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Abstract: In this contribution, we propose a metric to measure the quality of textual functional requirements specifi-
cations. Since the main problem of such requirements specifications is their ambiguity, incompleteness, and
inconsistency, we developed textual patterns to reveal shortcomings in these properties. As a component of
our analysis, we use not only the text of the requirements but also the UML model that we construct during the
text analysis. Combining the results of part-of-speech tagging of the text and the modeled properties, we are
able to identify a number of irregularities concerning the properties named above. Then, the text needs human
intervention to correct or remove the suspicious formulations. As a measure of the requirements specification
quality, we denote the number of necessary human interventions. We implemented a tool called TEMOS that
can test ambiguity, incompleteness, and inconsistency, and we use its results to evaluate the quality of textual
requirements. In this paper, we summarize our project results.

1 INTRODUCTION

The idea of requirements specification is not new.
The famous Italian painter Raffael (1483–1520)
produced his paintings to the orders of wealthy
customers. They wanted to know in advance what
they would pay for. Rafael described the picture in
words, for example, “In the oil painting on canvas
with dimensions according to the His Highness’s
wishes, there will be His Highness like a knight
in armor on a white horse with a sword and spear
fighting a dragon” and added a sketch (drawing) of
the painting. The customer could opt, for example,
for a black horse and a helmet with a plume. Then
they wrote a contract, and the image had to match its
content. After five hundred years, we follow (more
or less) the same practice in software engineering
projects. The description of the software product to
be constructed is called requirements specification.

There are two viewpoints on the quality of a soft-
ware product. It has to satisfy the requirements spec-
ification, and it has to state and imply the needs of all
stakeholders. The problem is that the requirements
specification usually does not reflect the needs of the
stakeholders completely. Many stakeholders cannot
articulate the requirements or do not even know what
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they want. The second reason is that the analysts,
who should help them, often do not deeply understand
the semantics of the application domain (e.g., molecu-
lar biology). So, mistakes are practically guaranteed.
For these reasons, it is worth investing effort into for-
mulations of textual requirements before the analysis
starts. Another point of view is the software product
maintenance that is the most costly part of the whole
project. It is very difficult to include all corrections,
enhancements, and upgrades of the requirements into
existing textual requirements specification.

Textual formulated requirements specifications
are necessary as a base of communication between
the customer, the user, the domain expert, and the an-
alyst. It has one main advantage – it is understandable
for all of them. In the event of a lawsuit between the
company and the customer, the judge has a facilitated
role because he understands the assignment and can
assess whether the product meets the assignment.

Unfortunately, any text suffers from ambiguity,
incompleteness, and inconsistency – in our project
TEMOS, we focused on checking them. In Section 3,
we define a quality measure that can be used not only
in the first phase of the software development but also
during the maintenance for checking the new versions
of updated requirements specifications.

Mainly, the inspection is used to check the quality
of requirements. Experienced people remove some
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of the problems in requirements, but some of the
shortcomings remain. Some deficiencies are cleared
and corrected or removed gradually during the
program development in the following development
steps. Some of them are discovered during testing,
and some others are revealed after release by the
customer. Mistakes made but not corrected during
the first phase of the cycle migrate then to other
phases. This fact results in a costly process because
all corrections cause costs that increase multiplicative
with the later discovery and correction of the bugs.

It is known that manual approaches that rely on
human intelligence and the application of inspection
checklists do not scale to large specifications (Dalpiaz
et al., 2018). Therefore, we try to detect errors in the
requirements specification during the requirements
definition process. We provide defect density, i.e., we
count the number of detected places in formulations
that may have the meanings of a defect. A human
intervention makes the decision. In this contribution,
we defined the quality metrics we developed and used
in the requirements’ quality improvement process. To
support it, we summarized our methods for check-
ing ambiguity, incompleteness, and inconsistency of
textual functional requirements specifications imple-
mented in our tool TEMOS.

