
Towards Readability-Aware Recommendations of Source Code Snippets

Athanasios Michailoudis a, Themistoklis Diamantopoulos b and Andreas Symeonidis c

Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki, Greece

Keywords: Snippet Mining, API Usage Mining, Code Readability.

Abstract: Nowadays developers search online for reusable solutions to their problems in the form of source code snip-
pets. As this paradigm can greatly reduce the time and effort required for software development, several
systems have been proposed to automate the process of finding reusable snippets. However, contemporary
systems also have certain limitations; several of them do not support queries in natural language and/or they
only output API calls, thus limiting their ease of use. Moreover, the retrieved snippets are often not grouped
according to the APIs/libraries used, while they are only assessed for their functionality, disregarding their
readability. In this work, we design a snippet mining methodology that receives queries in natural language
and retrieves snippets, which are assessed not only for their functionality but also for their readability. The
snippets are grouped according to their used API calls (libraries), thus enabling the developer to determine
which solution is best fitted for his/her own source code, and making sure that it will be easily integrated and
maintained. Upon providing a preliminary evaluation of our methodology on a set of different programming
queries, we conclude that it can be effective in providing reusable and readable source code snippets.

1 INTRODUCTION

The evolution of the Internet and the open-source
community has greatly influenced the way software
is developed. As more and more software projects
are hosted online in platforms like GitHub, develop-
ers follow a component-based software engineering
paradigm, where they search for reusable snippets and
integrate it into their own source code. This practice
of reuse, when performed effectively, can have signif-
icant benefits both for the development time and effort
and for the quality of the produced source code.

However, reusing existing code snippets is not al-
ways straightforward. The developer first has to leave
the IDE, form a suitable query in a search engine,
locate potential candidate snippets out of a possibly
large pool and carefully assess whether they cover
his/her functional criteria. After that he/she has to
choose the snippet to reuse, and understand its work-
ings before integrating it into his/her own source code.

As a result, several systems aspire to automate this
process, focusing on the areas of API usage mining
and/or snippet mining. API usage mining systems are
tailored to specific APIs/libraries and focus on pro-

a https://orcid.org/0009-0007-9824-0975
b https://orcid.org/0000-0002-0520-7225
c https://orcid.org/0000-0003-0235-6046

viding sequences of API calls extracted from source
code examples (Xie and Pei, 2006; Wang et al., 2013;
Fowkes and Sutton, 2016; Montandon et al., 2013;
Kim et al., 2010; Moreno et al., 2015; Katirtzis et al.,
2018), while the more generic snippet mining sys-
tems target common programming queries (e.g. open-
ing and reading a file) and are often connected to code
search engines (Wightman et al., 2012; Brandt et al.,
2010; Wei et al., 2015; Diamantopoulos et al., 2018).

Both types of systems are effective in various sce-
narios, however they also have significant limitations.
Some systems may have a limited dataset and/or
methodology, not allowing them to accept queries in
natural language. In addition, certain systems pro-
duce API calls instead of ready-to-use code, whereas
the ones that produce snippets do not always take into
account the different APIs/implementations. Finally,
and more importantly, contemporary systems focus
only on the functional aspect of reuse, not considering
the readability of the code, thus providing solutions
that may be hard to integrate and/or maintain.

In this work, we present a snippet mining sys-
tem that covers the functional criteria posed by the
developer, while also assessing the readability of the
retrieved source code. Our system receives queries
in natural language and employs the CodeSearchNet
dataset (Husain et al., 2019), which offers clean pairs

688
Michailoudis, A., Diamantopoulos, T. and Symeonidis, A.
Towards Readability-Aware Recommendations of Source Code Snippets.
DOI: 10.5220/0012145500003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 688-695
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

of documentation strings and method snippets. More-
over, we build a model that assesses snippet readabil-
ity based on static analysis metrics. Finally, we ex-
tract the API calls of the snippets to detect groups
of different implementations, thus allowing the devel-
oper to choose the desired source code.

