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Abstract: This work introduces a new approach for spatial analysis of assumed dynamics of neuronal activity in mouse 
brain images obtained by light-sheet fluorescence microscopy methods (LSM). In calculations we used 
flocking algorithms based on neuronal activity distributions from slice to slice with a time delay that occurs 
during scanning. We applied GDAL Tools and LF Tools in QGIS for topological processing of multi-page 
TIFF files with LSM datasets. As a result, we identified localizations of sites with small movements of group 
neuronal activity passing in the same locations (with retaining localization) from slice to slice. An important 
advantage of this result is the ability to reveal locations with pronounced neuronal activity in a sequence of 
several adjacent slices, as well as to identify set of sites with interslice activity. 

1 INTRODUCTION 

This paper presents a new approach in spatial analysis 
of optogenetic data using a flocking method. 

Optogenetics is a widely used method to study 
neuronal activity in living organisms at the cellular 
level. Genetically encoded indicators enable high 
spatiotemporal resolution optical recording of 
neuronal dynamics in behaving mice (Patriarchi et al., 
2018). These recordings further makes it possible to 
collect and process brain images, revealing important 
indicators of activities of sets of neurons in various 
behavioural tasks, as well as in the study of 
spontaneous activity. 

Optogenetic data are usually presented as a multi-
page TIFF file consisting of a set of stitched 2D slices. 
Specialized programs such as NeuroPG (Avants et 
al., 2015), MicroMator (Fox et al., 2022) have 
already been developed to view and analyse data. 
Moreover, optogenetic image processing is also used 
in other Platforms for Optogenetic Stimulation and 
Feedback Control (Kumar and Khammash, 2022).  

Optogenetics uses sets of images of registered 
neuronal  activity  in the form of  high-resolution 2D 
slices. Typical number of slices in one multi-page 
TIFF file is from 100 to 1000. Each pixel in these 
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images represents an activity of neurons at a specific 
point, which is linked to a relative coordinate system. 
Taking into account the fact that the time of 2D 
recordings is nonzero, the change in activity from 
slice to slice can also be used in computational 
operations to determine the dynamics of activity. 

When detecting neuronal activity, the main 
problem faced by researchers is noises. A noise in 
images, on the one hand, leads to the detection of a 
‘false activity’ (false positives), but on the other hand, 
makes it difficult to identify the existing activity 
(false negatives), lowering the overall recognition 
quality. In areas with redundant information the 
influence of noise is higher. As a result, those zones 
that are in the middle range of activity are of interest 
for analysis, and allow to distinguish and highlight 
weak effects. 

The main goal of this work is to develop and 
apply computational methods and tools that help 
reduce the influence of noise on recognition of 
neuronal activity and increase the predictability of 
dynamic optogenetic (neuronal) activity through 
brain slices. To eliminate the problem of noise in 
optogenetic images, in this paper we propose a new 
approach based on the principles of spatial analysis of 
flock trajectories (flocking method).  
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The flocking method is based on keeping the 
distances and co-direction of movements of elements 
in the flock and can be used in analysis of dynamic 
changes in brain activity. The principles of flocking 
are already applied in brain imaging analysis 
(Aranda, Rivera and Ramirez-Manzanares, 2014). In 
our paper, their scope is expanded to analyse the 
neuronal activity of fluorescently activated mouse 
brain cells. The main scheme of our work is presented 
in Figure 1. 

 
 

Figure 1: Sources, elementary processed units and tools in 
the processing of optogenetic images. A. Typical multi-
TIFF image. Schematically shows that multi-TIFF image 
includes slices. Each subsequent slice is recorded with a 
shift along the brain and with a time delay relative to the 
previous one. B. Image analysis: B1. Primary image in 
grayscale mode. B2. Identification of activity points (shown 
as orange dots) by activity on a pair of neighboring slices. 
B3. Identification of ensemble locations (shown as lilac 
dots). B4. Identification of circuit tube between 
neighboring slices (shown as blue tube), which connect of 
circuit points (shown as green dots). С. Cross-slice 
projection between slices 1_2 and N-1_N when identifying 
circuit locations, taking into account the buffer zones 
(shown with solid blue lines on the upper slices and dashed 
lines on the lower slices). 