2 RELATED WORK

Quality in software development on all levels is
a topic discussed for many years, and it has been
included into ISO standards, e.g., ISO/IEC/IEEE
29148:2011. Quality of requirements is a specific part
of it. It is a well-established concept that is described
in many papers, e.g., (Davis et al., 1993), (Fabbrini
et al., 2001), (Nordin et al., 2017). In (Loucopoulos
and Karakostas, 1995), the requirements engineering
is described as an iterative co-operating process of im-
provements in the understanding gained. The survey
is given in (Kocerka et al., 2018). In (Davis et al.,
1993), the authors list 24 qualities of requirements.
Most of them are qualitative; they can only be judged
and not measured. Because of that, we selected only
three of them – ambiguity, incompleteness, and incon-
sistency.

We used a mapping between requirements speci-
fication and a UML class model for plain English in
our paper (Šenkýř and Kroha, 2018). In (Bugayenko,
2021), the author uses a similar concept for “con-
trolled” English.

In (Femmer et al., 2017), the authors classify 166
rules for requirements and estimate that 53 % of them
can be checked automatically with good heuristics.

They investigate the problem what cannot be checked
automatically in requirements. We do not exclude hu-
man intervention because we think that the semantics
may be very complex and that the mistakes caused
by automated checking may be very expensive. In
(Medeiros et al., 2016), requirements of agile projects
are investigated.

In (Nordin et al., 2017), a study of practice is
given, and it is stressed that the quality problems of
requirements are an important topic. The quality eval-
uation is done manually during review sessions in
(Saito et al., 2013). A survey of methods is given
in (Kummler et al., 2018). The inspection is also de-
scribed in (Takoshima and Aoyama, 2015).

It is known that most defects indicated in deliv-
ered software products are based on deficient require-
ments understanding (Génova et al., 2013). A com-
plexity measure for textual requirements is described
in (Antinyan et al., 2016). The measure indicates the
amount of actions (and actors) and their relations in
requirements. We do not investigate correctness like
in (Feng et al., 2021). A semantic representation of
functional requirements is investigated using methods
of information retrieval in (Sonbol et al., 2020).

In (Wilson et al., 1997), the quality of textual re-
quirements is measured using weak phrases, the size
of text, text structure, hierarchical levels, and read-
ability statistics. A similar approach is given in (Berry
et al., 2006).

In (Bäumer and Geierhos, 2018), the authors
developed methods of detecting quality violations in
a requirements specification called linguistic triggers.
Besides the problem of incompleteness, there is
also presented an approach of ambiguity detection.
First, the detection via predicate argument analysis
in which a semantic role labeler assigns semantic
roles such as agent, theme, and beneficiary to the
recognized predicate. Presented illustrating example
is the verb “send” that is a three-place predicate
because it requires the agent (sender), the theme
(sent) and the beneficiary argument (sent-to). If
the beneficiary is not specified here, it is unknown
whether one or more recipients are possible. The
second step is compensation. Using the similarity
search component known from the information
retrieval (IR) domain, they try to find the potentially
missing part sent-to based on software descriptions
gathered from one software-to-download portal.

Patterns belong to the standard technology of text
mining, e.g., (Bhatia et al., 2013). In (Eckhardt et al.,
2016), sentence patterns have been used but for per-
formance requirements, not for functional require-
ments like in our tool, and their sentence patterns
are completely different from our sentence patterns.
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Using NLP for requirements engineering is analyzed,
e.g., in (Dalpiaz et al., 2018), (Zhao et al., 2021), (Fer-
rari et al., 2021). Building models from requirements
is used for example in (Robeer et al., 2016). Differ-
ently to our approach, they do not use it to analyze
requirements.

Ambiguity is defined in (Davis et al., 1993) as
the percentage of requirements that have been inter-
preted in a unique manner by all its human review-
ers. There are many papers about automated construc-
tion of glossaries, e.g., (Arora et al., 2017), (Gemkow
et al., 2018), (Ezzini et al., 2021). In (Kose and Ay-
demir, 2021), a method is proposed to automatically
extract a glossary from a set of models. We derived a
glossary from the text of requirements. Ambiguity of
words is investigated in (Gleich et al., 2010), (Arora
et al., 2017), and (Kose and Aydemir, 2021). We ad-
ditionally investigate the ambiguity of sentences (Sec-
tion 3.1).

In (Dalpiaz et al., 2018), the authors explore po-
tential ambiguity and incompleteness based on the
terminology used in different viewpoints. They com-
bine possibilities of NLP technology with information
visualization. Their approach is completely different
from our approach.