The rest of this paper is organized as follows. Sec-
tion 2 reviews current research in the areas of API us-
age mining and snippet mining. Our methodology for
recommending readable snippets is presented in Sec-
tion 3. Section 4 evaluates our methodology on a set
of programming queries, and finally Section 5 con-
cludes this paper and provides ideas for future work.

2 RELATED WORK

As already mentioned, our work lies in the area of rec-
ommender systems for efficient code reuse. In most
cases, such systems work in one of two ways: ei-
ther by identifying and mining API calls from exist-
ing source code to recommend similar methods or by
mining and retrieving more generic code snippets as
solutions to queries given in natural language.

Regarding API usage mining, MAPO (Xie and
Pei, 2006) is a system that employs frequent sequence
mining to extract API usage examples in the form of
call sequences from client code. However, it lacks
diversity-awareness of the extracted methods, which
ultimately leads to the production of a substantial
amount of, often irrelevant, API examples. To mit-
igate that, the UP-Miner (Wang et al., 2013) system
was developed, which aims at mining succinct and
high-coverage usage patterns of API methods from
source code, using the BIDE algorithm. From a ma-
chine learning point of view, another notable imple-
mentation is PAM (Fowkes and Sutton, 2016), which
extracts API calls via probabilistic machine learning.
Interestingly, PAM introduces an automated evalua-
tion framework, based on libraries that were provided
with handwritten API example code by developers.

Apart from thesystems that focus on API call
sequences, there are also approaches recommend-
ing reusable snippets, such as APIMiner (Montandon
et al., 2013), which identifies and analyzes API calls
using code slicing. Moving a step further in that direc-
tion, certain approaches cluster the retrieved snippets,
according to the targeted API calls. Two such sys-
tems are eXoaDocs (Kim et al., 2010) and CLAMS
(Katirtzis et al., 2018); the former applies snippet
clustering using semantic features to spot duplicate
code, via the DECKARD algorithm (Jiang et al.,
2007), while the latter also incorporates a summariza-
tion algorithm for succinct and readable snippet pre-

sentation. Finally, MUSE (Moreno et al., 2015) also
includes ranking of the resulting clusters by introduc-
ing the ease of reuse metric. The metric is defined as
the percentage of the object types that belong to the
library under analysis and is based on the assumption
that custom object types may require importing other
third-party libraries and thus hinder reuse.

Though certainly functional, most aforementioned
methods suffer from the same limitations. First of all,
the usage examples they provide are limited to a hand-
ful of API methods, while disregarding the need for a
potential library change. Several of those also mainly
focus on generating API call sequences, rather than
practical code snippets, and, last but not least, none of
these systems receive queries in natural language.

Generic snippet mining techniques have been de-
veloped to alleviate some of those limitations. In-
dicative examples are the Eclipse IDE plug-ins Snip-
Match (Wightman et al., 2012) and Blueprint (Brandt
et al., 2010), from which the first leverages code pat-
terns and local indexes to improve snippet search and
suggestions, while the second accepts queries in nat-
ural language while at the same time is connected
to the Google search engine for accurate snippet re-
trieval and ranking. Another search engine-based rec-
ommender, developed as a Visual Studio extension,
is Bing Code Search (Wei et al., 2015), which also
allows for natural language questions while also im-
plementing a multi-parameter ranking system as well
as active code snippet adaptation to the developer’s
needs. Finally, CodeCatch (Diamantopoulos et al.,
2018), is another snippet mining system, which apart
from the advantages of the aforementioned plug-ins,
also provides the added assets of different options
for snippet selection, as well as the incorporation of
reusability scoring of the mined snippets, extracted
from a set of the most popular GitHub projects.

