
Towards Interpretable Monitoring and Assignment of Jira Issues

Dimitrios-Nikitas Nastos a, Themistoklis Diamantopoulos b and Andreas Symeonidis c

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki, Greece

Keywords: Project Management, Task Management, Jira Issues, Topic Modeling.

Abstract: Lately, online issue tracking systems like Jira are used extensively for monitoring open-source software
projects. Using these systems, different contributors can collaborate towards planning features and resolv-
ing issues that may arise during the software development process. In this context, several approaches have
been proposed to extract knowledge from these systems in order to automate issue assignment. Though effec-
tive under certain scenarios, these approaches also have limitations; most of them are based mainly on textual
features and they may use techniques that do not extract the underlying semantics and/or the expertise of the
different contributors. Furthermore, they typically provide black-box recommendations, thus not helping the
developers to interpret the issue assignments. In this work, we present an issue mining system that extracts
semantic topics from issues and provides interpretable recommendations for issue assignments. Our system
employs a dataset of Jira issues and extracts information not only from the textual features of issues but also
from their components and their labels. These features, along with the extracted semantic topics, produce an
aggregated model that outputs interpretable recommendations and useful statistics to support issue assignment.
The results of our evaluation indicate that our system can be effective, leaving room for future research.

1 INTRODUCTION

Nowadays, open-source projects are developed and
maintained online using code hosting facilities like
GitHub and monitored with issue tracking systems
like Jira. This collaborative paradigm dictates that a
project may have multiple contributors with different
levels of expertise and experience, who must all work
together in coordination to design and develop fea-
tures, resolve issues/bugs, plan and craft releases, and
generally monitor the development of the project.

As a result, contemporary issue tracking systems
function as a hub of useful knowledge for project
monitoring and decision making. The problem, how-
ever, is that, as the project grows, knowledge is harder
to extract and transfer among existing and new con-
tributors. And this may lead to several challenges. For
instance, when a new bug arises, one must have a clear
view of the project in order to be able to assess its im-
pact, determine the relevant components that may be
affected and assign it to the most relevant contributor.

In this context, several approaches have been de-
veloped for extracting information from issue track-

a https://orcid.org/0009-0007-2240-2835
b https://orcid.org/0000-0002-0520-7225
c https://orcid.org/0000-0003-0235-6046

ing systems with the aim of helping developers better
manage the software project under analysis. These
approaches aspire to confront various challenges, in-
cluding e.g. determining the most suitable developer
for resolving a new issue (Murphy and Cubranic,
2004; Anvik et al., 2006; Matsoukas et al., 2020; Alk-
hazi et al., 2020), assessing the severity and/or the pri-
ority of a bug (Sharma et al., 2012; Tian et al., 2015;
Kanwal and Maqbool, 2012; Diamantopoulos et al.,
2021; Lamkanfi et al., 2010; Yang et al., 2012), or
even extracting the roles of the different developers
(Li et al., 2016; Onoue et al., 2013; Gousios et al.,
2008; Lima et al., 2015; Papamichail et al., 2019).

Although these approaches are effective in certain
scenarios, they also have important limitations. First
of all, several approaches employ only the textual fea-
tures of issues (i.e. titles and descriptions), thus disre-
garding features like the component hierarchy or the
labels of the project, which may point to the expertise
of the different contributors. Moreover, they do not
always employ semantics-enabled methods, thus they
may miss significant correlations between the differ-
ent issues (and areas) of the project. Finally, and most
importantly, they are usually built as black boxes and
provide, at best, a probability. As a result, they do not
help the contributors understand the reasoning behind

696
Nastos, D., Diamantopoulos, T. and Symeonidis, A.
Towards Interpretable Monitoring and Assignment of Jira Issues.
DOI: 10.5220/0012146400003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 696-703
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



recommendations so that they can make the optimal
decisions for the project.

In this work, we present an issue monitoring and
assignment methodology that helps contributors bet-
ter understand the project and provides interpretable
issue assignment recommendations. Our methodol-
ogy uses a dataset of Jira issues and employs informa-
tion both from the textual and from the grouping fea-
tures (components, labels) of issues. Furthermore, we
extract semantic knowledge from issues in the form of
topics using the BERTopic topic modeling technique
(Grootendorst, 2022) and build an aggregated model
that assigns issues to contributors, while also provid-
ing useful statistics to support decision making.

