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Abstract: In this study, our primary focus is on enhancing particle coverage through the effective deployment of 
rectangles with fixed areas and flexible shapes within a two-dimensional space. These rectangles represent 
areas optimally managed by various units like CCTV cameras, police personnel, search and rescue units and 
robots. Particles are objects designated for processing by these units. To realize this objective, we presented 
an efficient technique for deploying rectangles in a two-dimensional space using a genetic algorithm (GA). 
The GA searches for the optimal deployment of rectangles that maximizes the sum of the particle densities 
represented int the heat map. We experimented by applying our problem to maritime search and rescue 
planning. The main application of our method in maritime search and rescue planning is the deployment of 
search and rescue units in the ocean. As a result, the GA outperformed the greedy method by up to 14%. The 
experimental outcomes demonstrate the superiority of our proposed method compared to existing techniques. 
Specifically, its effectiveness becomes more pronounced when the total area covered by the placed rectangles 
is smaller than the entire search area.  

1 INTRODUCTION 

Determining a maritime search and rescue (SAR) 
plan considers a variety of factors, including the 
expected location of the search target, the availability 
of search and rescue units (SRU). So, determining a 
maritime SAR plan is a challenging task. 

With the advancement of science and technology, 
research is being conducted on decision-making 
systems for maritime SAR planning. One study 
improved the mathematical model used for SAR and 
used genetic simulated annealing algorithm (GSAA) 
to support SRU resource scheduling (Ai et al. 2019). 
They designed a search area allocation algorithm that 
considers spatio-temporal characteristics. Another 
study conducted a comprehensive review on decision 
support in maritime emergencies and proposed a 
decision support method using two optimization 
algorithms (Xiong et al. 2020). They are used                 
differential evolution (DE) (Storn et al. 1997) and 
NSGA-II (Deb et al. 2000) to find appropriate SAR 
plans and support SRU resource scheduling.  

Determining a search area for SRUs is an 
important part of SAR planning. Existing studies set 
up one large rectangle that represents the entire search 
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area and then divide it to deploy SRUs. However, 
there are two problems with this approach. First, 
efficiency is reduced when SRUs cannot cover the 
entire search area. Second, SRUs may be wasted on 
unimportant areas because all search areas are 
explored. 

In this paper, we present a generalization of the 
problem of placing SRUs in SAR planning. The 
generalized problem has broader applicability and 
can be extended to various other problems. 
Furthermore, we propose an optimal rectangle 
deployment method using a genetic algorithm (GA) 
that improves upon the existing studies. We deploy 
rectangles in the two-dimensional space where search 
targets represented by particle exists. The rectangles 
represent areas that can be explored by SRUs. These 
rectangles are deployed to contain as many particles 
as possible. 

The problem of deploying rectangles to cover as 
many particles as possible can be applicable not only 
to SAR planning but also to various other problems. 
For example, police can be distributed on heavily 
travelled streets to clear traffic and prevent accidents. 
In another example, sensors can be deployed on most 
sensitive areas. One study (Yoon et al. 2022) used a 
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GA to deploy sensors and maximize space coverage, 
while another study (Seo et al. 2017) used a GA for 
the efficient deployment of CCTVs on streets. 
However, the limitation of previous studies is the 
representation of sensors as fixed-size circles or fans, 
restricting their applicability to diverse problem 
scenarios. In particular, configuring the search area as 
a curve in SAR planning presents disadvantages. 
During the path planning phase, when the search area 
contains curves, obtaining crucial variables like the 
probability of detection becomes challenging. Hence, 
the circle and fan shapes, as employed in prior studies, 
are not suitable for SAR planning, and rectangles 
prove to be a better fit for such scenarios.  