Spatial relationships and neighbourhood in neural 
networks in fluorescence microscopy datasets enrich 
the possibilities of processing connectivity. The fact 
that the activity of neurons is related not to a single 

element but to a set of elements makes it possible to 
process data by methods of spatial analysis for flocks, 
taking into account the joint distribution of ‘neuronal 
ensemble’ activity. The presence of a spatiotemporal 
sweep between slices during scanning makes it 
possible to take into account the direction of 
movement of neuronal activity. 

The usage of spatial analysis methods made it 
possible to reveal data from pixels of multi-TIFF 
images and conduct inter-slice spatiotemporal 
analysis using flocking method.  

2 BACKGROUND  

2.1 Brain Imaging Methods and Tools  

The purpose of brain imaging analysis is usually to 
process data on brain structure, neuronal activity and 
their interrelationships. The possibilities and ways of 
analyzing the obtained data expand with the 
development of medical and research equipment used 
to obtain images of the brain. Thus, as image spatial 
resolution and the accuracy of localization of 
individual elements in the image increase, the ability 
to identify the topology of structures and individual 
brain areas improves. Also, with appropriate 
resolution, the level of detail is improved for 
describing processes in a healthy brain.  

The possibility of separating activity of different 
neuronal populations in the brain tissue was 
investigated in experiments using various injections 
to detect activity. Thus, in (Klapoetke et al., 2014) it 
was shown that two channel rhodopsins can detect 
two-color neural activation of spiking and 
downstream synaptic transmission in independent 
optical excitation of distinct neural populations. 

Topology of structures is considered in certain 
size ranges typical for these structures. Within small 
areas of interest, an influence of topology from other 
scales will reduce. Curved surfaces of the brain 
directly affect the overall measurement of activity of 
ensembles from different segments. Spatial analysis 
in the recognition of images of brain tissue images 
allows individual smaller elements on a curved 
surface to become similar to linear elements. A 
formation of dynamically stable ensembles with a 
self-sustaining configuration can remain in its 
localization for a prolonged time. 

Segmentation, Connectivity 
The main task for understanding the functioning of 
both healthy and damaged brains is segmentation, 
selection of areas of interest, and identifying 
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connectivity between individual parts of the brain. 
Linking experimental results to spatial and temporal 
reference points is necessary for comparative analysis 
of multiple heterogeneous data sets of brain structure 
and activity, obtained from different sources, with 
different resolutions, and in different coordinate 
systems. Evaluation of automatic labelling detection 
is investigated by Papp et al. (Papp et al., 2016), who 
propose a new workflow for spatial analysis of 
labelling in microscopic sections.  

Tractography 
Modern methods of Brain Imaging analysis apply a 
transition from selecting areas of interest to 
tractography techniques that allow visualizing 
pathways of the brain (white matter tracts) using 
tractography algorithms. Comparison of tractography 
algorithms for detecting abnormal structural brain 
networks presented in (Zhan et al., 2015), influence 
of pre-processing and comparison of tract selection 
methods in DTI analysis presented in (Ressel et al., 
2018). Sets of images obtained with a fiber-bundle 
micro probe immersed at different depths inside a 
fixed brain tissue were processed in (Doronina-
Amitonova et al., 2012). 

Spatial Analysis of High-Resolution Images 
As measurements become more detailed, researchers 
have an opportunity to monitor not only summary 
results in the form of connection or tracts but also to 
identify detailed elements at the cellular level. To do 
this, analysis algorithms are enhanced. Thomas L. 
Athey et al. (Athey et al., 2023) presented BrainLine, 
an open source pipeline that interacts with existing 
software to provide registration, axon segmentation, 
soma detection, visualization and analysis of results..  

2.2 Artificial Neural Networks for 
Spatial Processing  

Artificial neural networks are frequently used in 
segmentation of biomedical images. To solve the 
problem of image processing in differentiated zoom 
levels of images, mixed sized biomedical image 
segmentation based on training U-Net (Benedetti, 
Femminella and Reali, 2022) and DeepLabV3 
(Furtado, 2021) are used. Time overlap strategy used 
in U-Net (Ronneberger, 2017) allows for seamless 
segmentation of images of arbitrary size, and the 
missing input data is extrapolated by mirroring. 
However, U-Net performance can be influenced by 
many factors, including the size of training dataset, 
the performance metrics used, the quality of the 
images and, in particular, specifics of brain functional 
areas to be segmented.  