Lately, there are also several approaches using
deep learning, either in the API usage mining domain
or in the more generic snippet mining. Regarding API
usage mining, systems like SWIM (Raghothaman
et al., 2016) and T2API (Nguyen et al., 2016), trans-
late questions given in natural language to API calls
and then generate the appropriate code, containing
said calls. In a similar fashion, DeepAPI (Gu et al.,
2016) implements RNNs to transform queries into
API sequences. On the other hand, RNNs are also
utilized for code snippet reusability by the DeepCS
implementation (Gu et al., 2018), where two networks
are used to encode natural language and code respec-
tively and the produced embeddings are then com-
pared using the cosine similarity metric. CodeTrans-
former (Papathomas et al., 2022) follows a similar
methodology, where the RNNs are replaced by Trans-

Towards Readability-Aware Recommendations of Source Code Snippets

689

formers and the similarity metric of choice is the Tri-
angle’s Area Similarity-Sector’s Area Similarity. The
last two systems have the added benefit of incorpo-
rating semantics, partly due to the fact that the net-
works are trained on the well-curated and semantics-
oriented CodeSearchNet dataset (Husain et al., 2019).

Although the aforementioned solutions usually re-
trieve relevant results to programming queries, they
neglect to assess the readability of the provided rec-
ommendations. In this work, we present a readability-
aware recommender that supports code reuse through
readable code snippet selection. Our system features
clustering based on API calls like API usage mining
approaches, however it also allows queries in natu-
ral language and produces ready-to-use snippets in-
stead of sequences. Moreover, using our readabil-
ity model based on static analysis metrics, the sys-
tem ranks these snippets using both a functional and a
readability score, thus supporting developers to make
the optimal decision based on their requirements.

3 METHODOLOGY

The architecture of our recommender is shown in Fig-
ure 1. As already mentioned, we use as input the
CodeSearchNet dataset (Husain et al., 2019) in order
to create an index of code snippets. We use the Java
version of the dataset as a proof of concept, although
our methodology could also be easily extended to
other languages. Upon preprocessing the data (Data
Preprocessor), we are able to build an index (Index
Builder) for finding similar snippets. Moreover, we
build a Readability Model using static analysis met-
rics. When a new query is given by the developer,
it is initially parsed by the Query Parser (to prepro-
cess it) and sent to the index in order to retrieve rele-
vant snippets. The snippets are then sent to the Clus-
terer, which groups them according to their API calls.
Finally, the Presenter is responsible for ranking the
groups with respect to their functional similarity and
their readability and present them to the developer.

3.1 Building Models for Snippets

3.1.1 Data Preprocessing

Before proceeding to the indexes built by our ap-
proach, we first preprocess the data. Concerning the
docstrings, which are used for finding relevant meth-
ods, we create a text preprocessing pipeline that in-
cludes (1) the removal of the docstring located af-
ter the first dot symbol, effectively retaining the ac-
tual description of each snippet, (2) the removal of

non-ascii and special characters, while replacing them
with empty characters, (3) the removal of empty char-
acters, (4) the conversion of every character to low-
ercase, (5) the removal of common stopwords of the
English language, which appear frequently in text and
may skew results, and (6) the lemmatization of every
token, so that each word is converted to its base form.

For the code, as already mentioned, we extract the
API calls of the snippets to group them, so we simply
use the preprocessing pipeline by Papathomas et al.
(2022), which covers our purposes. The pipeline in-
cludes steps for (1) the removal of non-ascii charac-
ters, (2) the removal of all the tokens of the code list
that contain space, double quotes, or create a com-
ment, (3) the removal of empty characters, and (4)
the conversion of every character to lowercase. There
are also two more steps, which do not affect our case,
which are the encoding of programming symbols to
unique tokens (e.g. < becomes ‘lessoperator’, + be-
comes ‘addoperator’, etc.1) and the removal of any to-
kens after first 100 for each method (used to enhance
the uniformity of the dataset).

3.1.2 Index Building

Following the data preprocessing, a means of retriev-
ing relevant data is needed. To achieve that we built a
similarity scheme based on a vector space model and
a metric to calculate the similarity of the two vectors.