2 RELATED WORK

As already mentioned, contemporary approaches that
employ issue tracking systems confront various chal-
lenges, including automated issue assignment (Mur-
phy and Cubranic, 2004; Anvik et al., 2006; Mat-
soukas et al., 2020; Alkhazi et al., 2020), bug severity
or priority prediction (Sharma et al., 2012; Tian et al.,
2015; Kanwal and Maqbool, 2012; Diamantopoulos
et al., 2021; Lamkanfi et al., 2010; Yang et al., 2012),
and even developer role extraction (Li et al., 2016;
Onoue et al., 2013; Gousios et al., 2008; Lima et al.,
2015; Papamichail et al., 2019). Our work lies in the
scope of project monitoring and specifically in auto-
mated issue assignment, i.e. the problem of finding
the most suitable developer for the task at hand.

Most approaches in automated issue assignment
(or issue/bug triaging as it is also known) extract
features from data lying in Jira or Bugzilla installa-
tions, use some type of textual model and employ
classification algorithms to determine the most suit-
able developer based on any past issues he/she has
resolved. One such approach is proposed by Mur-
phy and Cubranic (2004), who employ a vector space
model to map the bug reports of the Eclipse project
and use Naı̈ve Bayes to perform the classification,
which is thus solely based on textual features. A sim-
ilar approach is proposed by Anvik et al. (2006); the
authors further incorporate the current workload and
the vacation schedule of the different contributors,
while they also use Support Vector Machines (SVM),
managing to improve the accuracy of the assignments.

Though interesting, the aforementioned ap-
proaches rely on vector spaces based only on term
frequencies, without incorporating the underlying se-
mantics of issue text. To improve on this aspect, lately
several researchers employ semantics-enabled meth-
ods, either using word embeddings (Guo et al., 2020;

He and Yang, 2021) or using topic modeling tech-
niques (Ahsan et al., 2009; Yang et al., 2014; Naguib
et al., 2013). For instance, Guo et al. (2020) employ
word embeddings to model issue titles and descrip-
tions and use a Convolutional Neural Network (CNN)
to produce a list of recommended developers along
with the extracted probabilities. He and Yang (2021)
further extend this line of thought by considering both
word2vec and GloVe as representations and employ-
ing attention networks to make the final assignment.

Topic modeling techniques typically employ La-
tent Dirichlet Allocation (LDA) on the textual fea-
tures of issues to extract semantic topics that are sub-
sequently used to improve the classification. Yang
et al. (2014) first use the extracted topics in order to
detect similar bug reports, and then use the textual
features of these reports in order to make the assign-
ment. An interesting extension is proposed by Naguib
et al. (2013), who further consider the issues resolved
and the issues reviewed for every developer (instead
of only the issues assigned to him/her). Ahsan et al.
(2009) also extract semantic topics, however they em-
ploy Latent Semantic Indexing (LSI) and follow a
slightly different approach for classification. Specifi-
cally, the authors first create a term-to-document ma-
trix using a vector space model and then use the result
of the LS in order to reduce the dimensionality of the
matrix. Upon assessing different classifiers, they con-
clude that SVM provide the best performance.

Finally, there are also approaches that use code
data. For instance, Alkhazi et al. (2020) process both
issues and commits from the Eclipse project, while
Matsoukas et al. (2020) use commits and issues ex-
tracted from GitHub (Diamantopoulos et al., 2020)
to build models based on issue text, issue comments,
labels, and commit comments. Though interesting,
these approaches deviate from the scope of this work.

Although the aforementioned solutions are effec-
tive for automated issue assignment, they typically
present assignment recommendations without con-
sidering interpretability. Most of them provide as-
signments and probabilities based on textual features,
while certain systems do not capture the underlying
semantics of the project, which can help understand
the issues and even the expertise of contributors. Our
methodology confronts the above limitations, by em-
ploying both textual and non-textual features, so that
the recommendations incorporate the expertise of the
developers in terms of the relevant components and
semantic topics that each developer is familiar with.
Furthermore, the output of our system is a ranked list,
along with useful information for each developer in
order to easily make an informed decision about the
assignment of new issues.