Despite the development of convolutional neural 
networks (CNNs) is limited because both efforts 
required to prepare training dataset, and time spent on 
data recognition in trained neural networks are still 
too great. As a result, it is more convenient to solve 
this type of tasks using spatial analysis methods that 
allow performing multi-operations and selecting not 
all objects, but only those that are of interest for 
further study. These approaches can be employed 
either individually or in conjunction with CNNs 
during pre-processing or post-processing stages of 
data processing. In addition, a well-chosen 
segmentation labelling algorithm (Lee et al., 2022) 
helps to optimize work with neural networks.  

2.3 Optogenetics in Studying of 
Neuronal Activity 

In 2005, Boyden and Deisseroth published the results 
of the first optogenetics experiments. Their work 
(Boyden et al., 2005) reported the ability to control 
neuronal spiking with a millisecond resolution by 
expressing a natural occurring membrane localized 
light-gated ion pump. In further research, Deisseroth 
explored possibilities of using optogenetics to control 
brain cells without surgical intervention (Deisseroth, 
2010). With the advancement of optogenetics, its 
experimental applications have spread to all areas of 
brain activity research. Optogenetic tools are enabling 
causal assessment of the roles that different sets of 
neurons play within neural circuits, and are 
accordingly being used to reveal how different sets of 
neurons contribute to emergent computational and 
behavioral functions of the brain (Boyden, 2011). 

Currently, optogenetics is actively used to study 
the neuronal activity of living animals, allowing deep 
immersion into the brain without destroying its 
structure. Researchers conduct a variety of 
optogenetic experiments on mice, including the study 
of social and feeding behaviour (Jennings et al., 
2019), False Memory creation in certain parts of the 
brain (Ramirez et al., 2013), and, if possible, 
activating or suppressing the activity of brain cells 
with a light flash, while affecting the general 
behaviour of mice (Yang et al., 2021). 

Light-sheet microscopy (LSM) was developed to 
allow for fine optical sectioning of thick biological 
samples without the need for physical sectioning or 
clearing, which are both time consuming and 
detrimental to imaging. The functioning principle of 
LSM is to illuminate the sample while collecting the 
fluorescent signal at an angle relative to the 
illuminated plane. Optogenetic manipulation coupled 
to light-sheet imaging is a powerful tool to monitor 
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living samples (Huisken and Stainier, 2009; 
Maddalena et al., 2023). 

2.4 Usage of Flocking Method in 
Detection of Neuronal Activities 

In this paper, we have extended the application of 
flocking method to the spatial analysis of optogenetic 
datasets. Flocking is a common behaviour observed 
in nature, defining the collective behaviour of a large 
number of interacting individuals with a common 
aim. Nearby members of a flock should move in 
approximately the same direction and at the same 
speed. For studying of collective motion or 
population dynamics in short trajectories is of-ten 
applied the flocking method, which based on analysis 
of joint directions and intersections of trajectories 
with a time lag. Flock methods analyse a behaviour 
of multi-sets of similar elements in research on 
collective behaviour in biology and even in robotics 
(Vicsek and Zafeiris, 2012; Ban et al., 2021; 
Papadopoulou et al., 2023). The methods used to 
calculate a behaviour of animals in a flock can also be 
extended to model neural networks (Battersby, 2015). 
Collective motion is also investigated for the analysis 
of cumulative behaviour of cells (Ascione et al., 
2023). 

The possibility of organizing parallel calculations 
by using the processing of activity patterns with 
spatial reference to individual tiles is shown by Marre 
(Marre et al., 2012); as an extension of this work, the 
paper (Goldin et al., 2022) shows the possibility of 
using the CNN model to calculate context 
dependence for predicting the activity of retinal cells 
depending on the content of natural images. 

