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Abstract: Occupancy monitoring for buildings is a key component to enable cost-effective allocation of spaces and
efficient resources utilization. The occupancy monitoring systems rely on networks of sensors and cameras
to achieve high accuracy, however the main challenges are the privacy concerns and the computation cost.
This paper proposes the design of an intelligent energy-efficient and privacy-aware system to track, monitor
and analyze buildings occupancy. The core idea is that rather than collecting large amounts of sensor data to
perform occupancy analysis post hoc, our proposal adopts a top-down approach where, using the knowledge
about the activity expected to be taking place it proactively identifies the minimal data relevant to the actual
state following the semantics of the expected activity. Thus, it switches on/off the sensors in accordance with
such a subsequent dynamics and reduces the data amount to collect and the computation cost. The proposed
system has been built using a domain-specific language, implemented in C++ and tested for a building case
study. Our experimental results show that, while achieving a considerable reduction in computation cost (up
to 35%) and energy consumption (up to 31%), our system maintains high accuracy for occupancy tracking
compared to the state of the art solutions.

1 INTRODUCTION

Building occupancy monitoring enables to track the
state of the different spaces in real-time (Azimi and
O’Brien, 2022; Elkhoukhi et al., 2018; Pradeep Ku-
mar, 2016; Perra et al., 2021). The primary goal
of such systems is to provide a decision support to
buildings management to achieve a better spaces al-
location and resources-efficient operation (Salimi and
Hammad, 2019; M et al., 2021). Particularly with the
ever-increasing prices of electricity, the need to op-
timize energy efficiency is of capital interest (Lasla
et al., 2019).

Occupancy tracking and analysis technology
has the potential to transform buildings efficiency
by automatically monitoring and identifying when
and where resources utilization can be minimized
(Elkhoukhi et al., 2018). However, current ap-
proaches for occupancy monitoring are driven by Big
Data Analysis so that to collect large quantities of sen-
sor data (video, audio, step panels, etc.) and employ
predefined classifiers to detect patterns in the data
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(Zhang et al., 2019) (Jiang and Yin, 2015). Not only
this analysis is slow, far to be real-time (Elkhoukhi
et al., 2018), it has relatively low accuracy (Salimi
and Hammad, 2020; Pan et al., 2014). Moreover, such
comprehensive, brute-force data collection processes
consume a high amount of energy and may raise pri-
vacy concerns, particularly in light of the new EU
General Data Protection Regulations (GDPR) 1.

The primary aim of this paper is to design and im-
plement a prototype for building occupancy monitor-
ing and analysis using blind sensors, with the main
goal being able to intelligently and proactively con-
trol system sensors. So that to actuate the power
consumers in the building spaces, such as light and
air conditioning, following the actual and predicted
states.

Our key contribution is, rather than continuously
(and blindly) monitoring and processing all available
sensor data post-hoc to detect critical events (purely
bottom-up, highly computationally inefficient), our
approach is knowledge-driven: identify which high-
level symbolic facts are needed to change the cur-
rent state into a critical event, and trace these facts
back through a well defined semantics of the adopted

1https://eugdpr.org
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domain-specific language to identify which minimal
combination of sensors can supply data to confirm
or contradict these facts (top-down, then bottom-up).
The start point of each iteration of this exploration is
the event expected at that time point.

This intelligent sliding of the sensors operation
stems from the problem that reactive systems, which
gather and process massive amounts of data, drain
a lot of power from the sensors. This challenge is
much severe especially when using battery powered
sensors.

The system we consider monitors a public build-
ing for academic and education activities. It has
various activities such as Lecture; Lesson; Seminar;
Meeting; Empty, which all have recognizable fea-
tures, each of which is identifiable through a subset
of the sensors with different confidence levels. The
proactivation process consists in sliding the sensors
frequency, including switch On/Off, to optimize data
sampling in an intelligent way following the actual
state and the semantics of the expected/identified ac-
tivities. To automate the data analysis and the proacti-
vation process, we defined a domain specific language
formed by a set of events that have well-defined se-
mantics. A prototype of the proposed system has been
implement and tested against the state of the art (static
frequency) occupancy monitoring systems in terms of
computation cost and energy consumption.

Finally, Section 7 concludes the paper.

2 BACKGROUND

This section presents the background related to occu-
pancy analysis and optimization.