Towards Interpretable Monitoring and Assignment of Jira Issues

697



Extracted
Topics

Models

Data
Preprocessing

Model
Building

Textual Index
Title & Description

Component
Mapping

Aggregated
Assignments
& Statistics

Labels
Index

FEATURE

BUG

DOCS

Model
Aggregation

+

Figure 1: Overview of our Issue Mining Methodology.

3 METHODOLOGY

The overview of our issue mining methodology is de-
picted in Figure 1. The input of our system is in the
form of Jira issue tracking data, which are the issues
of 656 projects of the Apache Software Foundation
(Diamantopoulos et al., 2023). Each issue provides
different types of information, including textual and
non-textual features. In our case, we extract the ti-
tle and description of the issue as well as the relevant
labels and components that provide meta-data about
it with respect to the project. Moreover, we extract
the name of the assignee that solved the issue. As
this information is necessary for the task of issue as-
signment, we filter out any issues that do not have
data in those fields. Upon extraction, we preprocess
the data and build different models: a textual index
for the issue texts and description, a semantic topic
model, and two mappings, one for components and
one for labels. The semantic topic model is extracted
using BERTopic, a topic modeling technique that uses
the BERT deep learning language model so that we
enable a deeper contextual understanding of the rela-
tionships between the different issues. Finally, upon
extracting the information, we export useful diagrams
that can be communicated to the users of the project
(and especially the triager) and build an aggregated
model that combines all extracted knowledge to pro-
duce interpretable issue assignments.

3.1 Data Preprocessing

Our analysis is performed on a per-project basis. To
effectively confront the issue assignment challenge,
the issue data for each project must contain assignee
information. Therefore, any issues lacking this infor-
mation are excluded from the final dataset. Further-
more, to ensure meaningful results, we further filtered

our dataset to only include developers who have re-
solved at least 100 issues and the corresponding is-
sues. This cutoff ensures that the assignee has a suffi-
cient history of issue resolution and thus the informa-
tion can be used to extract better analytics.

For the textual features of our dataset, we com-
bined two fields: the title (name summary in Jira)
and the description. Before proceeding to our index-
ing and topic modeling methods, we first preprocess
the textual data in two steps to produce two different
versions of the text features, each suited for different
tasks, the application of BERTopic and the application
of Tf-Idf. The first step involves using regular expres-
sions to remove HTML tags, special characters, and
links, which are considered noise in our data. After
this step, the data can be forwarded to the BERTopic
topic modeling technique, which requires the full con-
text of the text features. For the Tf-Idf model, we also
proceed to the second step, which further refines the
data to produce accurate representations of each text
feature. It includes the conversion of all text to lower-
case, the removal of stopwords, punctuation, and dig-
its, and the lemmatization of the remaining words.

Following preprocessing, we split the issues for
each project into training and test sets to train and
evaluate the models we employ. The training set com-
prises 80% of the project issues, with the remaining
20% reserved for testing purposes.

3.2 Extracting Models for Issue Texts

To take into account the lexical overlap between is-
sues and to improve issue assignment, we first use tex-
tual features. This involves transforming the text into
vector representations and training a classifier to re-
ceive as input the text of an issue and provide a proba-
bility distribution of each potential assignee being the
most suitable one for resolving that issue. We employ

ICSOFT 2023 - 18th International Conference on Software Technologies

698



(a) Issue-Topic Distribution.

ale
x.p

arv
ule

scu

am
itja

in

an
che

la

cat
ho

lico
n

che
tan

m

du
lce

an
u

ed
iva

d frm
juk

kaz

mdu
eri

g

mreu
teg

g

res
chk

e
teo

fili

tm
ue

ller

tom
ek.

rek
aw

ek

0_rdbdocumentstore_rdb_datasource
1_group_user_login_password

2_permission_principals_privileges
3_async_index_indexing_reindex

4_oaksegment_segment_next
5_compaction_estimation_tarmk_offline

6_elapsed_sec_time_failures
7_oakrunsnapshot_orgapachefelix

8_xpath_union_ntbase_jcrscore
9_release_oak_oak6575_incorporate

10_debug_main_perfloggerjava179_took
11_jackrabbit_update_oak_dependency

12_child_base_states_state
13_rdbstore_jdbc_driver_postgresql

14_standby_cold_client_apache
15_version_node_referenceable_type

16_azure_segment_segments_apache
17_azure_applicationoctetstream
18_cache_persistent_lirs_entries