Firstly, for the vectorization of the snippets, two
vocabularies are created, corresponding to the de-
scription and code tokens, respectively. The two vo-
cabularies consist of the 10,000 most common words
of each set and are used in conjunction with a tf-idf
vectorizer in order to create the vector representations
of the respective docstring or code. The vectorizer
calculates the weight of each token t within a snip-
pet/document D according to the following formula:

t f id f (t,d,D) = t f (t,d) · id f (t,D)

where t f (t,d) is the term frequency of term t in doc-
ument d and refers to the appearances of a token
in the snippet, while id f (t,D) is the inverse docu-
ment frequency of term t in the set of all documents
D, referring to how common a specific token is in
all the snippets. In specific, id f (t,D) is equal to
1+ log((1+ |D|)/(1+ dt)), where |dt |is the number
of documents containing the term t, i.e. the number
of snippets containing the token. By doing so, tokens
that appear frequently in the snippets descriptions or
code are given small weights and less common and
usually more case-specific, hence useful, terms are as-
signed larger weights.

1The full list of transformations is available at (Papath-
omas et al., 2022).

ICSOFT 2023 - 18th International Conference on Software Technologies

690

Snippet Data

Data
Preprocessor

Index
Builder

Readability
Model Builder

Models

Docstring
Index

Code
Index

Readability
Model

Query
Parser

Clusterer Presenter

Figure 1: Methodology of our Readability-Aware Recommender of Source Code Snippets.

Finally, we use the cosine similarity metric to
compare the resulting vectors. For two document vec-
tors (i.e. query, docstring) d1 and d2, it is defined us-
ing the following equation:

cos similarity(d1,d2) =
d1 ·d2

|d1| · |d2|
=

∑
N
1 wti,d1 ·wti,d2

∑
N
1 w2

ti,d1
·w2

ti,d2

where wti,d1 and wti,d2 are the tf-idf scores of term ti in
documents d1 and d2 respectively, and N is the total
number of terms.

Any new input query in our system is vectorized
through the aforementioned process, using the doc-
string vocabulary, and its similarity to every docstring
of the dataset is computed.

To compute the similarities between snippets, we
create documents by extracting the API calls of each
snippet and subsequently, apply the tf-idf vectorizer
of the code vocabulary to extract the vector represen-
tation for each document. Then, the cosine similar-
ity metric is again computed. The similarity between
API calls is preferred to the comparison of whole code
snippets, as there are a lot of tokens that are shared
between two snippets, thus skewing the results.

3.1.3 Readability Assessment

Regarding the readability assessment of each source
code snippet, we created a machine learning model
to provide a readability assessor based on static anal-
ysis metrics. A Random Forest regressor was cho-
sen as the estimator, due to its versatility and ease of
use. In order to train the model, we used the static
analysis metrics and readability metrics computed
by Karanikiotis et al. (2023) on the CodeSearchNet
dataset. In specific, we used all metrics from the four
static analysis categories relevant to snippets (com-
plexity, coupling, documentation, and size), while we
also used the readability score derived by the tool of
Scalabrino et al. (2018)2 as ground truth.

2https://dibt.unimol.it/report/readability/

Through an exhaustive grid search, the parame-
ters of the model that yielded the best R2 score were
the following: n estimators = 100 (number of trees
in forest), max f eatures = 0.8 (fragment of features
were considered at each split), max depth = 9 (max-
imum depth of each tree, max samples = 100 (sub-
sample size used to build each tree). By the end of the
training process, our model had achieved an 83.5%
accuracy on a snippets readability estimation, based
on the code’s quality characteristics, a performance
which was considered adequate for the model to be
integrated in our recommendation system. The distri-
bution of readability for all snippets of the dataset is
shown in the histogram of Figure 2.

0 20 40 60 80 100
Readability Score

0

20000

40000

60000

80000

Nu
m

be
r o

f S
ni

pp
et

s

Figure 2: Histogram of the Readability of all Snippets.