2.1 Occupancy Analysis

Occupancy analysis is the process of identifying the
occupancy state of a given building space, at different
time points, by recognizing human presence and the
activities conducted in such a building space (Ahmad
et al., 2021). It relies on collecting data from a sen-
sor network, or alternative technology, which usually
captures the impact made by human presence through
different features such as breathing, motion and noise.

This knowledge is mainly used to figure out how
many people are in a building space and subsequently
what is most likely ongoing activity at any time point.
To leverage the benefit of using occupancy monitor-
ing, the occupancy analysis needs to be real-time so
that proper actions can be taken, either by a build-
ing manager or automated system, with respect to

minimizing resources waste and improving the indoor
comfort (Seghezzi et al., 2021).

Given that such systems are recently deployed on
local micro-controllers (edge or embedded devices)
using wireless battery-powered sensors, computation
cost and energy consumption are two key perfor-
mance metrics to optimize. One way of conducting
such an optimization action is by reducing the data
sampling and the underlying analysis, but this ap-
proach can have drastic impact on the outcomes ac-
curacy and reliability.

To back up the occupancy analysis, usually a
model is required (Yang et al., 2016). In fact, the
model contains information about known data, ac-
tivities and potentially the underlying semantics of
such activities. Real-time data is then run through
the model to identify the most likely ongoing activ-
ity. Occupancy analysis models are mostly domain-
specific due to the given building functionality, sen-
sors used, and building layout (Jiang et al., 2022).
However, there are occupancy monitoring models that
use extensively trained machine learning algorithms
(Zhang et al., 2022) before being put into actual use.
Either cases, the overall goal of occupancy analysis
is to track how building spaces are utilized, and also
to optimize the use of energy consumption and rooms
allocation (Sun et al., 2020).

2.2 Optimization

Optimizing a system consists in minimizing and/or
maximizing different performance metrics such as re-
sponse time, resources utilization and energy con-
sumption (Minoli et al., 2017). While improving
some of the performance indicators, the optimiza-
tion must not lead to deteriorating other metrics con-
siderably neither impacting the system functional-
ity (Boudjadar and Khooban, 2020), (Boudjadar and
Tomko, 2022).

Building spaces are usually multi-functionality
where a given space can be allocated to run different
activities. Thus tailoring the building space towards
the actual activities is of capital interest in the opti-
mization of buildings functionality and resources. For
occupancy analysis, this usually comes in the form
of reducing the power spent on measurements and
calculations while still maintaining low computation
cost and high accuracy outcomes. The key driver for
such an optimization is the real-time knowledge and
estimation of the occupancy state so that a sliding
of the sensors frequency (fewer data measurements,
longer durations in between and even possibly turned
off) can applied following the need of data to con-
firm/deny/investigate such states (Rault et al., 2014).
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A trade-off between the accuracy and the sliding of
the sensors functionality needs to be established and
maintained through an objective function. Accord-
ingly, building equipments (lights, ceiling fans, air
conditioning, etc) can be tuned following the actual
occupancy state.

3 RELATED WORK

Different occupancy monitoring and analysis models
have been proposed in the literature (Luo et al., 2017;
Rai et al., 2015; McKenna et al., 2015; Ahmad et al.,
2021; Perra et al., 2021; Ortiz Perez et al., 2018;
Abraham and Li, 2014). Mainly, the state of the art
approaches differ in terms of the technology used to
track the occupancy, analysis techniques and the fea-
tures used in the optimization (accuracy, energy, sen-
sors functionality, response time).

The authors of (Luo et al., 2017; Perra et al., 2021)
proposed an agent-based occupancy analysis, that
amounts at tracking the individual occupants rather
than measuring the occupants impact. This occu-
pancy monitoring alternative often models each occu-
pant individually to allow capturing where occupants
are expected to be at any time point. Although this
approach can have high accurate estimation and confi-
dent occupancy predictability, it suffers from the scal-
ability and the computation cost given that the system
size is dependent on the total number of occupants.

Sanish et al. (Rai et al., 2015) combined the
agent-based occupancy analysis with a graph-based
model. This enabled to abstract away the detailed
occupant behavior and interactions such as position
tracking. Although this abstraction reduced the occu-
pancy model complexity, scalability remains a chal-
lenge in a similar way to (Luo et al., 2017).

A state-based occupancy model has been pro-
posed in (McKenna et al., 2015). It consists of cre-
ating stochastic data in terms of how probable a state
will occur. This process enables to infer the location
of people and their activities. Although the approach
enables fine grained modeling and estimation of the
occupancy state, the bottleneck can be related to the
massive data gathering which drains sensor batteries
and computation resources.