17_lucene_index_indexformatversion 0.0

0.2

0.4

0.6

0.8

1.0

(b) Topic-Developer Distribution.
Figure 2: Distributions of the top 20 topics extracted.

the Tf-Idf vectorizer to vectorize the text. This vector-
izer creates a vocabulary of all the words in the issues
texts and then calculates the frequency of each word
inside a document (Tf) and the inverse document fre-
quency (Idf) of each word in the entire collection of
documents. The Idf term is used to minimize the in-
fluence of very common words. Each document is
represented by a vector of products of term frequen-
cies and inverse document frequencies of each word.
In specific, the value of each term t in a document d
belonging to a collection of documents D is given by
the equation:

T f − Id f (t,d,D) = T f (t,d) · Id f (t,D) (1)

After implementing the Tf-Idf vectorizer and convert-
ing all text strings in the training set of the project to
their corresponding vector representation, we train an
SVM classifier. This classifier is designed to output a
probability distribution that denotes the relevance of
each contributor to the given issue.

3.3 Modeling Topics

Our methodology extracts topics from the issue texts
to gain a better understanding of the semantics of
the project under analysis and to facilitate the cat-
egorization of the issues. To achieve this, we have
chosen to use BERTopic (Grootendorst, 2022), which
is a topic modeling technique that outperforms con-
ventional models such as LDA. BERTopic utilizes
transformer-based language models like BERT, which
enables it to identify semantic relationships between
texts more effectively than bag-of-words models used
by conventional models. BERTopic operates in three
main stages: text embedding generation, dimension-
ality reduction, and cluster creation based on the

new embeddings. To identify the most representative
terms for each cluster, it employs class-based Tf-Idf
(c-Tf-Idf) to generate topic representations.

We have applied BERTopic to the training set of
projects, which has resulted in the extraction of topics
for each project. By utilizing the trained BERTopic
model, we can extract the number of issues assigned
to each topic and the contribution of each assignee to
each topic, indicating the number of issues assigned
to each assignee for each topic. This information is
then used to generate a distribution of each assignee
across all topics. Each assignee gets a value between
0 and 1 for each topic, representing the percentage of
the topic’s issues that he/she has been assigned.

Figure 2 depicts the top 20 topics for the OAK
project. Apache OAK is a hierarchical content repos-
itory for the Java platform, which is used as an ex-
ample throughout our paper. It includes multiple fea-
tures for storing and indexing structured and unstruc-
tured content and allows different querying methods
(e.g. SQL, XPath). Indeed, using our visualizations,
one can immediately see that the project has well-
separated topics (Figure 2a) relevant to Lucene index-
ing (topic 19), to databases like MongoDB (topic 16),
to XPath querying (topic 8), etc. Furthermore, given
the topic-developer distribution (Figure 2b, triagers
can easily identify the most relevant topics for each
contributor at a glance. For instance, user tmueller
seems to have extended expertise in XPath (topic 8),
while user reschke is better acquainted with connect-
ing databases (Postgres and JDBC in topic 13). Thus
using this information, it is possible to classify issues
to contributors according to their expertise, and, most
importantly, to facilitate the final decision about issue
assignment based on the relationship of the develop-
ers with the topic the issue belongs.

