
Enhancing ICS Security Diagnostics with Pseudo-Greybox Fuzzing
During Maintenance Testing

Kazutaka Matsuzaki1 a and Shinichi Honiden2 b
1Faculty of Global Informatics, Chuo University, Tokyo, Japan

2Faculty of Science and Engineering, Waseda University, Tokyo, Japan

Keywords: Industrial Control Systems, Pseudo-Greybox Fuzzing, Maintenance Testing, Security Diagnostics, Stateful
Protocol Fuzzer, Network Fuzzer, ICS Monitoring.

Abstract: This paper presents a novel Pseudo-Greybox Fuzzer (pseudo-GBF) methodology designed to improve the
security diagnosis of Industrial Control Systems (ICS) during maintenance testing. The proposed method
combines stateful protocol fuzzing, network fuzzing, and ICS monitoring to optimize the coverage of state
transitions in the system under test (SUT) while operating within the constraints of on-site maintenance testing.
Pseudo-GBF enhances security testing by utilizing replayable seeds to trigger specific state transitions,
enabling efficient and practical testing. By incorporating Pseudo-Greybox Fuzzing during maintenance testing,
the methodology addresses the challenges faced in ICS security diagnostics, leading to improved security and
resilience of critical infrastructure systems. This paper provides a comprehensive overview of the system
design, including integrating stateful protocol fuzzing, network fuzzing, and ICS monitoring, demonstrating
its potential to advance ICS security testing.

1 INTRODUCTION

Industrial control systems (ICS) are vital components
of modern critical infrastructures, responsible for
managing and controlling critical processes across
various industries. As these systems become
increasingly interconnected and integrated with the
broader IT infrastructure, the risk of cyber-attacks
escalates, posing significant threats to both safety and
security.

Fuzzing technology, a widely used method for
discovering software vulnerabilities, has existed since
the early 1990s. Fuzzing generates syntactically or
semantically invalid inputs and monitors the
program's output for anomalies. Attackers often
employ fuzzing for exploit generation or intrusion
testing. In recent years, network fuzzing has gained
popularity in industries utilizing embedded devices in
ICS.

Researchers have proposed various enhancements
to fuzzing techniques, such as coverage-guided
fuzzing to improve test coverage and the integration
of machine learning for efficient testing. Particularly,

a https://orcid.org/0000-0003-2337-2686
b https://orcid.org/0000-0003-1385-3996

research on fuzzing technologies has centered on their
application in industrial control systems. For example,
conducting such tests before deploying ICS
components in power management systems or smart
grids can effectively identify unknown vulnerabilities,
preventing attackers from exploiting them (Zhu 2023,
Boehme 2021, Serpanos 2021).

However, ICS typically have long lifecycles and
undergo partial renewals, necessitating long-term
security maintenance. In practice, security measures
are primarily implemented during the system's
development phase, while security patches are
applied to external devices like network equipment
during operation. This approach can result in a
vulnerable state that relies on perimeter defences.

This paper proposes a method that combines
fuzzing technology with patching to broaden the
application scope and extend lifecycle support for
ICS security. The proposed method aims to address
the challenges faced by ICS security measures by
offering a comprehensive and practical approach that
integrates fuzzing and patching techniques to ensure
the robust security of industrial control systems.

660
Matsuzaki, K. and Honiden, S.
Enhancing ICS Security Diagnostics with Pseudo-Greybox Fuzzing During Maintenance Testing.
DOI: 10.5220/0012137100003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 660-667
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Furthermore, by combining these strategies, we aim
to enhance the resilience of ICS throughout their
entire lifecycle, effectively mitigating potential
vulnerabilities and reducing the risk of cyber-attacks.

The remainder of this paper is structured as
follows: Section 2 provides the background of this
paper, covering fuzzing techniques for network
protocol implementations, fuzzing techniques for ICS
security, and cybersecurity aspects of IEC 61850-
based systems and distributed energy resources.
Section 3 explains the challenge, and section 4
discusses the proposed method that combines fuzzing
technology with patching to enhance the security of
industrial control systems throughout their lifecycle.
Section 5 shows the evaluation of the proposed
methodology. Section 6 discusses several topics
regarding pseudo-GBF, and section 7 shows related
work. Finally, Section 8 concludes.