Knowledge-based occupancy analysis (Ahmad
et al., 2021; Perra et al., 2021) amounts at design-
ing a domain-specific model encoding the activities to
be carried out in a given building space. By running
actual data through the model, a potential activity is
identified, thus either confirming or denying the ex-
pected schedule. The only concern is being domain
specific, it requests expert knowledge to replicate the

occupancy analysis for different applications.
We align with the work in (Ahmad et al., 2021)

where we track occupancy by monitoring the impact
occupants make in a given building space. Moreover,
our events definition patterns are inspired from (Perra
et al., 2021). However, our proposed system enables
to identify the minimal data to look for, following the
real-time state, in order to recognize the ongoing ac-
tivity. This has led to reduce the operation cost, in
terms of data gathering, computation cost and energy
consumption.

Compared to the state of the art, our experimen-
tal results show that the proposed proactivation sys-
tem outperforms existing occupancy monitoring tech-
niques, where sensors are permanently active (Or-
tiz Perez et al., 2018; Abraham and Li, 2014), by re-
ducing drastically the data and energy requirements
to track occupancy. Moreover, it can achieve the
same knowledge level as (Perra et al., 2021; Ahmad
et al., 2021), where sensors operate with static sam-
pling time intervals, but with 30% less data gathering.
This results in less energy consumption for both data
gathering and data processing.

4 OCCUPANCY MONITORING

This section describes the model of our occupancy
monitoring system. The building spaces we consider
consist of closed/structured rooms that can serve as
offices, classrooms, meeting rooms, etc. Each in-
dividual space is monitored through a set of CO2
sensors, motion sensors, noise sensors and light sen-
sors. The sensors are grouped into different hubs, dis-
tributed in the room space to monitor, each of which
contains a sensor from each category. The light sen-
sors measure data in lux, CO2 in parts per million
(ppm), audio in decibels (dB), and motion in four lev-
els: none (0), low (1), medium (2), and active (3).
Moreover, the sensors can be configured on-the-fly to
operate different frequencies.

To monitor and analyze the occupancy we define
a domain-specific language. This includes the gram-
mar and how to handle different levels of confidence
to match the events the system can recognize. The
language describes all potential events and features in
a semantic way, thus enabling a thorough formal anal-
ysis of the occupancy state in real-time.

The proposed domain-specific language to model
and track the occupancy state is defined as follows:
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L , E1 | E2 | . . . | En
E, (F,c) | (F,c)∧E
F, S | S∧F
S , V ∈ [a,b]
c , H |M | L

Where E is an event, F is a feature, S is a sensor, V is
a sensor value that must be within a range [a,b], and c
is the confidence level of a feature to identify an event
and can have values high (H), medium (M) or low (L).
E and F are non-terminal elements of the grammar,
which means they can create different constructs re-
cursively. This is in fact practical as different events,
respectively features, can have different numbers of
features, respectively different sensors associated.

The sensor inputs are combined in different ways
with different expected value ranges to identify the
various features of the system. The features in turn,
together with different confidence levels, are com-
bined to define the system events.

Namely, the important features of our language,
derived from observations on the case study, are the
following:

• F1: 1 or 2 people in front,

• F2: Lecturing (consistent noise in front),

• F3: No lecturing,

• F4: Smartboard on,

• F5: No movement,

• F6: Smartboard off,

• F7: Many occupants present,

• F8: Few occupants present,

• F9: No occupant present,

• F10: Occupants quiet,

• F11: Occupants walking and talking,

• F12: Many people talking,

• F13: People talking and taking notes,

• F14: No or little noise,

• F15: Teacher sitting,

• F16: consistent sound from the back,

• F17: Front lights on,

• F18: Back lights off/dimmed,

• F19: No lights on.
A feature can be recognized using different sen-

sors and for different values. As an example, F1 ,
S2 ∈ [410,700ppm]∧ S3 ∈ [2,3]. One can see that
some features, such as F11 and F19, may need spe-
cific interpretation in order to be specified and cap-
tured in the grammar. As an example, F11 feature

can be recognized if people are walking, i.e. having
a high value for the motion sensor and high value of
the noise sensor. To improve the creditability of the
events recognition, we consider predicates rather than
single-point values, where an occupant is walking for
example if the motion measure is within 70 to 100%
of the maximum sensor value. However, for other fea-
tures such F11, a feature is recognized only if the un-
derlying sensor measurement is the highest value of
the sample range. Each event of the system is then
made up of a number of features, each with a confi-
dence level c.