In the case of neuronal activity, we are dealing 
with a set of simultaneously working elements, where 
behaviour of each of the elements depends on both its 
neighbours and the environment (Degond, Frouvelle 
and Merino-Aceituno, 2017; Levis, Pagonabarraga 
and Liebchen, 2019; Escaff and Delpiano, 2020; 
Rouzaire and Levis, 2022). Doursat suggested that 
‘Neuron flocking’ must happen in phase space and 
across a complex network topology’ (Doursat, 2013).  

‘Flocking’ behaviour as presented in this work 
has components comparable to the ‘delay activity’, 
which was observed by Miyashita (Miyashita, 1988) 
and theorized by other researchers (Hamid and Braun, 
2019). Specifically, the current work postulates that 
the activity of a neuron within a set of simultaneously 
neurons (neuronal network) depends on its 
neighbours within the neuronal network and, hence, 
the topology of the network. The formation of mental 
representations, being based on the temporal statistics 

of the environment, involves the establishment of 
stable neural patterns. These patterns of reverberating 
activity act as attractors within the neural network, 
enabling efficient encoding and retrieval of 
information (Hamid and Braun, 2019). 

In the paper (Aranda, Rivera and Ramirez-
Manzanares, 2014) Aranda et al. have shown that 
algorithms, based on information about spatial 
neighbourhood such as tractography methods, as well 
as the flocking paradigm, can improve a calculation 
of local tracks. Aranda et al. (Aranda, Rivera and 
Ramirez-Manzanares, 2014) made an assumption for 
calculations what ‘the flock members are particles 
walking in white matter for estimating brain structure 
and connectivity’. The authors applied calculation 
methods in accordance with Reynolds' rules of 
flocking behaviour (Reynolds, 1987). This 
assumption makes it possible to calculate the 
behaviour of individual sets of elements piece by 
piece, without using of collective information. 

The application of optogenetic scanning made it 
possible to identify the main components of neuronal 
activity and various types of activity changes in the 
same locations over time.  

We assume that the topological properties of 
distribution of individuals in a moving flock are able 
to represent information about the environment in the 
same way as it is realized by a network of neurons. In 
the methodology used in this paper, we further show 
that considering a set of elementary components of 
neuronal activity in the form of a flock improves the 
extraction of meaningful information.  

In calculations to study dynamics of neuronal 
activity, we used the time delay that occurs when 
moving from slice to slice during scanning using 
optogenetic methods. An important advantage of 
using this method is the identification of locations 
where a pronounced directionality of neuronal 
activity trajectories can be observed in a sequence of 
several adjacent slides, as well as the identification of 
areas of through intersection of activities. 

3 METHODS 

3.1 Calculations 

The proposed flocking method for interslice image 
analysis allows to identify activity of neural 
ensembles in the mouse brain, which were obtained 
using optogenetic technologies.  

By applying the flocking principles to the analysis 
of activity of a set of neurons, it becomes possible to 
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reduce the influence of noise and replenish the sites 
with missed activity. 

The registered optogenetic highlighting that we 
considered is caused by neural ensembles. 
Illuminated elements are presented in the form of 
pixels of varying degrees of brightness, with an area 
of 1x1 sq. pixels (10x10 sq. μm). The characteristic 
size of a single detected ensemble was up to 10x10 
sq. pixels. These ranges are typical for cells, 
ensembles, and agglomerations of cells (Bonsi et al., 
2019). All calculations were performed on the basis 
of the characteristic features of neural circuits, 
including common intersections and overlapping 
buffer zones of different track.  

 
Figure 2: Processing to save or remove intersection points 
from layers. 

The following operations were performed with 
each of the multi-page TIFF files: 

Split Multi-Page TIFF Files into Distinct Slices in 
TIF Format 
 

Image Pre-Processing and Interpolation 
(a) Create contour lines of intensity (in the form of 

isolines, the applied parameter is 25 pixels) for 
each of the distinct slices.  

(b) Apply LF Tools Extend lines plugin to a set of 
contours in each of the distinct slices and 
creating extended lines of contours at their start 
and/or end points, 100 μm in length. 

 

Flocks Identifying 
(c) Create intersection points of extended lines 

from neighboring slices. 
(d) Search for intersection points of extended lines 

from neighboring slices that are located at a 
distance in the range of 0.25-0.5 pixel (Figure 
2). 