2 BACKGROUND

This section overviews the challenges and issues
associated with patch management in industrial
control systems and the complexities of multiple
states in ICS protocols.

2.1 Patch Management of ICS

Patch management for ICS, as outlined in the
international standard for control system security,
IEC 62443-2-3, faces several challenges in ensuring
security risks are adequately mitigated during
maintenance. These challenges include:
 Minimizing downtime: In ICS, availability is of

paramount importance. System downtime can
result in high costs and operational disruptions.
Patch management must balance maintaining
system availability and addressing security
vulnerabilities.

 Limited time for vulnerability assessment: Due
to the need to minimize downtime, patch
management must identify and address
vulnerabilities within a narrow time frame,
which can hinder the effectiveness of
vulnerability assessments.

 Independent verification of security: Security
certification schemes based on IEC 62443 and
other standards require that an independent
organization verify security measures. In
practice, the burden of diagnosis by an
independent organization is substantial, and the
implemented measures may need to be revised
to address the underlying security risks.

 Inconsistent test quality: While security
certification schemes mandate the
implementation of specific test items,
application-specific tests are often overlooked.
Conversely, penetration tests may include
application-specific tests, but the test quality
may not be uniform across different systems.

 Focus on known vulnerabilities: Given the
practical constraints, the only feasible solution
is often to confirm the absence of known
vulnerabilities in the operating system or
components that can be remotely exploited.
However, this approach may overlook unknown
or emerging threats, exposing systems to
potential attacks.

Addressing these challenges in patch
management for ICS is crucial for maintaining the
security and resilience of industrial control systems
against the ever-evolving landscape of cyber threats.

2.2 Multiple States in ICS Protocols

Modern ICS often employ stateful protocols, such as
IEC 61850-MMS, RTPS, DDS, MQTT, etc., to
efficiently synchronize various systems. These
current protocols exhibit more complex state
transitions than traditional protocols like IEC 60870,
Modbus, and DNP3, which mainly focus on simple
read and write values operations. In particular, the
IEC 61850 protocol is an example of stateful
protocols with intricate state transitions. The
challenges associated with multiple states in current
ICS protocols include the following:

Stateful Protocol Analysis: Given the stateful nature
of current ICS protocols, more than traditional
fuzzing techniques may be required for effective
vulnerability identification. Fuzzing methods must
consider various states and transitions in the protocol
to generate meaningful test cases and uncover
potential weaknesses.

State-Aware Vulnerability Detection: The complex
state transitions in current ICS protocols necessitate
state-aware vulnerability detection tools and
techniques capable of recognizing and accounting for
specific states and transitions that may introduce
security risks.

Addressing the challenges multiple states pose in
current ICS protocols is crucial for enhancing the
security and resilience of industrial control systems.

Enhancing ICS Security Diagnostics with Pseudo-Greybox Fuzzing During Maintenance Testing

661

3 CHALLENGES IN ICS
SECURITY DIAGNOSE

This section focuses on the challenges and priorities
associated with the constraints in developing security
diagnostic frameworks for ICS. Maintaining system
availability is of utmost importance in ICS, leading to
severe restrictions on time allocated for on-site
security testing during maintenance operations.
Moreover, the inability to embed test code within the
installed software presents additional difficulties.

3.1 Constraints in Security Diagnostic
Frameworks

Developing a security diagnostic framework for ICS
faces two significant constraints:

1. The inability to embed test code in the installed
software.

2. Limited time for diagnosis at the installation
site.

These constraints introduce several technical
challenges:

 Recompiling software is impossible,
preventing the implementation of greybox
fuzzing with coverage measurements.

 For stateful protocol systems, fuzzing test
coverage is biased, making testing states
reached after multiple message exchanges
challenging. This issue can result in missed
bugs and wasted time.

3.2 Challenges in Advanced Fuzzing

Most fuzzing research can be conducted on a PC
within a virtual environment, using a debugger to
monitor the process under test. However, in ICS,
advanced fuzzing is challenging in the field due to the
need for hardware monitoring to support IT/OT
convergence. This hardware integration complicates
the fuzzing process and presents additional
challenges in securing ICS effectively.