Meanwhile, research is also being conducted on a 
problem similar to SAR planning: planning paths for 
Unmanned Aerial Vehicles (UAVs) (Mansouri et al. 
2017, Akshya et al. 2020). These problems involve 
deploying a rectangle that covers a specific polygon 
or object and devising a path around the rectangle's 
center point. However, these problems typically 
assume that the UAV can cover the entire area. If the 
UAV lacks the time to explore the entire region, it 
necessitates a strategy to explore the crucial sections 
first. Our suggested rectangle placement method 
positions rectangles exclusively in important areas, 
making it suitable for UAV path planning under time 
constraints. 

This paper is organized as follows. Section 2 
describes how SRUs have been deployed in previous 
studies of SAR. We modify this method to our 
problem and compare it to our proposed method. 
Section 3 describes our proposed method. Section 4 
describes the environment we experimented in and 
the setup for our experimental methods. Section 5 
discusses the results of our experiments. Finally, in 
Section 6, we outline potential directions for future 
work. 

 

2 PREVIOUS METHOD  

In this part, we introduce how previous studies (Ai et 
al. 2019 & Xiong et al. 2020) have deployed the 
search area of SRUs. In existing studies, the entire 
search area is divided into equal-sized cells, and then 
the following algorithm is performed.  

Step 1: select a cell with the highest value, among 
the areas where the SRU is not placed.  
Step 2: expand the selected area by one column or 
one row in the direction of the higher fitness value 
(up, down, right, and left).  
Step 3: repeat process Step 2 until the fitness value 
does not increase. 
Step 4: when Step 3 ends, place the SRU in the 
selected area. 
Step 5: repeat process Step 1 through Step 4 until 
the entire search area is covered. 
Previous studies have employed specific 

functions to evaluate fitness values. The utilized 
function takes into consideration the rectangle's 
dimensions and the cumulative values of the cells it 
encompasses. If only the cumulative cell values were 
considered, the rectangle would expand indefinitely. 
However, the function uses a ratio of the size of the 
rectangle to the sum of the cell values so that the 
evaluation value decreases after the rectangle is large 
enough. 

3 PROPOSED METHOD  

3.1 Data  

In the two-dimensional space where the rectangles are 
deployed, there are search targets represented by 
particles. If there are too many particles, the 
subsequent process, GA deploying rectangles, will 
take a long time. To address this, we simplify the two-
dimensional space into a heat map. The heat map 
consists of N-by-N cells. Each cell has as its value the 
density of the particles it contains. Figure 1 shows the 
heat map we used in our experiment. Higher values in 
the cells are colored as red, and lower values in the 
cells are colored as blue. Cells with very few particles 
and therefore not important at all are colored as white. 

3.2 Genetic Algorithm 

A genetic algorithm (GA) is one of the most famous 
evolutionary algorithms. It is an optimization 
algorithm developed to mimic the evolutionary 
process of living organism (Holland, 1975).  

GA (offspring size n, max generation gmax) { 
    P ← generate 200 random initial solutions 
    for generation g ← 1 to gmax  
        for i ← 1 to n 
            p1, p2 ← select two parent chromosomes 

using Roulette wheel 
            oi ← generate offspring chromosome from 

p1, p2 using uniform crossover 
            oi ← mutation(oi) 
            oi ← repair(oi) 
        end for  
        replace n chromosomes in P with o1 to on 
    end for 
    return best chromosome in P 
} 

Algorithm 1: Pseudo-code of our GA.
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Figure 1:  Heat map of particles in a given domain. 

 
Figure 2: Example illustration of the genotype (left) and the phenotype (right) of a chromosome. 

We propose using the GA to deploy rectangles on 
the data described in Section 3.1. We designed a 
method for representing rectangles in the two-
dimensional space and evaluating their performance. 
Additionally, we designed a repair operator to 
maintain a fixed rectangle area, which is applied after 
the mutation operation. The structure of our proposed 
GA is shown in Algorithm 1.  