The system we define can specify a large set of
events, recognize different features and incorporate a
large number of sensors. However, for the sake of
illustration in this work, we consider only 8 sensors
grouped into 2 hubs each located in one end of the
rooms to monitor. Moreover, we limit the set of events
to analyze the five following events present in the use
case: E1 is a lecture, E2 is a break, E3 is a meeting,
E4 is a lesson (exercise session), and E5 refers to an
empty building space. As an example, we specify a
lecture event to be:

E1 , < F1,H > ∧< F2,H > ∧< F4,M > ∧
< F7,M > ∧< F10,L > ∧< F18,L >

We may need to state that the definition of the
five events is not standard, however it is inspired from
(Perra et al., 2021) and formalized based on the obser-
vations made during data gathering of the use case.
The semantics of an event is then given by its set
of sensors, inferred from the underlying features, to-
gether with confidence levels and measurement inter-
vals that are required to recognize and confirm the oc-
currence of that event. The confidence levels of an
event dictate the importance of each feature for the
event, which is important for optimizing the sensor
frequencies, for example sensors of features having
low confidence for a given event e can be discarded
while e is being confirmed through high confidence
features. The calculation and optimization of sensors
frequency will be defined in the next section.

A state of the system s is simply made up of a
value (v(Si)) from each of the eight sensors. Although
sensors data is time stamped to ensure consistency, to
simplify the state definition we omit to use time as
part of the state, s(t). Thus s refers to the actual state,
i.e. having the latest sensor readings, can simply be
made as follows:

s= 〈v(S1),v(S2), . . . ,v(S8)〉

We overloaded V to be a valuation function that
returns the value of each sensor.
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5 PROACTIVATION: OPTIMIZED
OCCUPANCY ANALYSIS

This section elaborates further on how the occupancy
analysis in made together with how the sensors are
planned on-the-fly and how the frequency sliding is
computed following the expected event and the actual
state.

To trigger the occupancy analysis, one may need
to have an expected event ε. The expected event can
be provided by the space schedule from the building
management. From that event, our analysis process
identifies the sensors to be used to capture ε. This is
done according to the semantics of event ε as defined
in Section 4.

It is important to trigger the analysis with an ex-
pected event ε, since this enables the algorithm to
know what it has to look for, and thus operates the
sensors needed only. The expected event can change
dynamically either by outside means or following the
knowledge built from actual sensors data, i.e. in case
occupancy data does not match the expected event ε.
In the absence of an expected event, our occupancy
analysis can start with a brute force data sampling
from all sensors then the event recognized can be set
to be the expected one.

Sensing Plan. A sensing plan R dictates which sen-
sors must be On and how often those sensors sam-
ple occupancy data. R is formally given by R =
〈(Sx,rx),(Sy,ry),(Sz,rz), . . .〉, where Si are sensors
and ri are frequencies. The value of each ri is derived
from the confidence value of the feature each sensor
belongs to. If a sensor belongs to multiple features
of a given event, the highest confidence value is used
then. As an example, if an event e1 is given by e1 =<
F1,H >∧< F2,L > where F1 , S1|V (S1)∈ [a,b] and
F2 , (S1,S2)|S1 ∈ [c,d] then S1 will be assigned high
confidence for both features, which means S1 will run
the same frequency for both F1 and F2, except that the
value of S1 has to satisfy both [a,b] and [c,d] ranges
in order to confirm occurrence of event e1.

5.1 Occupancy Analysis

To perform occupancy analysis, our algorithm com-
pares the sensors readings to the features of the ex-
pected event, or any event of the domain-specific lan-
guage L in case the expected event has already been
disapproved or not provided at all. This can in fact
lead to 3 cases: 1) good matching; 2) no matching; 3)
partial matching.

Good Matching. In case that sensor readings match
a single event e, then the expected event ε will be up-
dated to this new event e, i.e. ε := e. From the seman-
tics of e, a sensing plan is computed as follows:

R = 〈(S1,r1), ..,(Sn,rn) | ∀i ∃c j (Si,c j) ∈ ||e|| ∧

ri =

{ 2 if c j = H
4 if c j = M
8 otherwise

〉

||e|| is the semantics of event e returning the sen-
sors needed, data ranges and confidence levels to rec-
ognize e. The calculation of frequency measurement
for each sensor is based on the confidence level of the
event each sensor is assigned to. By default, we as-
sign frequencies of 2, 4 and 8 minutes respectively to
sensors having high, medium and low confidence lev-
els respectively. Those are commonly adopted sen-
sors frequencies for buildings occupancy monitoring
solutions (Ortiz Perez et al., 2018; Abraham and Li,
2014; Beck et al., 2021).