4 SYSTEM DESIGN

This paper proposes a methodology for incorporating
security diagnostics during maintenance testing of
ICS. The method, Pseudo-Greybox Fuzzing (pseudo-
GBF), aims to enhance security testing during the
system life cycle.

Figure 1: Overview of security testing for smart grid
security diagnose.

4.1 Pseudo-Greybox Fuzzing for
Security Diagnosis in Maintenance
Test

Pseudo-GBF involves performing security testing
with an awareness of the state coverage of the test
target. Since there is generally enough time for
security testing during the factory test in the system
life cycle, this method utilizes fuzzing to optimize the
coverage of state transitions in the system under test.

The outcome of the fuzzing process is a set of
replayable seeds capable of triggering specific state
transitions in the system under test (SUT). Network
fuzzing uses these replayable seeds to ensure efficient
and effective security testing during maintenance.

Figure 1 illustrates the overall process of the
proposed pseudo-GBF methodology. By
incorporating pseudo-GBF during maintenance
testing, the proposed method addresses the challenges
and constraints faced in ICS security diagnostics,
leading to improved security and resilience of critical
infrastructure systems.

The pseudo-GBF methodology for security
diagnosis in maintenance tests combines multiple
components: Stateful Fuzzer, Network Fuzzer, and
ICS Monitoring. These components work together to
enable efficient and effective testing, even under on-
site constraints.

4.1.1 Stateful Protocol Fuzzer

Stateful protocol fuzzer considers various possible
states, including state transitions defined in the
protocol, state transitions modeling the interaction
with the PUT as states, and state transitions modeling
the flow structure of the program. Examples of these
states include state transitions in protocols specified
in IEC 61850, state transitions considered according
to the sequence patterns of responses returned by TCP

ICSOFT 2023 - 18th International Conference on Software Technologies

662

and UDP as implemented in AFLNet (Pham 2020)
and StateAFL (Roberto 2022), and state transitions
tracking the internal structure of a PUT program as a
model. In addition, general coverage-guided fuzzing
is included in this category.

The functional requirement of the stateful
protocol fuzzer is the ability to persist replayable
seeds that can be retransmitted later. The performance
requirement is to increase state coverage.

4.1.2 Network Fuzzer

In maintenance testing, the PUT is either embedded
in hardware, becoming a Device Under Test (DUT),
or embedded in a system, becoming a System Under
Test (SUT). Test equipment must be brought onsite
and tested from the network interface. Since this is a
production environment, operations like debug builds,
which can introduce vulnerabilities, are not permitted,
and embedding code is not allowed.

The functional requirements of the network
fuzzer are the ability to retransmit over the network
with replayable seeds as input and adjust the
retransmission interval. If the retransmission speed is
too fast, the DUT or SUT may be unable to process
the retransmissions, rendering the test ineffective.

4.1.3 ICS Monitoring

ICS Monitoring diagnoses security by receiving
fuzzing feedback from the DUT and SUT. In addition,
it checks for the maintenance of essential functions as
defined in IEC 62443. This monitoring applies to
digital outputs, analog outputs, serial outputs,
heartbeats, LEDs, etc. The functional requirements of
ICS Monitoring include having a physical monitoring
interface and being able to verify the maintenance of
essential functions.

Combining these components, the proposed
pseudo-GBF methodology provides a comprehensive
solution for effective security diagnosis during
maintenance testing in ICS.

4.2 System Implementation

The following describes an example implementation
of the proposed configuration detailed in the previous
subsection. During the factory testing phase, we
utilized the IEC 61850-MMS extension of AFLNet as
the stateful protocol fuzzer within a container on a PC.
For on-site testing, we implemented the network
fuzzer function by integrating aflnet-replay, a

3 https://github.com/vanhauser-thc/afl-cov

retransmission tool of AFLNet, with afl-cov 3 , a
coverage measurement tool for AFL-based tools.

Afl-cov is employed to gather and parse the output
of afl-fuzz, while aflnet-replay is used to transmit
these outputs to the on-site DUT/SUT. Consequently,
we utilized dedicated hardware to monitor digital
signals and other relevant data. In this specific
implementation, the Achilles Testing Platform
(ATP)4 was used.