3.2 Retrieving Useful Snippets

3.2.1 Query Parsing

The Query Parser receives as input the query of the
user in natural language, it tokenizes and preprocesses
it in the same way as described in subsection 3.1.1 and
creates a tf-idf vector of the query, based on the cre-
ated docstring vocabulary, as described in subsection
3.1.2. We consider a snippet as relevant if the simi-
larity of its docstring to the developer’s query is more
than a similarity threshold, which we set to 0.75 as it

Towards Readability-Aware Recommendations of Source Code Snippets

691

was enough for retrieving an adequate number of re-
sults for different queries. For each result, we retrieve
the docstring, the code of snippet, as well the met-
rics used as input to the Readability Model in order to
compute its readability.

3.2.2 Snippet Clustering

The most relevant snippets that were extracted in the
previous step are forwarded to the Clusterer, which
is responsible for grouping the snippets according to
their API calls. To do so, we first extract the API calls
of each snippet using the javalang tool3. The tool is
used to traverse the abstract syntax tree of each snip-
pet and retrieve two types of instructions, call instan-
tiations (e.g. new BufferedReader) and method calls
(e.g. reader.readLine()). Upon extracting the types
of these instructions, we then employ the similarity
scheme defined in subsection 3.1.2 (based on tf-idf)
to build a distance matrix, which is in turn used for
the grouping of the snippets.

The clustering algorithm of choice is Agglomer-
ative clustering, which is a common type of hierar-
chical clustering used to group objects based on their
similarity. The algorithm, however, has a limitation,
as it requires as input the number of clusters. To auto-
matically determine the most suitable number of clus-
ters for a given query, we use the silhouette metric.
Silhouette was selected as it encompasses both the
similarity of the snippets within the cluster (cohesion)
and their difference with the snippets of other clusters
(separation). The clustering algorithm is executed for
2 to snip num−1 clusters, where sip num is the num-
ber of the retrieved snippets associated with the user’s
query. For each execution, we compute the total sil-
houette value (average over the silhouette values of
all snippets) and, finally, we select the the number of
clusters resulting in the highest total silhouette. The
value of silhouette for each document/snippet (d) is
calculated by the following equation:

silhouette(d) =
b(d)−a(d)

max(a(d),b(d))

where a(d) is the average distance of document d
from all other documents in the same cluster, while
b(d) is computed by measuring the average distance
of d from the documents of each of the other clus-
ters and keeping the lowest one of these values (each
corresponding to a cluster).

Note that the reasoning behind the clustering is
that snippets with similar API calls reflect similar
methods and, therefore, more than one results of the
same solution are redundant. Hence, the clustering

3https://github.com/c2nes/javalang

discards any duplicates, thus allowing the developer
to differentiate among different implementations.

An example silhouette analysis for query ”How to
convert a string to integer?” is shown in Figure 3. It
depicts the silhouette score for 2 to 22 clusters, where
it is clear that the optimal number of clusters is 14.

5 10 15 20
Number of Clusters

0.1

0.2

0.3

Av
er

ag
e

Si
lh

ou
et

te
Figure 3: Example silhouette analysis for clustering the
snippets of query ”How to convert a string to integer?”, de-
picting the silhouette scores for 2 to 22 clusters.

3.2.3 Results Ranking

After the clustering, the produced groups of snippets
are forwarded to the Presenter, which is tasked with
ranking and presenting the results. More specifically,
we assume that each group/cluster consists of snip-
pets describing the same method, thus it can be ac-
tually represented by the code snippet that has the
highest similarity (or functional score) to the given
query. Thus, the clusters are ranked according to their
snippet’s functional score, whereas, in cases of iden-
tical scores between snippets, higher priority is given
to the snippet with the highest readability. Finally, if
the readability between two snippets is also equal, the
larger cluster is presented in higher order.