3.2.1 Encoding  

Rectangles are deployed in the heat map to indicate 
that the SRU is limited. The shape of the rectangles is 
free; however, its area (the product of width and 
height) must be fixed at a certain value. This is 
indicating that SRUs can only search a limited area.  

Encoding defines the way how the solution is 
represented. In this study, a rectangle (gene) is 
represented by an array of {x-coordinate of the center 
, y-coordinate of the center, width (w), height (h), and 
angle(a)}. Thus, the chromosome with k rectangles is 
represented by a one-dimensional array with 5k 
elements. Figure 2 shows how we represent 
rectangles as chromosome. a is the angle the rectangle 
is rotated with respect to the x-axis. The number 
under each variable is the number of the rectangle. 
For example, x1 is the x-coordinate of the center of the 
first rectangle.  

3.2.2 Objective Function  

As the objective function we compute a fitness score, 
which indicates how well the  chromosome  is  suited 
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Figure 3: How to apply a penalty to the objective function to exclude overlapping regions. 

to the problem. It evaluates the chromosomes by 
summing up the values of all cells within the heat map 
that are covered by the rectangle. The objective 
function considers a rectangle to contain a cell if the 
cell's center point falls within the rectangle.  

To incentivize rectangles to cover as many cells 
as possible, we introduce a penalty for overlapping 
regions. If a rectangle overlaps with another, the 
overlapping area is excluded from the calculation of 
the objective function. Figure 3 illustrates the 
application of penalties in the objective function. The 
fitness score is computed by considering the values of 
the cells within the colored region. However, cells in 
the uncolored region, where the rectangles overlap, 
are not taken into account for the fitness score 
computation. This penalty is applied for the following 
two reasons. 

Firstly, when rectangles overlap, it undermines 
our objective of maximizing cell coverage with a 
limited number of rectangles. If the rectangles 
overlap, it is natural that the number of cells they can 
cover will be reduced. So, by applying a penalty and 
excluding the overlapping areas within the objective 
function, our genetic algorithm can converge towards 
optimal solutions more effectively. 

Secondly, in real-world scenarios, the overlap of 
rectangles can lead to negative consequences. In the 
context of SAR planning, when rectangles overlap, it 
indicates that the search areas of SRUs also overlap. 
This overlap can result in adverse outcomes, such as 
collisions or an increased scale of accidents. Thus, 
penalizing overlapping areas helps to avoid such 
undesirable situations. 

Equation (1) represents our objective function. 
Let ci,j denote the value of the cell in row i and column 
j. A variable wi,j determines whether or not a penalty 
is applied. If only one rectangle contains the cell in 
row i and column j, wi,j is set to 1. On the other hand, 
if no rectangle contains the cell in row i and column j 
or if multiple rectangles contain the cell in row i and 

column j, wi,j is set to 0. A set of rectangles with no 
overlapping areas will receive a better evaluation 
when using this objective function. 𝑓 = ∑ ∑ 𝑐, × 𝑤,ேୀଵேୀଵ  , 

where 𝑤, = ൜1 if exatly one rectangle contain 𝑐,0 otherwise                                 
 

(1)

3.2.3 Repair Operator 

The repair operator fixes the height or width using the 
fitness score. The repair operator divides the fixed-
area by the height to get the modified width. 
Conversely, the modified height is obtained by 
dividing the fixed-area by the width. Then, the repair 
operator selects the one that has a higher fitness score 
when the modified height or modified width is 
applied. The pseudo-code for the repair operation is 
presented in Algorithm 2. 

4 EXPERIMENTAL SETUP 

We conduct experiments using three different 
methods, all share the following two settings. 

First, to represent a resource scarce situation, we 
set the number of rectangles, k, to 3. Thus, the 
chromosome length in our experiment is 15 (= 3 × 5). 
Second, we set the size of the heat map, N, to 50. 