In fact, if an event is being confirmed for few con-
secutive sampling iterations, an optimization of the
sensing plan is needed so that we start attenuating sen-
sor frequencies, or even switching off, those having
lowest confidence levels as follows.

R = R\{(Si,ri) | ∀i (Si,L) ∈ ||e||}
Further elaboration on the optimization of sensing

plans is provided in Section 5.2.

No Matching. No-match situations occur when the
actual sensing plan leads to match no event of the
given domain-specific language. In such a case, a new
sensing plan should be to turn on all sensors with high
frequency (2 minutes) to be able to get a starting point
so that either a good matching or a partial matching of
an event occurs.

R = 〈(S1,2),(S2,2), . . . ,(S8,2)〉
The no-match case is also a disapproval of the ac-

tual expected event ε. In practice, one has to be care-
ful when re-configuring the sensors frequency as the
no-match case is the most expensive in terms of en-
ergy consumption.

Partial Matching. This case corresponds to a par-
tial matching of the actual state to a single, or more,
event(s). We need to distinguish the two alternatives
(single or multiple) as the processing is different for
each case.

When the actual state partially matches a single
event e, a new sensing plan is derived from the actual
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sensing plan R by including all the sensors belonging
to the features with high confidence in event e. The
sensors to be included will run with high frequency
(2 minutes) since they are assigned high confidence
H. The new sensing plan is calculated as follows:

R = R∪{(Si,2)|∀i (Si,H) ∈ ||e||}
If this is still not enough to fully confirm the event

partially matching the actual state, the sensing plan
will be upgraded to include the sensors belonging to
the features with medium confidence in event e. Such
sensors will run with medium frequency (4 minutes)
since they are assigned medium confidence M.

R = R∪{(Si,4)|∀i (Si,M) ∈ ||e||}
If the partial matching situation persists, the ac-

tual sensing plan will be expanded to include all the
sensor, being Off, belonging to the features with low
confidence in event e. This will lead to either confirm
the actual event e (good matching case), or disapprove
the event e (no-match case). Thus, the actual sensing
plan R is updated as follows:

R = R∪{(Si,8)|∀i (Si,L) ∈ ||e||}
When the actual state partially matches multiple

events, it is necessary to find a way to decide which
event is actually ongoing without the need to activate
all sensors as that would not be cost effective. This is
done by calculating the difference between the events
partially matching the actual state. If two events ek
and el partially match the actual state, then we calcu-
late the set of features differentiating the two events
ek and el as follows: D = ||ek||− ||el ||.

This difference is then used to update the sensing
plan R, to be able to decide which of the events is
actually ongoing, as follows:

R = R∪D

Depending on how many features differentiate the
two events ek and el , low confidence ones can be ex-
cluded from the new sensing plan as to not turn on all
sensors and only operate the sensors leading to dis-
tinguish among the two events. A recursive approach
can be adopted in a similar way as for single partial
matching case.

5.2 Optimization of Sensing Plans

Optimizing a sensing plan consists in tracking the ac-
tual state and matching it to an expected event, or po-
tentially ending with a good match with an event even
though it is not the expected one. Following the actual

state, the optimization alternates between the differ-
ent cases (good, partial, no-match) mentioned earlier
while tuning the sensor frequencies accordingly.

Mainly, when the confirmation of an event occurs
consecutively the number of sensors to use to track
such an event will be reduced. The first time an event
is identified, no optimization will be done. On the
second consecutive confirmation, all sensors assigned
to that confirmed event with low confidence will be
turned off. Similarly, on the fourth consecutive ap-
proved occurrence of the expected event all sensors
assigned to features with medium confidence will be
turned off. On any consecutive occurrence confirma-
tion (good match) beyond this, no optimization will
be done.

6 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

The proposed system language, functionality, occu-
pancy analysis and optimization algorithm have been
implemented in C++. The implementation has been
made bottom-up where the basic constructs are im-
plemented as classes, thereafter such class types form
the variable types within other classes.