The results of the clustering and ranking are pre-
sented to the user along with all the necessary infor-
mation, such as the original query, the optimal num-
ber of clusters, the functional and readability score of
a snippet and the number of snippets in each cluster,
and of course, the description, code and API calls of
the retrieved snippets. To further illustrate the ranking
process, we depict the two most relevant snippets for
the example query ”How to convert a string to inte-
ger?” in Figure 4. In this case, both results scored a
perfect 1.0/1.0 similarity score with the query, while
their readability scores were 86.08% and 85.89% for
the first and second result, respectively.

ICSOFT 2023 - 18th International Conference on Software Technologies

692

public static Integer parse(final String s) {
try {

return Integer.parseInt(s);
} catch (final NumberFormatException e) {

return null;
}

}

private int idToInt(String value) {
try {

return Integer.valueOf(value);
} catch (NumberFormatException e) {

throw new ConfigurationException(”invalid
type ID: ” + value);

}
}

Figure 4: Top two relevant snippets for the query ”How to
convert a string to integer?”.

4 EVALUATION

4.1 Evaluation Framework

Our methodology is not compared with similar ap-
proaches, since it focuses on providing different im-
plementations and readability scores, and not on pro-
viding the maximum number of relevant results. We
assess our methodology on a dataset of 10 common
programming queries shown in Table 1.

Table 1: Queries of the Evaluation Dataset.

ID Query

Q1 How to sort an array?
Q2 How to read a csv file?
Q3 How to split a string?
Q4 How to sort list in descending order?
Q5 How to convert a string to integer?
Q6 How to get current date?
Q7 How to list all files in directory?
Q8 How to load an image?
Q9 How to move a file from directory?
Q10 How to convert date to string?

As already mentioned, the results for the queries
shown in Table 1 are extracted from the CodeSearch-
Net dataset (Husain et al., 2019) using the vector
space model for docstrings defined in Section 3. The
results are then clustered, and finally the snippet
groups are manually annotated to determine whether
they are relevant to the given query. This annotation
step was kept simple, as we marked as relevant any

snippet that covers the functionality of the query, re-
gardless of its quality and of any APIs used.

We use different metrics to assess the results of
our methodology. First of all, we employ the recipro-
cal rank, which is computed as the inverse of the rank
of the first relevant result (e.g. if the first relevant re-
sult is in the second position, then the reciprocal rank
is 1/2 = 0.5). This metric is the best fit if we assume
that the developer most often selects the first relevant
result to his/her query. However, given that in our
case we assume that there may be more than one rel-
evant implementations, which use different API calls,
we also employ the average precision metric. The av-
erage precision for a query further takes into account
the order of all relevant results, and is computed as:

Avg Precision =
∑

n
k=1 P(k) · rel(k)

number o f relevant results
(1)

where P(k) is the precision at k (fragment of relevant
results at k-th position) and rel(k) is equal to 1 if the
result at the k-th position is relevant or 0 otherwise.

4.2 Evaluation Results

Table 2 presents certain statistics about our results.
As discussed in Section 3, for each query we first re-
trieve any relevant snippets and then we cluster them
to produce groups (third column of Table 2). We also
report the number of relevant results (groups) based
on the annotations (fourth column of Table 2), which
are quite encouraging. In specific, most queries have
at least 15 results, which are (arguably) adequate in
a code search/reuse scenario. Furthermore, for 9 out
of 10 queries, there are at least 3 different relevant
recommendations (groups), indicating that developers
could benefit from using our system.

Table 2: Statistics of the Results.