5 EVALUATIONS

5.1 Experiment Setup

Table 1 presents the evaluation experiment
combinations. The evaluation criteria are as follows:

1. The number of test cases and the time
required.

2. The number of crashes detected by fuzzing.
3. The code coverage achieved by fuzzing.
We compared the performance of AFLNet, which

was extended in this study, with pseudo-GBF, which
utilizes AFLNet's replayable seeds. The evaluation
targets were the libiec61850 application in versions
1.4.0 and 1.5.0, containing known vulnerabilities, and
version 1.5.1, the latest version at the time of writing.

Message sequences containing control commands
were provided as initial seeds for the target. The
results of each experiment were averaged across three
repetitions.

The figure illustrates the structure of the pseudo-
GBF implementation. The upper half of the figure
represents the Factory, while the lower half depicts
the On-Site test.

In the On-Site case, physical monitoring is
necessary, so Fuzzing and Monitoring are conducted
on separate hosts. The environment for Fuzzing is the
same as in the Factory. However, for Monitoring, the
DUT/SUT ethernet ports and digital output are
monitored by the Test Device. Although the
monitoring environment is similar to the Factory
setup, the ATP monitors the DUT/SUT's ethernet port
and digital output.

The experiment was conducted using PCs with
two vCPUs and 8 GB of memory for both fuzzer and
DUT.

4 https://www.ge.com/digital/applications/achilles-commu
nications-certified-products

Enhancing ICS Security Diagnostics with Pseudo-Greybox Fuzzing During Maintenance Testing

663

Figure 2: Experiment Settings for Evaluation.

Table 1: Combination table of evaluation experiments.

Test target Proposed
method

Base method

Lib
version

App. pseudo-GBF AFLNet

v1.4.0
v1.5.0
v1.5.1

basic_
io

num. of testcases / time
num. of crashes found/ time
% of path coverage / time

5.2 Number of Testcases

Evaluate the overall volume of test cases and the time
it takes to execute them. Table shows the number of
test cases executed.

In the Factory, 500,000 to 800,000 test cases were
executed in 24 hours, and since the tool is based on
AFL, it is difficult to determine that the entire test was
covered in 24 hours.

On-site, about 1,000 replayable seeds were run.
The time required was less than 1 hour, with a timeout
setting of 5 seconds.

Table 2: Number of Testcases.

 v1.4.0 v1.5.0 v1.5.1
Factory(24h) 721,174 536,432 543,011
On-site 989 757 1,015

5 https://github.com/fkie-cad/61850-fuzzing

Table 3: Number of test cases for Comparison (Open soured
software and accredited software for security certification
schemes).

 v1.4.0 v1.5.0 v1.5.1
boofuzz(61850-
fuzzing) 12,800,000
ATP

168,069

168,335

168,694

Table shows the values for the prominent
example of open-source software (IEC 61850 MMS-
compliant version of boofuzz 5) and one of the
prominent examples of an accredited tool (ATP) in
certification schemes as a reference.

In the case of boofuzz, all numbers are determined
by default values, but in this evaluation environment,
only about 10% of all tests were performed in 24
hours.

In the case of accredited tools, pre-determined test
cases are conducted. The variation in the number of
cases is the effect of changing the behavior depending
on the monitoring situation, but there is no significant
difference between the versions.

5.3 Number of Crashes Detected

Table 3 shows the number of unique crashes detected.
Both methods reproduced the same number of crashes.
Strictly speaking, ensuring that the DUT is back to the
state of listening on TCP port 102 before sending

ICSOFT 2023 - 18th International Conference on Software Technologies

664

replayables is necessary. This needs to be done in
conjunction with proper monitoring.

Table 4: Number of unique crashes.

 v1.4.0 v1.5.0 v1.5.1
Factory (24h) 27 20 0
On-site 27 20 0

In the IEC 61850 MMS-compliant version of
boofuzz and ATP, no crashes were detected in 24
hours for boofuzz. The order of execution may have
had an impact since we did not run all of the defined
fuzz, although, in the case of ATP, the vulnerable
versions (1.4.0, 1.5.0) correctly indicated a test failure.
However, the test is terminated when the DUT
response does not return within a set time (15 sec),
and it cannot determine unique crashes.