(e) Remove all intersection points from the 
previous item that are present in more than one 
on the same extended line. 

(f) Search for remaining intersection points from 
three neighboring slices, which (points) are not 
more than 0.25 pixel away from each other.  

(g) Search for all intersection points from the 
previous item that are more than one on the 
same extended line.  
This operation reveals either a long marginal 
chain (more than 10 pixels in length) in several 
neighboring slices or the movement of a large 
object (10x10 pixels). The spread of 
intensively of these identified objects occurs 
over areas of distinct slices. 

(h) Remove all intersection points from 3(d) item 
that are more than one on the same extended 
line. 

(i) Search for remaining intersection points from 
the previous item. 
As a result, small movements (movement 
within the identified localization, 10x10 pixels) 
of small objects (3x3 pixels) are revealed.  

Plotting of Flock Trajectories 
(j) Splice of intersection points from 3(g) item 

(defining the localization of small movement) 
into a sequence corresponding to the sequence 
of transitions from slice to slice, if the 
intersection points from 3(g) item are not more 
than 10 pixels away from each other. 

Table 1: Spatial data processing applications. 

Plugin Description 
Extracts contour lines 
https://docs.qgis.org/3.2
8/en/docs/user_manual/
processing_algs/gdal/ras

terextraction.html 

Generate a vector contour 
from the input raster by 

joining points with the same 
parameters. Extracts contour 

lines from any GDAL-
supported elevation raster.

Nearest neighbour 
analysis 

https://docs.qgis.org/3.1
6/en/docs/user_manual/
processing_algs/qgis/ve
ctoranalysis.html#qgisn
earestneighbouranalysis

Performs nearest neighbour 
analysis for a point layer. The 
output presents how data are 

distributed (clustered, 
randomly or distributed). 

LF Tools 
https://github.com/LEO
XINGU/lftools/wiki/LF-

Tools-for-QGIS 

Tools for cartographic 
production, surveying, digital 
image processing and spatial 

analysis (Extended lines)

The parameters used for the calculations were 
established by selecting and optimizing the number of 
intersection points connecting lines from two 
different neighboring slices, taking into account the 
Nearest neighbor analysis. An extended line is 
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constructed according to the distance between the 
cells. 

3.2 Applications for Spatial Analysis 

In our work we processed optogenetic mouse brain 
images using Open Source Geographic Information 
System QGIS v.3.  

Applications and special plug-ins (see Table 1) 
were used for spatial analysis of data both within 
single slices and between sets of closely spaced slices. 

4 EXPERIMENTS AND RESULTS 

4.1 Datasets 

Our work considered optogenetic datasets on 23 
mice. Datasets were presented as multi-page TIFF 
files, which were exported to QGIS (http://qgis.org).  

Recognition of multipoint activity and spatial 
analysis of the distribution of neuronal activities 
according to fluorescence microscopy datasets was 
performed based on data packages published in an 
open repository (https://ebrains.eu). As source 
material, we used fluorescence microscopy datasets:  

Set 1 (see Table 2): We used whole-brain datasets 
(Silvestri et al., 2019) from transgenic animals with 
different interneuron populations (PV, SST and VIP 
positive cells) which are labelled with fluorescent 
proteins. These datasets were obtained from 11 mice 
(male animals, on post-natal day 56). The data was 
represented in 48 multi-page TIFF files. Each multi-
page TIFF included 160 - 288 slices with dorsal or 
ventral projections of the mouse brain. The data 
resolution is 10.4x10.4x10 μm.  

Set 2 (see Table 2): We used whole-brain datasets 
(Silvestri, Di Giovanna and Mazzamuto, 2020) 
obtained using LSM in combination with tissue 
clearing. These datasets were obtained from 12 mice 
(male animals, on post-natal day 56). The data was 
represented in 14 multi-page TIFF files. Each multi-
page TIFF file included 800 slices with dorsal or 
ventral projections of the mice brain. The data 
resolution is 10x10x10 μm.  

By processing using CLARITY-TDE method 
(Chung et al., 2013; Costantini et al., 2015) images 
have been partially cleaned up.  