Towards Interpretable Monitoring and Assignment of Jira Issues

699



au
tho

riz
ati

on
-cu

g

blo
b-p

lug
ins

sto
re-

spi

web
ap

p

ind
exi

ng

be
nch

mark
s

exa
mple

s

au
tho

riz
ati

on
-pr

inc
ipa

l

blo
b-c

lou
d-a

zur
e ap

i

au
th-

lda
p

oa
k-r

un

exe
rci

se

seg
men

t-ta
r
tes

t

mon
go

mk
cac

hecor
e

com
mon

s

con
tin

uo
us 

int
eg

rat
ion

jac
kra

bb
it-a

pi

sea
rch

-m
t

do
cum

en
tm

k

up
gra

de it

pro
pe

rty
-in

de
x

seg
men

t-a
zur

e
qu

eryblo
b

oa
k-s

ea
rch mk

luc
en

e run

seg
men

tm
k

oa
k-h

ttp

sec
uri

ty-
spi

rem
oti

ng jcr

sec
uri

ty
pa

ren
t

com
po

site do
c

tar
mk-s

tan
db

y

blo
b-c

lou
d sol

r
sea

rch

cor
e-s

pi
po

jos
r

au
th-

ext
ern

al
rdb

mk

alex.parvulescu
amitjain
anchela

catholicon
chetanm
dulceanu

edivad
frm

jukkaz
mduerig

mreutegg
reschke

teofili
tmueller

tomek.rekawek 0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Heatmap of the Distribution between Components and Contributors.

tes
t-fa

ilur
e

ref
act

ori
ng

res
ilie

nce

do
c-im

pa
cti

ngtoo
ls CI

cle
an

up
am

rit

be
nch

mark

pe
rfo

rm
an

ce

ob
ser

va
tio

n

tec
h-d

eb
t

sca
lab

ilit
y

col
d-s

tan
db

y
Jen

kin
s

Per
for

man
ce

can
did

ate
_oa

k_1
_4 ci

log
gin

g

com
pa

cti
on

mult
iple

xin
g
Tar

MK

can
did

ate
_oa

k_1
_22

can
did

ate
_oa

k_1
_8

tec
hn

ica
l_d

eb
t ap

i

ind
exi

ng
Pat

ch

mod
ula

riz
ati

on

con
cur

ren
cy

da
tas

tor
e

do
cum

en
tat

ion gc

mon
ito

rin
g

ub
un

tu

pro
du

cti
on

pri
nci

pa
l-m

an
ag

em
en

t-e
x

bu
nd

ling

sec
on

da
ry-

no
de

sto
re

wind
ow

s
osg

i

mem
ory
m12

n
tes

t

migr
ati

on

main
ten

an
ce
too

ling

can
did

ate
_oa

k_1
_6

pe
rfo

man
ce

do
cs-

im
pa

cti
ng
jen

kin
s

alex.parvulescu
amitjain
anchela

catholicon
chetanm
dulceanu

edivad
frm

jukkaz
mduerig

mreutegg
reschke

teofili
tmueller

tomek.rekawek 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Heatmap of the Distribution between Labels and Contributors.

3.4 Component Mapping

Another feature that can assist in the assignment of
the most appropriate developer for an issue is the
component to which the issue belongs. A component
represents a subcategory of the project the issue is part
of. For example, a database library could have com-
ponents such as disk input/output, network commu-
nication, etc. When this information is available, we
can use it to create a developer-component distribu-
tion, which corresponds to the percentage of issues for
each component that have been assigned to each de-
veloper. In a similar manner to the assignee-topic dis-
tribution, this information can be utilized to make in-
formed decisions about assigning issues to developers
who are best suited to handle them based on their level
of experience with the specific component. Figure 3
shows this distribution for project OAK. As before,
one can also find useful connections; for instance,
user teofili has handled most issues relevant to the
SOLR indexing service, thus we may assume that the

user has the relevant expertise. Interestingly, there are
also cases where the expertise is shared. For example,
concerning caching issues, these are mostly handled
by two developers, tmueller and tomek.rekawek.

3.5 Indexing Labels

Labels are tags or categories that provide additional
information which helps categorizing issues. Simi-
larly to topics and components, they can provide use-
ful insight when trying to make the best choice of de-
veloper for every issue in a project. In projects and
issues where labels are available, they can be used for
the creation of a label-contributor distribution. An ex-
ample distribution for project OAK is shown in Fig-
ure 4. As depicted, labels can have several scopes; for
instance, there are generic labels relevant to mainte-
nance (e.g. ‘maintenance’ or ‘technical debt’) or test-
ing (e.g. ‘test’ or ‘test failure’), and of course there
are also labels corresponding to different areas of the
project (e.g. ‘datastore’ or ‘osgi’). These can be used

ICSOFT 2023 - 18th International Conference on Software Technologies

700



Table 1: Example of Issue Assignment Monitoring.

Issue Title: Prefetch external changes
Issue Description: In a cluster with listeners that are registered to receive external changes, pulling in external
changes can become a bottleneck. While processing those changes, local changes are put into the observation
queue leading to a system where the queue eventually fills up. Instead of processing external changes one after
another, the implementation could prefetch them as they come in and if needed pull them in parallel.