Query #Retrieved #Grouped #Relevant
ID Snippets Results Results

Q1 18 14 4
Q2 27 11 2
Q3 23 11 6
Q4 15 7 4
Q5 24 14 6
Q6 12 9 4
Q7 27 18 6
Q8 14 7 3
Q9 16 10 9
Q10 33 23 6

Given the results for the reciprocal rank (Figure 5,
it is also clear that our methodology is effective for

Towards Readability-Aware Recommendations of Source Code Snippets

693

retrieving useful snippets. In specific, for all queries
except Q2 and Q4, a relevant result is produced in the
first position, while even for Q2 and Q4 one can find
a relevant snippet at least in the third position. The
Mean Reciprocal Rank (MRR) is also quite high, with
value 0.883, depicted with a dashed line in Figure 5.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Re
cip

ro
ca

l R
an

k

Figure 5: Reciprocal rank per query.

The results for average precision (Figure 6) are
also quite encouraging. Our methodology achieves
average precision close to 1 for half the queries of the
dataset, with Mean Average Precision (MAP) equal
to 0.826 (depicted using a dashed line). Only the re-
sults of the second query have low average precision
(0.367), which is due to the fact that several snip-
pets are incomplete (e.g. the code calls functions not
present in the snippet and there are no API calls) and
there are also snippets about writing csv files. An in-
teresting note is that for Q10 there are several results
about converting date to string but there are also re-
sults about converting string to date. The order of the
terms is actually not captured by our model, which is
a limitation that we plan to confront in future work.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pr
ec

isi
on

Figure 6: Average precision per query.

Finally, to assess whether our methodology re-
trieves snippets with high readability in the top po-
sitions, we compute the average readability of the re-
sults of each query at different levels. For each query,
Figure 7 depicts the readability of the first result, the

average readability of the top 3, top 5, and all re-
sults. The first result usually has quite high read-
ability score, indicating that the developer can easily
comprehend it as well as integrate it into his/her own
source code. Moreover, the readability averages at top
3 and top 5 results exhibit high values (more than 0.6)
indicating that on average our methodology retrieves
highly readable snippets in the top positions.

5 CONCLUSION

Although finding reusable snippets is widely re-
searched, most approaches focus only on the func-
tional aspect. We proposed a methodology that re-
trieves snippets and assesses both their functionality
and their readability. This way, developers can find a
snippet that covers the purpose of their query and ex-
hibits high readability, so that they can easily integrate
it and, when needed, maintain it. Moreover, since we
group snippets according to their API calls, we ensure
that the developer reviews only the top (most read-
able) snippet from each possible implementation.

Concerning future work, we plan to compare our
system with other systems as well as to evaluate more
effective retrieval algorithms (e.g. based on code em-
beddings) to further enhance its results. Moreover, we
could conduct a developer study to assess whether our
methodology is perceived as useful by developers.

ACKNOWLEDGEMENTS

Parts of this work have been supported by the Horizon
Europe project ECO-READY (Grant Agreement No
101084201), funded by the European Union.

REFERENCES

Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S. R. (2010). Example-centric Programming: Inte-
grating Web Search into the Development Environ-
ment. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’10,
pages 513–522, New York, NY, USA. ACM.

Diamantopoulos, T., Karagiannopoulos, G., and Symeoni-
dis, A. L. (2018). CodeCatch: Extracting Source Code
Snippets from Online Sources. In Proceedings of the
6th International Workshop on Realizing Artificial In-
telligence Synergies in Software Engineering, RAISE
’18, pages 21–27, New York, NY, USA. ACM.

Fowkes, J. and Sutton, C. (2016). Parameter-free Proba-
bilistic API Mining across GitHub. In Proceedings

ICSOFT 2023 - 18th International Conference on Software Technologies

694

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

0

20

40

60

80

100
Re

ad
ab

ilit
y

Readability (Top 1)
Readability (Top 3)
Readability (Top 5)
Readability (Total)

Figure 7: Readability of our methodology at the top result, the top 3 results, the top 5 results, and all the results of each query.

of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE
2016, pages 254–265, New York, NY, USA. ACM.

Gu, X., Zhang, H., and Kim, S. (2018). Deep Code Search.
In Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, page 933–944,
New York, NY, USA. ACM.