5.4 Test Coverage

Table 4 and Table 5 present the test coverage (SLOC)
for each version of libiec61850 and the overall
coverage, including both the application and library
components. Although these tables display the actual
measured values, it is challenging to make pure
comparisons due to significant differences caused by
the tools used.

In the Factory, we used afl-cov to measure the
coverage based on AFLNet runs. On-site
measurements were conducted using llvm-cov. There
is no substantial difference in coverage, and the
results in Table 5 are considered sufficient. The lower
values in Table 4 compared to Table 5 can be
attributed to excluding code counts related to the
application's end and function names.

The inability to conduct identical measurements
stems from the fact that both AFL and LLVM
perform instrumentation to insert functions into the
generated code, which affects AFL results, and the
incompatibility between llvm-cov and AFL.

Table 5: Test coverage (SLOC, Factory).

 v1.4.0 v1.5.0 v1.5.1
App. 23.9 %

92 SLOC
25.5 %

94 SLOC
22.5 %

111 SLOC
Lib. 7.9 %

34,413
SLOC

7.9 %
37,166
SLOC

8.0 %
38,105
SLOC

Table 6: Test coverage (SLOC, On-site).

 v1.4.0 v1.5.0 v1.5.1
App. 63.7 %

102 SLOC
67.9 %

105 SLOC
66.9 %

121 SLOC
Lib. 15.3 %

32,803
SLOC

15.5 %
35,672
SLOC

19.4 %
36,617
SLOC

6 DISCUSSIONS ON
PSEUDO-GBF

This section discusses the application of pseudo-GBF,
the framework presented in this paper, and compares
it with other alternatives.

Effects of Initial Seed on Fuzzing
Mutation-based fuzzing performance generally varies
significantly depending on the initial seed. AFLNet
uses real-world inputs as the initial seed. In this paper,
we also use the minimum communication required for
a program implementing IEC 61850 as the initial seed.
This approach seems more efficient than 61850-
fuzzing, which automatically generates semi-random
inputs from the IEC 61850 protocol but requires more
time and effort. Ideally, we would like to generate
initial seeds automatically by recording test cases
during normal functional tests and converting them
into initial seeds. Although the problem of providing
initial seeds remains, even when focusing on IEC
61850, the system is model-based, so it can be largely
automated. Combining symbolic execution tools and
fuzzers for providing seeds is a topic for future
research.

Pluggable Architecture
This test was realized by combining the IEC 61850-
MMS extension of AFLNet with afl-cov and ATP.
This combination is flexible, and that pseudo-GBF
can be reproduced in principle, even with pioneering
tools such as Polar (Luo 2019). However, in the case
of a system that combines components from multiple
manufacturers, real hurdles, like combining tests
conducted at each factory, are high. Further research
is needed to address such real-world use cases.

Other Techniques That Can Be Used For CPS
Security Diagnostics Other than Fuzzing
This paper assumes fuzzing to realize security
diagnosis. However, it might be possible to automate
minimum security control measures by performing
vulnerability assessments. Combining vulnerability
scanning with known vulnerability assessments of
libraries and application-specific assessments can be
beneficial. However, to reduce testing time, it would

Enhancing ICS Security Diagnostics with Pseudo-Greybox Fuzzing During Maintenance Testing

665

be preferable to know whether vulnerabilities exist
without conducting actual scans by managing the
SBOM (software bill of materials).

Current Tools and Practices may be Sufficient
It might appear that the pseudo-GBF framework can
be realized with current tools, such as the ATP
referenced in the evaluation. However, a mechanism
generating generic fuzz based on protocol definitions
is similar to the current practice of conducting tests at
the Factory and improving them to pass them.
Increasing test coverage of the application-specific
processing part is challenging, and the difference in
the performance of greybox fuzzers, such as AFLNet,
is likely to manifest itself as a difference in test
accuracy.