Contributor mreutegg (score 37.67% / issue text similarity 42.75%)
Has resolved 31.82% of the issues with topic 21 observation events listeners listener
Has resolved 43.68% of the issues in component core
Has resolved 32.43% of the issues with label observation

Contributor mduerig (score 30.27% / issue text similarity 26.84%)
Has resolved 36.36% of the issues with topic 21 observation events listeners listener
Has resolved 6.52% of the issues in component core
Has resolved 51.35% of the issues with label observation

Contributor mduerig (score 8.32% / issue text similarity 7.16%)
Has resolved 18.18% of the issues with topic 21 observation events listeners listener
Has resolved 7.93% of the issues in component core
Has resolved 0% of the issues with label observation

to identify the expertise of each developer and provide
useful hints about his/her role(s) in the project (e.g. a
developer that resolves issues with testing labels may
be responsible for testing certain project modules).

3.6 Recommending Issue Assignments

We now have 4 distributions to support issue assign-
ment. When a new issue occurs, the triager can use
the models and the distributions for the corresponding
project, combine their results and select the most suit-
able developer for the task according to these calcu-
lations. Our system does this aggregation by comput-
ing the mean value of every potential assignee across
the four distributions and recommends the top 3 most
relevant assignees for the issue under triaging. An-
other important aspect of our system is that it does not
only propose the most suitable assignees but it also
indicates the reasons for their suitability based on the
information that can be extracted from the distribu-
tions. This information can help the triager to select
the most suitable developer, considering the charac-
teristics of the issue. For example, he/she may choose
to take into account only the topics-assignee distribu-
tion and thus assign the issue to the developer that
has more experience in the topic of the issue. Or
he/she may choose to base his/her decision on who
has worked the most in the relevant component.

Table 1 depicts an example issue, along with the
ranked list of potential assignees. The issue originates
from the OAK project and is relevant to improve-
ments in an event processing scenario. It is part of the
core component of the project, while it is relevant to

observation (label observation). Moreover, applying
our topic modeling technique showed that it is related
to topic 21 with top terms observation, events, listen-
ers, etc. Upon producing the distributions for texts,
topics, components, and labels, we compute also their
aggregation by taking the average of the four different
values for every assignee on each distribution.

The system returns the 3 assignees that have the
highest average values, which in this example are
mreutegg, mduerig and chetanm. Given the ranking
of Table 1, one could immediately choose to assign
the issue to mreutegg, who has the best aggregated
score (37.67%). Indeed, mreutegg has also resolved
issues that are textually similar, while also resolving
a large fraction (43.68%) of issues related to the core
component. However, concerning the topic of ob-
servation, mduerig seems to exhibit higher expertise,
given that the contributor has resolved a significant
amount of issues relevant to this topic, while also hav-
ing resolved more than half of the issues with label
observation. The actual ground truth assignment in
this case is mreutegg, although mduerig would seem
to be an acceptable choice. What is interesting is
that, using our methodology, one can truly understand
which developer to choose and why. Thus, in this
case, the triager could select the most active developer
(component-wise) or the one with the most expertise
(topic and label-wise). And of course, he/she could
also use the information provided in this list to make
a more complex assignment, e.g. assigning the task to
mreutegg and setting mduerig as its reviewer.

Towards Interpretable Monitoring and Assignment of Jira Issues

701



4 EVALUATION

4.1 Evaluation Framework

In this section, we evaluate the performance of our
system on 10 projects, shown in Table 2, along with
their number of issues and number of contributors that
meet the requirements set in the previous section. For
our evaluation, we utilize accuracy, which expresses
the percentage of issues for which our system’s first
assignee choice is correct. Moreover, we employ the
Mean Reciprocal Rank (MRR) for all issues of each
project, computed as the average of the reciprocal
rank of each issue assignment, where the reciprocal
rank is the inverse of the rank of the correct assignee
(e.g. if the assignee is in the second position, then the
reciprocal rank for the issue is 1/2 = 0.5).

Table 2: Projects of the Evaluation Dataset.