Gu, X., Zhang, H., Zhang, D., and Kim, S. (2016). Deep
API Learning. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 631–642,
New York, NY, USA. ACM.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. (2019). CodeSearchNet Challenge:
Evaluating the State of Semantic Code Search.

Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007).
Deckard: Scalable and accurate tree-based detection
of code clones. In Proceedings of the 29th Inter-
national Conference on Software Engineering, ICSE
’07, page 96–105, USA. IEEE Computer Society.

Karanikiotis, T., Diamantopoulos, T., and Symeonidis, A.
(2023). Source code snippets and quality analytics
dataset. https://doi.org/10.5281/zenodo.7893288.

Katirtzis, N., Diamantopoulos, T., and Sutton, C. (2018).
Summarizing Software API Usage Examples Using
Clustering Techniques. In 21th International Confer-
ence on Fundamental Approaches to Software Engi-
neering, FASE 2018, pages 189–206, Boston, MA,
USA. Springer International Publishing.

Kim, J., Lee, S., Hwang, S.-w., and Kim, S. (2010). To-
wards an Intelligent Code Search Engine. In Proceed-
ings of the 24th AAAI Conference on Artificial Intel-
ligence, AAAI ’10, pages 1358–1363, Palo Alto, CA,
USA. AAAI Press.

Montandon, J. E., Borges, H., Felix, D., and Valente, M. T.
(2013). Documenting APIs with Examples: Lessons
Learned with the APIMiner Platform. In Proceed-
ings of the 20th Working Conference on Reverse En-
gineering, WCRE 2013, pages 401–408, Piscataway,
NJ, USA. IEEE Computer Society.

Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., and Mar-
cus, A. (2015). How Can I Use This Method? In
Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages
880–890, Piscataway, NJ, USA. IEEE Press.

Nguyen, T., Rigby, P. C., Nguyen, A. T., Karanfil, M., and
Nguyen, T. N. (2016). T2API: Synthesizing API Code
Usage Templates from English Texts with Statistical
Translation. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 1013–1017,
New York, NY, USA. ACM.

Papathomas, E., Diamantopoulos, T., and Symeonidis, A.
(2022). Semantic code search in software reposito-
ries using neural machine translation. In 25th Inter-
national Conference on Fundamental Approaches to
Software Engineering, pages 225–244, Munich, Ger-
many.

Raghothaman, M., Wei, Y., and Hamadi, Y. (2016). SWIM:
Synthesizing What I Mean: Code Search and Id-
iomatic Snippet Synthesis. In Proceedings of the 38th
International Conference on Software Engineering,
pages 357–367, New York, NY, USA. ACM.

Scalabrino, S., Linares-Vásquez, M., Oliveto, R., and
Poshyvanyk, D. (2018). A Comprehensive Model for
Code Readability. J. Softw. Evol. Process, 30(6).

Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., and
Zhang, D. (2013). Mining Succinct and High-
Coverage API Usage Patterns from Source Code. In
Proceedings of the 10th Working Conference on Min-
ing Software Repositories, MSR ’13, pages 319–328,
Piscataway, NJ, USA. IEEE Press.

Wei, Y., Chandrasekaran, N., Gulwani, S., and Hamadi, Y.
(2015). Building Bing Developer Assistant. Technical
Report MSR-TR-2015-36, Microsoft Research.

Wightman, D., Ye, Z., Brandt, J., and Vertegaal, R. (2012).
SnipMatch: Using Source Code Context to Enhance
Snippet Retrieval and Parameterization. In Proceed-
ings of the 25th Annual ACM Symposium on User
Interface Software and Technology, UIST ’12, pages
219–228, New York, NY, USA. ACM.

Xie, T. and Pei, J. (2006). MAPO: Mining API Usages
from Open Source Repositories. In Proceedings of
the 2006 International Workshop on Mining Software
Repositories, MSR ’06, pages 54–57, New York, NY,
USA. ACM.

Towards Readability-Aware Recommendations of Source Code Snippets

695

