3.24 +2.13
Random forest 86.8 88.1 84.6 84.5 86.5 86.2 86.3 86.0 87.0 88.1 87.8
+2.30 +2.48 +2.91 +2.83 +2.77 +3.42 +3.33 +2.55 +2.89 +2.54 £3.00
Support vector 96.3 95.8 95.6 95.8 95.5 95.2 95.9 96.1 95.6 96.0 96.3
machine +1.78 +1.94 +1.85 +1.97 +1.49 +2.30 +1.77 +1.99 +1.60 +1.80 +1.61
Team with 95.3 95.1 94.4 94.0 94.7 94.4 94.9 95.3 95.0 95.2 95.2
hard woting +1.52 +1.91 +1.87 +£2.37 +1.91 +2.56 +1.73 +1.54 +1.71 +1.67 +1.69
Team with 94.8 94.8 93.8 93.9 94.4 93.9 94.6 94.5 94.8 95.1 95.2
soft voting +1.25 +1.98 +1.92 +£2.77 +1.91 +2.68 +2.33 +1.88 +1.70 +1.98 +1.84
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