Project #Issues #Contributors

ARROW 7122 21
CXF 5987 12
FELIX 3941 10
GROOVY 6294 9
HDDS 2882 13
KARAF 5781 7
OAK 6879 15
OFBIZ 8477 20
SLING 7945 17
UIMA 5366 12

4.2 Evaluation Results

In Figure 5 we see that the accuracy for all projects
is higher that 50% and some of them reach almost
75%, which is effective, especially if we take into ac-
count the number of contributors. These results show
that the proposed system can be very effective, even
with returning only one choice as suitable. The results
for MRR (Figure 6) are also quite encouraging; in all
projects the MRR is larger than 0.6, meaning that on
average the correct assignee is in the top 2 positions.

5 CONCLUSION

Nowadays, effective collaboration in issue tracking
systems can have significant influence on the software
development process. In this paper, we focused on the
challenge of automated issue assignment, extracting
semantic topics from Jira issues with the aim of rec-
ommending the most suitable developer for resolving

ARROW CXF
FE

LIX

GROOVY
HDDS

KA
RAF

OAK
OFB

IZ
SLI

NG
UIMA

Projects

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 5: Accuracy of Issue Assignment per Project.

ARROW CXF
FE

LIX

GROOVY
HDDS

KA
RA

F
OAK

OFB
IZ

SLI
NG

UIMA

Projects

0.0

0.2

0.4

0.6

0.8

1.0

M
RR

Figure 6: MRR of Issue Assignment per Project.

an issue. Unlike other approaches, our methodology
employs information about the components, the la-
bels, and the generated topics to produce a set of inter-
pretable recommendations, thus truly supporting the
decision making process. Upon assessing our system,
we conclude that it can be effective for recommending
assignees, while maintaining its intepretability.

Future work lies in several directions. First of all,
we plan to build a graphical user interface in order to
better illustrate the potential of our approach and bet-
ter assess its impact. Moreover, one could test differ-
ent combinations of features (e.g. issue type or sever-
ity) or even different of models, including e.g. word
embeddings, and further assess the effectiveness of
our methodology. Finally, an interesting idea would
be to extend our system in order to cover other chal-
lenges, such as issue priority or severity prediction.

ACKNOWLEDGEMENTS

Parts of this work have been supported by the Horizon
Europe project ECO-READY (Grant Agreement No
101084201), funded by the European Union.

ICSOFT 2023 - 18th International Conference on Software Technologies

702



REFERENCES

Ahsan, S. N., Ferzund, J., and Wotawa, F. (2009). Auto-
matic software bug triage system (bts) based on la-
tent semantic indexing and support vector machine. In
Proceedings of the 2009 Fourth International Confer-
ence on Software Engineering Advances, ICSEA ’09,
page 216–221, USA. IEEE Computer Society.

Alkhazi, B., DiStasi, A., Aljedaani, W., Alrubaye, H., Ye,
X., and Mkaouer, M. W. (2020). Learning to rank
developers for bug report assignment. Applied Soft
Computing, 95:106667.

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should
fix this bug? In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages
361–370, New York, NY, USA. ACM.

Diamantopoulos, T., Galegalidou, C., and Symeonidis,
A. L. (2021). Software task importance prediction
based on project management data. In 16th Interna-
tional Conference on Software Technologies, ICSOFT
2021, pages 269–276, Held Online. SciTePress.

Diamantopoulos, T., Nastos, D.-N., and Symeonidis, A.
(2023). Semantically-enriched jira issue tracking data.
In Proceedings of the 20th International Conference
on Mining Software Repositories, MSR ’23, pages
218–222, Melbourne, Australia. IEEE.

Diamantopoulos, T., Papamichail, M., Karanikiotis, T.,
Chatzidimitriou, K., and Symeonidis, A. (2020). Em-
ploying contribution and quality metrics for quantify-
ing the software development process. In Proceedings
of the IEEE/ACM 17th International Conference on
Mining Software Repositories, MSR ’20, pages 558–
562, Seoul, South Korea. ACM.

Gousios, G., Kalliamvakou, E., and Spinellis, D. (2008).
Measuring developer contribution from software
repository data. In Proceedings of the 2008 In-
ternational Working Conference on Mining Software
Repositories, pages 129–132, NY, USA. ACM.

Grootendorst, M. (2022). Bertopic: Neural topic model-
ing with a class-based tf-idf procedure. arXiv preprint
arXiv:2203.05794.