4.1 GA Parameters 

The GA selection operation uses a Roulette wheel. 
The variable to control the selection pressure of the 
Roulette wheel is  set to 3. For the crossover 
operation, uniform crossover and a mutation 
probability of 0.05 are applied. When mutations 
occur, different ranges of random values are applied 
to each gene. For the genes x and y, which represent  
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Table 1: Experiment results of 30 runs. 

 
Greedy method Random multi-start GA 

- Generation = 1000 Generation = 1500 Generation = 1000 Generation = 1500
 Run 1 time1 O.A.2 Run 30 times O.A.2 Run 30 times O.A.2 Run 30 times O.A.2 Run 30 times O.A.2

Map1 
Best 887.0 

0 
Best 806.6 

17.8 
Best 812.6

12.6
Best 917.9

0.9 
Best 923.5 

1.2 Ave. - Ave. 790.6 Ave. 794.7 Ave. 887.4 Ave. 893.8 
Std. - Std. 8.3 Std. 8.6 Std. 16.4 Std. 18.8 

Map2 
Best 942.1 

0 
Best 984.1 

28.6 
Best 991.6

22.6
Best 1071.2

4.1 
Best 1077.1

3.4 Ave. - Ave. 966.7 Ave. 973.2 Ave. 1035.3 Ave. 1042.4
Std. - Std. 8.9 Std. 9.6 Std. 18.8 Std. 18.4 

Map3 
Best 827.6 

0 
Best 808.2 

51.6 
Best 808.2

48.9
Best 892.1

11.2 
Best 897.2 

8.5 Ave. - Ave. 782.1 Ave. 786.1 Ave. 865.4 Ave. 869.0 
Std. - Std. 10.7 Std. 10.2 Std. 14.6 Std. 20.7 

1 The greedy method always produces the same result in the same data.  
2 Average of the area where the rectangles overlap. 

 

the coordinates of the rectangle's center point, a real 
number between 0 and N is randomly assigned. The 
genes w and h, representing the width and height of 
the rectangle, are assigned a real number between 1 
and the value of fixed-area. The changes of the area 
are not considered at this stage, as the repair operation 
is carried out after the mutation operation. The gene 
a, representing the angle, is randomly assigned a real 
number between 0 and 180 degrees. After the 
mutation operation, the chromosome is repaired to fix 
the rectangular area. Fifty offspring chromosomes are 
generated and replace the parent chromosomes with 
lower fitness scores. This process is repeated for 
1,000 and 1,500 generations with a population of 200 
per generation.  

4.2 Greedy Method 

The greedy method is designed as a variation of a 
previous method. The difference from previous 
method is that the present study does not cover all  

 

highest value in the heat map as the initial area. The 
selected area is then extended in the direction that 
could have a higher fitness score. The rectangle 
cannot encroach on another rectangular area. The 
rectangle can also extend outside of the heat map, and 
the outside of the heat map does not affect the 
rectangle's fitness score. The rectangle does not 
expand further after filling a fixed size. After the 
rectangle is deployed, the chromosome is repaired. 

4.3 Random Multi-Start 

Random multi-start randomly generates as many 
chromosomes as the number of chromosomes 
generated by the GA, and it repairs them. It selects the 
best chromosome among them. The pseudo-code for 
the random multi-start is presented in Algorithm 3. 

5 RESULTS  

The rectangles are deployed on a heat map using the 
greedy method, GA, and random multi-start. Table 1 

 

Repair (chromosome = {r1, r2, … , rk}) {  
    for each rectangle ri = {xi, yi, wi, hi, di} 
        ci ← maximum coverage area of ri  

hfix ← {xi, yi, wi, ci / wi, di} 
wfix ← {xi, yi, ci / hi, hi, di} 
if fitness(hfix) > fitness(wfix) then  

ri ← hfix 
if fitness(hfix) < fitness(wfix) then  

ri ← wfix 
    end for 
    return repaired chromosome 
} 

Algorithm 2: Pseudo-code of repair operation. 