Two incompleteness metrics of input documents
of the requirements specifications are described in
(Ferrari et al., 2014). The second one – the back-
wards functional completeness that the paper focuses
on – refers to the completeness of a functional re-
quirements specification with respect to the input doc-
uments. Contrary to this approach, we do not mea-
sure the incompleteness using metrics and quantified
results, even though it is a good idea.

In (Li, 2015), a meta-model approach is used to
detect the missing information in a conceptual model.
It is also an approach of the class forward functional
completeness but at the level of a conceptual model.

3 OUR APPROACH TO QUALITY
OF REQUIREMENTS

We developed our tool TEMOS to test whether there
are some problems of ambiguity, incompleteness, and
inconsistency in the requirements under considera-
tion. Then we found that we can use it to measure
the quality of the requirements as a “side effect”.

Our approach is based on a concept that is well-
known in traditional publishing houses. During the
editing process of manuscripts, all editor’s corrections
can be qualified, collected and evaluated to the quality
of the manuscript. We used the same method.

Each positive test (i.e., a test revealing a potential

problem) is evaluated, and the value becomes part
of the quantitative description using metrics. The
best quality (zero problems) is achieved when our
algorithms do not find any suspicious formulations in
the sense of ambiguity, incompleteness, and inconsis-
tency. While checking, our system TEMOS always
generates warning messages when it reveals some
suspicious irregularities. We have defined the quality
metrics of functional requirements as the value
computed from the numbers of the generated warning
messages. For clarity, it is structured according to the
topics (ambiguity, incompleteness, inconsistency).
In some topics, we can compute the relative quality,
which is the number of the generated warning
messages related to the number of sentences in the re-
quirements. The proposed quality measure formula is

Q-Req = w1 ·AW +w2 ·AS+w3 · ISen
+w4 · ISc+w5 ·CGS+w6 ·DSR

where variables wi are weights that can be individu-
ally set. It uses the following components. Ambi-
guity: AW – the number of ambiguous words found,
AS – the number of ambiguous sentences found. In-
completeness: ISen – the number of incomplete sen-
tences found, ISc – the number of incomplete scenar-
ios found. Inconsistency: CGS – the number of con-
tradictions in groups of sentences, DSR – the number
of necessary enrichments in the sense of the default
consistency rules.

As we already mentioned in Section 1, our qual-
ity measurement can be (and should be) used during
the maintenance to master all the inserted corrections,
enhancements, and upgrades of the requirements into
existing textual requirements specification.

Below, in separate sections, we present topics con-
nected to each problem area mentioned in Section 1 –
ambiguity, incompleteness, and inconsistency. Due to
the scope of this paper, it is not our goal to recall here
all details, so we only briefly mention the problems
we solved in our previous work and we refer to our
previous papers.

3.1 Problem of Ambiguity

We investigate the problem of ambiguity in our paper
(Šenkýř and Kroha, 2019a). In our metric, we include
the following.

The number of ambiguous words (AW ). Ambigu-
ity arises whenever a word or an expression can be in-
terpreted in more that one way; the reason is that nat-
ural languages use: homonyms, i.e., words which are
spelled alike but have different meanings, synonyms,
i.e., different words that have the same meaning.

The number of ambiguous sentences (AS). Re-
garding the sentences, we can focus on:
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• syntactic methods – to check a different meaning
that depends on the position in the parsing tree
of a sentence (example: “The button next to the
warning box with the red border. . . ” – Does the
button have the red border? Or does the warning
box have the red border?),

• semantic methods – the semantic meaning in-
cludes coreferences and a model created dur-
ing requirements processing or a model imported
from an external ontology source; for example,
the model of sentences “Our delivery contains
product XYZ-123 in container X-50. Its weight is
50 kg.” can contain classes delivery, product,
and container and all these classes can have the
attribute weight.

3.2 Problem of Incompleteness

We investigate the problem of incompleteness in our
papers (Šenkýř and Kroha, 2019b) and (Šenkýř and
Kroha, 2020). In our metric, we include the follow-
ing.