7 RELATED WORK

Fuzzing in CPS/IACS (for Systems)
Several works focus on testing entire systems rather
than individual devices, targeting CPS and industrial
IoT systems, including ICS. In one study, an
intelligent fuzzing approach is proposed to target
combinations of possible parameters in the control
system for fuzzing (Chen 2019). Although this
approach has a high degree of abstraction, it differs
from traditional fuzzing that targets software and
individual devices. Renewable energy systems
adopting IEC 61850 are also advancing fuzzing and
security measures. In one case, fuzzing is performed
on systems implemented with IEC 61850, and
methods to confirm robustness have been presented
and evaluated (Matsuzaki 2020).

Fuzzing in Control System Protocol
Implementation (for Devices)
Fuzzing in control systems has been extensively
researched, particularly focusing on Programmable
Logic Controllers (PLCs), one of the key components
in such systems. ICSFuzz, for example, enables the
fuzzing of control applications by rewriting binaries
in situations with no source code (Tychalas 2021).
Polar addresses the inefficiency of existing mutation-
based fuzzing for ICS protocols with function codes
by using static program analysis to create an abstract
syntax tree for more efficient fuzzing (Luo 2019).

For IoT devices, Snipuzz presents a black-box
fuzzing approach that targets the firmware by
inferring message snippets and making mutations
based on device reactions (Feng 2021). This
technique addresses the challenges associated with
firmware acquisition and emulation, which often

make black-box fuzzing less accurate and harder to
optimize.

ICS3Fuzzer is a framework for discovering
protocol implementation bugs in ICS supervisory
software by fuzzing (Fang 2021). The prevalent use
of proprietary protocols is an issue when fuzzing
supervisory software. The framework provides a
state-book mechanism to grasp state transitions from
the execution trace of the supervisory software and
the corresponding inputs, allowing it to focus fuzzing
on the target state.

Fuzzing Stateful Protocol Implementations
Fuzzing stateful protocol implementations presents
unique challenges due to the need for multiple rounds
of interaction with the test subject to reach the desired
fuzzing points. Chen et al. explore effective fuzzing
strategies for analyzing communication protocols,
addressing the limitations of non-stateful greybox
fuzzers (Chen 2019).

Several fuzzing tools have been proposed to
extend AFLNet and support stateful protocols.
SnapFuzz, for example, adds a snapshot mechanism
to AFLNet, handling the overhead of recreating the
target state (Chen 2019). The snapshot mechanism
enables easy saving and restoring of the execution
states of the target. StateAFL extends AFLNet and
degenerates the state transition model to improve
fuzzing efficiency when constructing the state
transition model from the Device Under Test (DUT)
response (Roberto 2022).

FairFuzz is another extension of AFL that focuses
on increasing greybox fuzz testing coverage by
employing a targeted mutation strategy (Caroline
2018). This approach shares similarities with pseudo-
GBF, which utilizes AFLNet results and aims to
cover rare branches by generating fuzz input using
AFL.

8 CONCLUSION

This paper has presented a novel Pseudo-Greybox
Fuzzer (pseudo-GBF) methodology for enhancing the
security diagnosis of ICS during maintenance testing.
The proposed method addresses the challenges and
constraints faced in ICS security diagnostics by
optimizing the coverage of state transitions in the
system under test (SUT) using replayable seeds.

The pseudo-GBF methodology integrates stateful
protocol fuzzing, network fuzzing, and ICS
monitoring, allowing for efficient and effective
testing within the constraints of on-site maintenance
testing.

ICSOFT 2023 - 18th International Conference on Software Technologies

666

Future research can expand on the presented
methodology by exploring further optimization
techniques for stateful protocol fuzzing, refining
network fuzzing capabilities to work with a wider
range of systems, and enhancing ICS monitoring for
better detection of vulnerabilities and anomalies.