Since the number of features within an event and
the number of sensors in a feature are variable and
need to be known when instantiating the classes to
actual objects, we assigned a static array length for
each type that is going to be the maximum entities
and track the number of actual objects (for example
adding or deleting a sensor to a sensing plan) at run-
time.

To assess the performance achieved by our proac-
tivation algorithm, we have conducted an actual oc-
cupancy experiment analysis of a University building
(single) space for a 24-hour period. By performance,
we mean the decision accuracy, the percentage of
spared sensors and the energy saved due to some of
the sensors being turned off/stretched frequency part
of the time. The software implementation and data
gathered are available here 2.

Figure 1 depicts the variable total number of sen-
sors being active at runtime, following the actual
state, for first 9 hours among the 24-hour period. The
analysis for the last 15 hours is omitted as the only
event recognized is Empty, where the number of sen-
sors operating is static (2 sensors) and only the sen-
sors with high confidence to that event are active i.e.,
namely motion and light sensors. This has saved con-

2https://e.pcloud.link/publink/show?code=
kZw0sjZVvNS4RWIuoRSHhpTioRyMj3QF6NX
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Figure 1: Number of sensors active at runtime.

siderable energy amount, that would have been con-
sumed by 6 sensors over 15 hours if the proactivation
is not used.

A single sensor sampling data every 2 minutes
(2.5 minutes in (Perra et al., 2021)) consumes in av-
erage 0,13 kW/h, this amounts to 0,0043 kW per sam-
ple, if we disregard the slight differences of the en-
ergy consumption between the different sensor types.
Given that our use case operates 8 sensors, for 24
hours period the total energy consumption for data
sampling when using an occupancy analysis algo-
rithm that samples data statically every 2 minutes is:
p = 8×24×0,13 = 24.96kw/day.

The total number of samples would be then 5760.
The test run of our proactivation algorithm for the
same setup and same data accumulated to 3942 sam-
ples, thus saving 31% of the data sampling compared
to the naive algorithm, while achieving the same ac-
curacy and state knowledge level. This means that
our intelligent occupancy analysis algorithms has led
to save 7,89kw/day compared to the static frequency
algorithm, such as in (Perra et al., 2021; Aftab et al.,
2013; Beck et al., 2021), that is mostly adopted in
many occupancy monitoring solutions. This savings
come from sensors only. The gain in energy saving
is far higher one comparing the proactivation solution
to the monitoring solutions where sensors are perma-
nently actively, such in (Ortiz Perez et al., 2018; Abra-
ham and Li, 2014). In fact, the real-time knowledge
synthesized by the proposed solution can be used as
a ground to optimize other energy consumption loads
such as lights, heating and ventilation.

The matching between expected events and input
data as well as sensing plan optimization percentage
have also been analyzed. The results are depicted in
Figure 2. This is to showcase the algorithm trade-
off between reliability, having more sensors active to
identify whether an event is actually ongoing, and the
performance optimization achieved by having fewer
sensors active to save on energy.

As one can see from that figure, the sensing plan
optimization (orange) kicks in a little while after the

Figure 2: Expected event matching and sensing plan opti-
mization.

event match (blue) has reached 100%. The sensing
plan optimization also does not go to 100% right away
but spends a couple of iterations at 50% first. In
fact, the higher the event matching is, the higher the
sensing plan optimization will be. This is justifiable
as having the expected event confirmed many times
leads to lower the sensors needed to track the contin-
ual availability of that event.

7 CONCLUSION

This paper proposed a proactivation system, that is
an intelligent knowledge-driven real-time occupancy
monitoring solution. The proposed analysis enables
to tune the sensors frequency on-the-fly following the
actual state so that to reduce data sampling and energy
consumption.

The core idea is that rather than collecting large
amounts of sensor data to perform occupancy analysis
post hoc, we adopted a knowledge-driven approach
where we proactively identify the minimal data rel-
evant to the actual state following the semantics of
the expected activities. The proposed contribution has
been mathematically modeled and an early proof-of-
concept prototype has been implemented in C++.

Our solution has been tested and compared to re-
lated occupancy analysis alternatives where it outper-
formed by reducing the sensors energy consumption
with up to 31%.

As a future work, we plan to conduct an exten-
sive experiment on actual use cases with larger set of
events. Another future work would be to study the
complexity and schedulability of the proposed algo-
rithm on the actual multicore platform used for de-
ployment (Boudjadar et al., 2014).
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