The number of incomplete sentences (ISen). On
the level of a sentence, we can check the usual usage
of words – in the sense that we expect usual text frag-
ments – for example, we define a common noun and
preposition collocation set – if the kind of usage in the
textual requirements (e.g., a list) does not correspond
to the kind of usage in the vocabulary (e.g., a list of )
then a warning is counted; acronyms definition – all
acronyms should be defined (in an attached vocabu-
lary); semantic model (as mentioned in the previous
section) – here, we can check described actions, i.e.,
verbs in sentences of queries are investigated in the
sense whether the action that they describe, can be
performed in the existing model (e.g., sorting without
a key).

The number of incomplete scenarios (ISc). For
recognized enumerations (e.g., of attribute values),
we can check if the recognized scenarios cover all
known values of the specific enumeration. We can
also check the generated class model extracted from
the requirements – warnings can be counted when we
notice “empty” classes without attributes or classes
without relation to any other class.

3.3 Problem of Inconsistency

We investigate the problem of incompleteness in our
papers (Šenkýř and Kroha, 2021), (Šenkýř and Kroha,
2021a), and (Šenkýř and Kroha, 2021b). In our met-
ric, we include the following.

The number of contradictions in groups of sen-
tences (CGS). The linguistic sources of the inconsis-

tency include using antonyms, a negation, or a com-
bination of synonyms together with changed roles of
subject and object, passive voice, and negation, e.g.,
“the user can edit a document” contra “the user can-
not correct a document in this mode” (here, we sup-
pose that the verbs “to edit” and “to correct” have
the same meaning) contra “a document cannot be cor-
rected by the user”. Using numerically different data,
e.g., “you will start the function by double click”
contra “you will start the function by one click”. Us-
ing factive contradiction in the sense of attributes of
the subject. Using lexical contradiction, e.g., “to ob-
tain results stay joined and wait” contra “to obtain re-
sults restart the application” contra “to obtain results
restart the system”. Using world knowledge to indi-
cate the contradiction, e.g., “there is public access to
your private data”.

Additionally, some words may change, influence,
or limit the sense of the sentence, e.g., but, except,
however, instead of, when, so that, that.

The number of necessary enrichments in the sense
of the default consistency rules (DSR). In our pa-
per (Šenkýř and Kroha, 2021b), we define the de-
fault consistency rules as the omitted part of the tex-
tual requirements that we can try to extend by pro-
cessing sentences from external sources. For that
purpose, we can cluster existing triplets (subject—
predicate—object) from the requirements, and each
clustered triplet compare with sentences matching the
same triplet (or at least a part of the triplet) from ex-
ternal sources.

4 DATA AND EXPERIMENTS

To evaluate our proposed methods, we have prepared
a data set1. We have collected textual requirements
from four different sources: (1) a set of requirements
from the PUblic REquirements Documents (PURE)
data set2 (prefixed with uppercase P in the evaluation
table), (2) a set of requirements collected by (Hayes
et al., 2019) (prefixed with uppercase H in the eval-
uation table), (3) a set of requirements provided by
(Dalpiaz et al., 2019) (prefixed with lowercase g in the
evaluation table), (4) a custom collection of require-
ments found in the Internet (prefixed with uppercase
C in the evaluation table).

In Table 1, for each input requirements text (case)
from the aforementioned data set, we record (a legend
of the table):

• ARI – automated readability index – value ob-

1https://zenodo.org/record/7897601
2https://zenodo.org/record/7118517
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Figure 1: Correlation comparison of IPA and ARI. Figure 2: Correlation comparison of EN and Q-Req.

tained using the Free Text Complexity Analyzer
online tool3,

• the number of all recognized issues (warnings)
in the sense of the proposed quality measure for-
mula Q-Req defined in Section 3, where we use
all weights wi equivalent and equal to 1,

• EN – the number of recognized entities in the re-
quirements text,

• IEN – the number of issues per one recognized
entity in the requirements text,

• RN – the number of recognized relations in the
requirements text,

• IRN – the number of issues per one recognized
relation in the requirements text,

• AN – the number of recognized attributes in the
requirements text,

• IAN – the number of issues per one recognized
attribute in the requirements text,

• IPW – the number of issues per word in the re-
quirements text,

• IPS – the number of issues per sentence in the re-
quirements text,

• IPA – the number of issues per average number of
words in a sentence in the requirements text.