REFERENCES

Zhu, X., Wen, S., Camtepe, S., & Xiang, Y. (2022).
Fuzzing: A Survey for Roadmap. ACM Computing
Surveys, 54(11s), Article 230. https://doi.org/10.
1145/3512345

Boehme, M., Cadar, C., & Roychoudhury, A. (2021).
Fuzzing: Challenges and Reflections. In IEEE
Software, 38(3), pp. 79-86. doi: 10.1109/
MS.2020.3016773

Serpanos, D., & Katsigiannis, K. (2021). Fuzzing:
Cyberphysical System Testing for Security and
Dependability. In Computer, 54(9), pp. 86-89. doi:
10.1109/MC.2021.3092479

V. -T. Pham, M. Böhme and A. Roychoudhury, "AFLNET:
A Greybox Fuzzer for Network Protocols," 2020 IEEE
13th International Conference on Software Testing,
Validation and Verification (ICST), 2020, pp. 460-465,
doi: 10.1109/ICST46399.2020.00062.

Roberto Natella. 2022. StateAFL: Greybox fuzzing for
stateful network servers. Empirical Softw. Engg. 27, 7
(Dec 2022). https://doi.org/10.1007/s10664-022-
10233-3

Luo, Z., Zuo, F., Jiang, Y., Gao, J., Jiao, X., & Sun, J.
(2019). Polar: Function Code Aware Fuzz Testing of
ICS Protocol. ACM Trans. Embed. Comput. Syst.,
18(5s), Article 93, 22 pages. https://doi.org/10.
1145/3358227

Chen, Y., Poskitt, C. M., Sun, J., Adepu, S., & Zhang, F.
(2019). Learning-guided network fuzzing for testing
cyber-physical system defences. In Proceedings of the
34th IEEE/ACM International Conference on
Automated Software Engineering (ASE '19). IEEE
Press, 962–973. DOI: https://doi.org/10.
1109/ASE.2019.00093

Wilkerson, C., & Hariri, M. E. (2022). IEC 61850-Based
Renewable Energy Systems: A Survey on
Cybersecurity Aspects. In 2022 IEEE International
Conference on Environment and Electrical Engineering
and 2022 IEEE Industrial and Commercial Power
Systems Europe (EEEIC / I&CPS Europe). Prague,
Czech Republic, 2022, pp. 1-6, doi:
10.1109/EEEIC/ICPSEurope54979.2022.9854539

Matsuzaki, K., Sawabe, N., Maeda, R., Suzuki, D.,
Matsuura, T., & Hamada, H. (2020). Cybersecurity
Evaluation Methodology for Distributed Energy
Resources: Industrial Demonstration. In IECON 2020
The 46th Annual Conference of the IEEE Industrial
Electronics Society. Singapore, 2020, pp. 2169-2174,
doi: 10.1109/IECON43393.2020.9254422

Tychalas, D., Benkraouda, H., & Maniatakos, M. (2021).
ICSFuzz: Manipulating I/Os and Repurposing Binary
Code to Enable Instrumented Fuzzing in ICS Control
Applications. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2847-2862.

Feng, X., Sun, R., Zhu, X., Xue, M., Wen, S., Liu, D., Nepal,
S., & Xiang, Y. (2021). Snipuzz: Black-box Fuzzing of
IoT Firmware via Message Snippet Inference. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS '21), pp.
337-350. https://doi.org/10.1145/3460120.3484543

Fang, D., Song, Z., Guan, L., Liu, P., Peng, A., Cheng, K.,
Zheng, Y., Liu, P., Zhu, H., & Sun, L. (2021).
ICS3Fuzzer: A Framework for Discovering Protocol
Implementation Bugs in ICS Supervisory Software by
Fuzzing. In Annual Computer Security Applications
Conference (ACSAC '21), pp. 849-860.
https://doi.org/10.1145/3485832.3488028

Chen, Y., Lan, T., & Venkataramani, G. (2019). Exploring
Effective Fuzzing Strategies to Analyze
Communication Protocols. In Proceedings of the 3rd
ACM Workshop on Forming an Ecosystem Around
Software Transformation (FEAST'19), pp. 17-23.
https://doi.org/10.1145/3338502.3359762

Caroline Lemieux and Koushik Sen. (2018). FairFuzz: a
targeted mutation strategy for increasing greybox fuzz
testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering (ASE '18). Association for
Computing Machinery, New York, NY, USA, 475–485.
https://doi.org/10.1145/3238147.3238176.

Enhancing ICS Security Diagnostics with Pseudo-Greybox Fuzzing During Maintenance Testing

667