Guo, S., Zhang, X., Yang, X., Chen, R., Guo, C., Li, H.,
and Li, T. (2020). Developer activity motivated bug
triaging: Via convolutional neural network. Neural
Process. Lett., 51(3):2589–2606.

He, H. and Yang, S. (2021). Automatic bug triage using
hierarchical attention networks. In 2021 IEEE 21st
International Conference on Software Quality, Relia-
bility and Security Companion, pages 1043–1049.

Kanwal, J. and Maqbool, O. (2012). Bug Prioritization to
Facilitate Bug Report Triage. Journal of Computer
Science and Technology, 27(2):397–412.

Lamkanfi, A., Demeyer, S., Giger, E., and Goethals, B.
(2010). Predicting the Severity of a Reported Bug. In
2010 7th IEEE Working Conference on Mining Soft-
ware Repositories, MSR ’10, pages 1–10. IEEE Press.

Li, S., Tsukiji, H., and Takano, K. (2016). Analysis of
Software Developer Activity on a Distributed Version
Control System. In Proceedings of the 30th Inter-
national Conference on Advanced Information Net-

working and Applications Workshops, pages 701–707.
IEEE.

Lima, J., Treude, C., Filho, F. F., and Kulesza, U.
(2015). Assessing developer contribution with reposi-
tory mining-based metrics. In Proceedings of the 2015
IEEE International Conference on Software Mainte-
nance and Evolution, pages 536–540, USA. IEEE.

Matsoukas, V., Diamantopoulos, T., Papamichail, M., and
Symeonidis, A. (2020). Towards analyzing contribu-
tions from software repositories to optimize issue as-
signment. In 2020 IEEE International Conference on
Software Quality, Reliability and Security, QRS 2020,
pages 243–253, Vilnius, Lithuania. IEEE Press.

Murphy, G. and Cubranic, D. (2004). Automatic Bug
Triage using Text Categorization. In Proceedings of
the 16th International Conference on Software Engi-
neering & Knowledge Engineering, SEKE ’04, pages
92–97, USA. Knowledge Systems Institute.

Naguib, H., Narayan, N., Brügge, B., and Helal, D. (2013).
Bug report assignee recommendation using activity
profiles. In Proceedings of the 10th Working Confer-
ence on Mining Software Repositories, MSR ’13, page
22–30. IEEE Press.

Onoue, S., Hata, H., and Matsumoto, K.-i. (2013). A
Study of the Characteristics of Developers’ Activities
in GitHub. In Proceedings of the 20th Asia-Pacific
Software Engineering Conference, pages 7–12, USA.
IEEE.

Papamichail, M. D., Diamantopoulos, T., Matsoukas, V.,
Athanasiadis, C., and Symeonidis, A. L. (2019). To-
wards extracting the role and behavior of contributors
in open-source projects. In 14th International Confer-
ence on Software Technologies (ICSOFT), pages 536–
543, Prague, Czech Republic. SciTePress.

Sharma, M., Bedi, P., Chaturvedi, K. K., and Singh, V. B.
(2012). Predicting the Priority of a Reported Bug us-
ing Machine Learning Techniques and Cross Project
Validation. In 2012 12th International Conference
on Intelligent Systems Design and Applications, ISDA
2012, pages 539–545. IEEE Press.

Tian, Y., Lo, D., Xia, X., and Sun, C. (2015). Automated
Prediction of Bug Report Priority Using Multi-Factor
Analysis. Empirical Softw. Engg., 20(5):1354–1383.

Yang, C.-Z., Hou, C.-C., Kao, W.-C., and Chen, I.-X.
(2012). An Empirical Study on Improving Severity
Prediction of Defect Reports Using Feature Selection.
In Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference - Volume 01, APSEC ’12,
pages 240–249, USA. IEEE Computer Society.

Yang, G., Zhang, T., and Lee, B. (2014). Towards semi-
automatic bug triage and severity prediction based on
topic model and multi-feature of bug reports. In Pro-
ceedings of the 2014 IEEE 38th Annual Computer
Software and Applications Conference, COMPSAC
’14, page 97–106, USA. IEEE Computer Society.

Towards Interpretable Monitoring and Assignment of Jira Issues

703