In Figure 1, we compare the correlation of IPA (the
number of issues per average number of words in
a sentence in the requirements text) and ARI (auto-
mated readability index). According to the used data
set, it cannot be claimed that the requirements texts
with the most generated warnings are the most com-
plex texts according to ARI at the same time.

In Figure 2, we compare the correlation of EN
(the number of recognized entities in the requirements

3https://www.lumoslearning.com/llwp/
free-text-complexity-analysis.html

text) and Q-Req (the number of generated warnings).
In this case, as might be intuitively expected, the in-
creasing size of the generated model in the sense of
recognized entities is reflected in the number of gen-
erated warnings due to the need for a more complex
specification.

5 CONCLUSIONS

In this contribution, we described a method to check
the quality of textual functional requirements. We
used the linguistic patterns we originally developed to
build a UML class model from textual requirements.
Our implemented system TEMOS analyses the am-
biguity, incompleteness, and inconsistency of textual
functional requirements and indicates a set S of recog-
nized suspicious irregularities. This set is used to gen-
erate warning messages that inform the analyst about
the problems found.

To measure the quality of requirements, we have
defined a simple formula that uses the number of el-
ements in the set S – see Section 3. We compute the
formula and declare this result to be the value of our
quality metric. In the evaluation (Section 4), we com-
pare the result value of this metric with the readability
index ARI, recognized parts of the generated model
from the requirements, and number of words and sen-
tences of the requirements.

We assume the analysts remove some of the prob-
lem sources according to the generated warnings.
Then they iterate in quality checking as long as there
are no more problems found or the problems can be
explained by the imperfection of our system TEMOS.
As we declare above, our methods do not guarantee
that they reveal all problems concerning ambiguity,
incompleteness, and inconsistency. The semantics of
natural languages is enormously complex, and it is
based not only on the written text but also on educa-
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Table 1: The evaluation of the recognized issues (warnings) using Q-Req.