Allen Mouse Common Coordinate Framework 
(Wang et al., 2020) served in our work as a frame of 
data reference to spatial coordinates. 

 

Table 2: Source material. 

Set 1 Set 2
Number of mice 11 mice  12 mice 

Gender and age of 
animals 

male 
animals, 

post-natal 
day 56 

male 
animals, 

post-natal 
day 56

Parvalbumin-positive 
interneurons parvalbumin 

(PV)

4 Animals 5 Animals 

Somatostatin-positive 
interneurons somatostatin 

(SST)

3 Animals 3 Animals 

VIP-positive 
interneurons vasoactive-
intestinal peptide (VIP)

4 Animals 4 Animals 

Number of multi-page 
TIFF files (several files 

per mouse)

48 multi-
page TIFF 

files 

14 multi-
page TIFF 

files
Tissue clearing method CLARITY/

TDE 
CLARITY/

TDE
Resolution  10.4x10.4x

10 μm 
10x10x10 

μm 
Number of slices in one 

multi-page TIFF file
about 288 

slices  
800 slices  

Size of one slice about 
1200x1500 

pixels 

1140x1500 
pixels 

4.2 Results 

Spatial Processing in QGIS for Identifying Tiles 
With Activity Locations (see Section 3.1) 

Output: set of tiled rasters with activity locations, 
which contain the ID-numbers of individual slices 

The values obtained as a result of our work after 
spatial processing in QGIS:  

─ mean number of localization sites in neighboring 
slices, averaged over multi-page TIFF files, is 124; 

─ the percentage of sites with identified ‘small 
movement’ (movement within the identified 
localization, 10x10 sq. pixels) to the total number 
of identified localizations, averaged over all multi-
page TIFF files, is 73.4%.  

As a result of spatial processing in QGIS, 
localizations of sites of (10x10 sq. pixels) with 
‘flocks’ were identified, based on the intersection 
points of extended lines in these localizations Figure 3 
(Figure 3). 

Further, only tiles with the identification of 
activity locations will be processed. This is much less 
than the full data from multi-page TIFF sets, and 
therefore the volume of processed materials is 
reduced by 10 or more times. 
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Figure 3: Slice-by-slice activity near the identified 
localization (marked by yellow dots). Scale bar: 30 µm. 

The identified sites were further used as 
segmentation labelling for training U-Net and 
DeepLabV3Plus neural networks. 

Post-processing of Tiles with Identified Activity 
Locations Using Convolutional Neural Networks 
for Image Segmentation 
Output: set of activity coordinates inside of tiles 
which contain the ID-numbers of individual slices 
and tiles. The finished results can be uploaded to 
JSON files. 

After training used our segmentation labelling, U-
Net showed next results in Precision, Recall, and F1-
score (F1-score = 2 * Precision * Recall / (Precision 
+ Recall): 81.4%, 76.2%, and 78.7%, respectively; 
and DeepLabV3Plus showed next results in 
Precision, Recall, and F1-score: 76.4%, 79.4%, and 
77.9% respectively. 

Further Using of Final Results 
Final results can be used in external applications, both 
for calculating the trajectories of activity movements, 
and for constructing tractograms inside 3D multi-
page TIFF files.  

5 CONCLUSION 

In our work, we applied the flocking method to 
analysis of spontaneous brain activity. We selected 
different cell groups and determined areas occupied 
by ensembles of cell groups in mouse brain. When 
performing computational experiments, we analyzed 
the interslice propagation of neuronal activity for sets 
of mouse brain images.  

In summary, the contributions of this work are as 
follows: 

─ We performed a spatial analysis of mouse brain 
optogenetic images using the flocking method. 

─ We have shown that using the flocking method, it 
is possible to detect more accurately both areas and 
tracks of neuronal activity, identifying the 
connectivity of extended areas of activity 

─ We were able to identify localizations of sites with 
small movements of group activity (stably 
localized flickering of activity with small 
movements). 

In the future, the flocking method can be used not 
only in processing of optogenetic images but also in 
the analysis of other tracks, including the analysis of 
data obtained by diffusion-weighted magnetic 
resonance imaging (DW MRI) + High Angular 
Resolution Diffusion Imaging (HARDI). 
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