RandomMultiStart (offspring size n,  
max generation gmax,  
population P) {  

    R ← | P | + n × gmax  
for i ← 1 to R 

        oi ← randomly-generated chromosome 
        oi ← repair(oi) 
    end for 
    return best in O = {o1, o2, o3, …, oR } 
}

Algorithm 3: Pseudo-code of random multi-start.
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Figure 4: Best solutions in Map 3. 

shows the highest, average, and standard deviation of 
the fitness score, and the average overlap area for 30 
runs for each method. The greedy method exhibits 
significant performance differences depending on the 
characteristics of the data. In Map1 (left of Figure 1), 
the dense regions are separated; thus, the greedy 
method performs well. In contrast, in Map2 (middle 
of Figure 1), the dense regions are clustered together, 
and the greedy method does not perform well. On 
average, the GA exhibits a stable performance. The 
GA outperforms the greedy method by an average of 
5% and a maximum of 14 %. The GA also reduces 
the average overlap area by 86% on average and 95% 
compared to random multi-start. Figure 4 shows the 
best solutions obtained from the greedy method, 
random multi-start, and GA in Map3. 

The GA, executed on an Intel i7-7700 3.60GHz 
CPU with 16GB of memory, Microsoft Windows 10 
operating system, and implemented using the C++ 
programming language, achieves an average 
completion time of 90 seconds. In contrast, the 
random multi-start approach takes approximately 58 
seconds on average, while the Greedy Method 
exhibits a runtime of around 1 second.  

6 CONCLUSIONS  

In this study, we presented an efficient approach for 
deploying rectangles with flexible shapes and fixed 
sizes. While the problem we addressed has potential 
applications in various fields, our main goal was to 
apply it to SAR planning. Existing researches about 
SAR planning typically assumes that the search area 
can be completely covered. However, real-world 
scenarios may involve limitations in number of SRU 
or time availability. We successfully deployed 
rectangles within a heat map that represent the 

significance of search areas. This approach was 
particularly effective when not all regions could be 
thoroughly explored due to constraints in SRU 
availability or time constraints, thereby mitigating the 
drawbacks of prior methodologies.   

7 FUTURE WORK  

Future research can be conducted as follows. First, 
accommodating changes in the area of rectangles is 
important. In the real world, there is a travel time for 
resources to reach the deployed area. As resources are 
active for a fixed duration, the coverage area they can 
handle may decrease or p depending on their travel 
time. Therefore, it would be more realistic to adjust 
the size of the rectangles based on their deployment 
location. 

Second, considering overlapping rectangles under 
specific conditions can be beneficial. The types of 
robots used in search and rescue operations (ground, 
air, marine, etc.) are becoming increasingly diverse 
(Queralta et al. 2020). When different types of robots 
are involved, overlapping search areas may not pose 
a risk of accidents. By incorporating this 
consideration, our approach can be applied to a wider 
range of problems by designing an objective function 
that cancels the penalty for overlapping rectangles 
under certain conditions. 

Third, more experimentation is required. 
Although we have enhanced the performance of 
rectangular deployment compared to existing 
methods, we have not yet established a diverse 
comparison group. It would hold more significance to 
compare the effectiveness of GA with metaheuristic 
algorithms and other optimization techniques like 
NSGA-II. 
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In last, expanding the objective function to 
include additional variables is worth exploring. Our 
study focuses on a simple objective of placing 
rectangles to cover as many particles as possible. 
However, in real-world scenarios, multiple 
environmental factors need to be taken into account. 
For instance, in maritime SAR planning, it is crucial 
to consider factors such as the probability of coverage 
(POC) and the probability of detection (POD) of a 
rescue target (Ototoe et al. 2019). Furthermore, 
various factors like the marine environment and the 
likelihood of the rescue target's survival should also 
be taken into account. Therefore, designing the 
objective function to incorporate more variables 
would enable more accurate experiments.  
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