Case ARI Q-Req EN IEN RN IRN AN IAN IPW IPS IPA
g02-federalspending 8.4 27 81 0.33 51 0.53 0 0.00 0.01 0.28 1.27
g03-loudoun 14.2 43 34 1.26 23 1.87 1 43.00 0.03 0.75 1.55
g04-recycling 10.1 25 29 0.86 17 1.47 0 0.00 0.02 0.49 1.01
g05-openspending 12.6 14 38 0.37 26 0.54 0 0.00 0.01 0.26 0.46
g08-frictionless 11.8 48 38 1.26 29 1.66 1 48.00 0.03 0.73 1.90
g10-scrumalliance 9.9 60 62 0.97 45 1.33 1 60.00 0.02 0.61 2.29
g11-nsf 9.0 25 36 0.69 21 1.19 0 0.00 0.01 0.34 1.21
g12-camperplus 10.5 36 21 1.71 15 2.40 0 0.00 0.03 0.68 1.34
g13-planningpoker 10.4 39 41 0.95 34 1.15 1 39.00 0.03 0.74 1.42
g14-datahub 11.0 26 35 0.74 33 0.79 2 13.00 0.01 0.39 0.95
g16-mis 12.1 33 63 0.52 62 0.53 1 33.00 0.02 0.49 1.46
g17-cask 11.4 17 42 0.40 45 0.38 2 8.50 0.01 0.27 0.67
g18-neurohub 9.4 56 72 0.78 62 0.90 0 0.00 0.03 0.55 2.57
g19-alfred 7.2 42 55 0.76 42 1.00 2 21.00 0.02 0.30 2.37
g21-badcamp 12.1 32 39 0.82 26 1.23 0 0.00 0.02 0.46 1.19
g22-rdadmp 12.4 30 51 0.59 48 0.63 0 0.00 0.01 0.36 1.11
g23-archivesspace 7.6 14 14 1.00 9 1.56 0 0.00 0.02 0.25 0.90
g24-unibath 13.8 17 31 0.55 21 0.81 1 17.00 0.01 0.33 0.60
g25-duraspace 9.5 31 65 0.48 67 0.46 4 7.75 0.02 0.31 1.46
g26-racdam 9.9 33 33 1.00 23 1.43 0 0.00 0.02 0.33 1.54
g27-culrepo 13.8 77 94 0.82 64 1.20 1 77.00 0.02 0.64 2.65
g28-zooniverse 9.2 15 29 0.52 17 0.88 0 0.00 0.01 0.25 0.85
P01. Blit 5.0 12 30 0.40 34 0.35 1 12.00 0.02 0.25 1.10
P02. CS179G. . . 8.0 22 95 0.23 83 0.27 6 3.67 0.02 0.33 1.21
P03. eProcurement 11.4 62 72 0.86 78 0.79 0 0.00 0.04 0.69 3.06
P04. Grid 3D 4.9 2 18 0.11 13 0.15 0 0.00 0.01 0.18 0.12
P05. Home 1.3 6.4 25 60 0.42 74 0.34 2 12.50 0.02 0.29 1.94
P06. Integrated. . . 8.3 124 115 1.08 149 0.83 1 124.00 0.06 1.57 4.46
P07. Inventory 3.5 116 180 0.64 317 0.37 8 14.50 0.02 0.23 13.79
P08. KeePass. . . 4.2 12 44 0.27 32 0.38 0 0.00 0.03 0.33 0.94
P09. Mashbot 8.8 14 24 0.58 28 0.50 0 0.00 0.02 0.54 0.66
P10. MultiMahjong 9.3 62 61 1.02 66 0.94 1 62.00 0.04 0.70 3.21
P11. Nenios 6.6 70 44 1.59 59 1.19 2 35.00 0.07 0.85 6.08
P12. Pontis 5.0. . . 11.5 71 168 0.42 267 0.27 3 23.67 0.02 0.32 3.83
P13. Public Health. . . 17.4 140 181 0.77 244 0.57 0 0.00 0.05 1.27 10.68
P14. Publications. . . 9.1 96 99 0.97 196 0.49 3 32.00 0.04 1.57 3.43
P15. Puget Sound. . . 7.0 36 104 0.35 123 0.29 1 36.00 0.02 0.39 1.90
P16. Tactical. . . 7.5 61 223 0.27 204 0.30 1 61.00 0.01 0.21 3.10
P17. Tarrant. . . 13.1 79 30 2.63 33 2.39 4 19.75 0.04 0.59 6.00
P18. X-38 Fault. . . 12.5 88 211 0.42 233 0.38 4 22.00 0.02 0.25 5.95
H01. CCHIT 12.7 65 173 0.38 205 0.32 4 16.25 0.03 0.58 3.10
H02. CM1 10.2 1 21 0.05 13 0.08 0 0.00 0.00 0.03 0.06
H03. InfusionPump 10.4 24 186 0.13 185 0.13 2 12.00 0.01 0.10 1.61
H04. Waterloo 9.0 175 355 0.49 1070 0.16 3 58.33 0.01 0.26 9.85
C01. Amazing. . . 5.4 78 110 0.71 251 0.31 0 0.00 0.02 0.84 2.28
C02. EU Rent 4.1 26 75 0.35 97 0.27 6 4.33 0.05 0.60 2.33
C03. FDP Expand. . . 9.9 6 39 0.15 29 0.21 1 6.00 0.01 0.15 0.49
C04. Library System 6.1 57 74 0.77 109 0.52 1 57.00 0.03 0.45 4.01
C05. Nodes Portal. . . 7.8 16 97 0.16 259 0.06 1 16.00 0.01 0.10 1.09
C06. Online Nat. . . 6.1 135 93 1.45 137 0.99 3 45.00 0.04 0.51 12.42
C07. Restaurant. . . 7.9 17 32 0.53 65 0.26 0 0.00 0.02 0.37 0.87
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tion and experience, i.e., each human being has (or
can have) a different model of the world in its head.
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Šenkýř, D. and Kroha, P. (2018). Patterns in Textual Re-
quirements Specification. In Proceedings of the 13th
International Conference on Software Technologies,
pages 197–204, Porto, Portugal. SCITEPRESS – Sci-
ence and Technology Publications.
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and Pérez-Meana, H., editors, New Trends in Intelli-
gent Software Methodologies, Tools and Techniques
– Proceedings of the 20th International Conference
on New Trends in Intelligent Software Methodologies,
Tools and Techniques (SoMeT 2021), volume 337 of
Frontiers in Artificial Intelligence and Applications,
pages 674–687. IOS Press.
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