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Abstract: The Maximum Common Subgraph, a generalization of subgraph isomorphism, is a well-known problem in
the computer science area. Albeit being NP-complete, finding Maximum Common Subgraphs has countless
practical applications, and researchers are continuously exploring scalable heuristic approaches. One of the
state-of-the-art algorithms to solve this problem is a recursive branch-and-bound procedure called McSplit.
The algorithm exploits an intelligent invariant to pair vertices with the same label and adopts an effective
bound prediction to prune the search space. However, McSplit original version uses a simple heuristic to pair
vertices and to build larger subgraphs. As a consequence, a few researchers have already focused on improving
the sorting heuristics to converge faster. This paper concentrate on these aspects and presents a collection of
heuristics to improve McSplit and its state-of-the-art variants. We present a sorting strategy based on the
famous PageRank algorithm, and then we mix it with other approaches. We compare all the heuristics with
the original McSplit procedure, and against each other. In particular, we distinguish the heuristics based on the
node degree and novel ones based on the PageRank algorithm. Our experimental section shows that PageRank
can improve both McSplit and its variants significantly regarding convergence speed and solution size.

1 INTRODUCTION

Graphs are flexible structures that allow us to model
many elements of human knowledge through a math-
ematical abstraction. In particular, graphs can be
very good representations of relationships between
objects. Graphs find many applications in fields
such as chemistry (Dalke and Hastings, 2013), so-
cial networks (Milgram, 1967), web searches (Brin
and Page, 1998), security threat detection (Park and
Reeves, 2011), modeling dependencies between dif-
ferent software components (Zimmermann and Na-
gappan, 2007), hardware testing and functional test
programs (Angione et al., 2022).

In this paper, we are interested in improving the
computation of the Maximum Common Subgraph
(MCS) between two graphs. Even if the problem has
been appearing in the scientific literature since the
70s (Bron and Kerbosch, 1973; Barrow and Burstall,
1976), one of the most efficient state-of-the-art algo-
rithm for finding MCS is McSplit, introduced in 2017
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by McCreesh et al. (McCreesh et al., 2017). Mc-
Split is a branch-and-bound algorithm that recursively
computes new solutions by pairing vertices selected
from the two graphs. The core idea is to label all ver-
tices based on the connection they have with already
selected nodes. After that, the algorithm efficiently
prunes the search tree taking into account those labels
and a formula computing the upper bound for the size
of the current solution. The approach is quite efficient
in maintaining low memory profiles and pruning the
search space. Unfortunately, it considers all possible
vertex pairs, one vertex from the first and one from the
second graph, and its performances strongly depend
on the vertex sorting heuristic. The original version
of McSplit statically sorts the vertices of both graphs
based on their degree. This order is then maintained
unaltered for the entire process, and it is the most im-
pairing element of the procedure. Many vertices may
have identical degrees, making it impossible to dis-
criminate between them. Moreover, there is no way to
prioritize a promising pair discovered during the exe-
cution of the algorithm. In our approach, we exploit
the core of the original McSplit procedure, but we re-
place the static sorting heuristic with sharper ordering
techniques.
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McSplitRL (Liu et al., 2020), McSplitLL (Zhou
et al., 2022), and McSplitDAL (Liu et al., 2022) al-
ready brought an improvement over the original sort-
ing heuristic of McSplit. McSplitRL uses a Rein-
forcement Learning approach to refine the order of the
vertex selection. McSplitLL, based on McSplitRL,
outperforms its predecessor by using a technique
called Long Short Memory which deals with nodes
with specific characteristics. McSplitDAL builds
upon McSplitLL, introducing a technique called Dy-
namic Action Learning, which improves the reward
function of McSplitRL. However, these techniques
use the original McSplit sorting heuristic as a tie-
breaker when selecting vertices.

In this work, we present a new vertex selection
heuristic that is able to improve the performances of
McSplit, McSplitLL, and McSplitDAL. In particular,
we propose to use PageRank (Brin and Page, 1998),
the former algorithm behind the Google search en-
gine, as a vertex selection heuristic, exploiting its
capabilities to work on both directed and undirected
graphs. We use PageRank both as a standalone or as
a tie-breaking heuristic, using it to classify vertices
and then combining it with other techniques such as
McSplitLL or McSplitDAL.

In our experimental analysis, we compare our al-
gorithm with McSplit and its variants. We tested 400
graph pairs, selecting the graphs from the largest pub-
licly available graphs at (Foggia et al., 2001) and
choosing at least one graph pair for each graph cat-
egory. We set the timeout for each experiment to
60 seconds to quickly grab the convergence speed of
each algorithm. Overall, we can improve McSplit,
McSplitRL, McSplitLL, and McSplitDAL in up to
77% of the graph pairs considered. Moreover, we ob-
tain an improvement in terms of the final size of the
solution subgraph up to 7%.

The paper is organized as follows. In Section 2,
we describe our notation and we define the problem.
We also present a set of well-known approaches for
solving it. In Section 3, we illustrate new heuristics to
enhance the original McSplit algorithm and its latest
variants. Section 4 describes our experimental results.
Finally, Section 5 draws some conclusions and give
some hints on possible future work.

2 BACKGROUND

This section introduces our graph notation and some
basic concepts on subgraph isomorphism and the
Maximum Common Subgraph problem. After that,
we present McSplit and its more recent variants,
which we consider state-of-the-art algorithms for

solving the Maximum Common Subgraph problem.

2.1 Graphs

A graph is a pair of vertices (nodes) and edges (links).
Links represent connections with nodes, making this
structure well-suited for representing relationships
between objects. In our notation, we use G and H
to represent two graphs and V (G) (V (H)) to repre-
sent the vertices belonging to G (H). Furthermore,
we use E(G) (and E(H)) to represent the set of all the
pairs of vertices connected by an edge. We use |G| or
|V (G)| to indicate the number of vertices belonging
to G, referring to it as its size. In contrast, we refer
to the number of edges of a graph as |E(G)|. Given
v1,v2 ∈V (G), we denote E(v1,v2) the edge that links
v1 to v2.

Graphs can come in various flavors: Labeled or
unlabeled, weighted or unweighted, directed or undi-
rected. In labeled graphs, vertices have additional in-
formation described by the label; in many applica-
tions, the labels classify the vertices as sharing spe-
cific characteristics. In our notation, L(v) is the label
of the vertex v.

We say that the graph is weighted if edges present
different weights associated with them. For example,
a weight might represent the distance between two
nodes. Unweighted graphs can be seen as weighted
graphs with every weight equal to one.

We say that G is undirected if

∀v1,v2 ∈V (G) ∈ E(G) ⇐⇒
{v2,v1} ∈ E(G) & E(v1,v2) = E(v2,v1)

In other words, if a link exists between v1 and v2, the
opposite link must exist and have the same weight.

We say that H is a subgraph of G if

V (H) ⊂ V (G)∧E(H) ⊂ E(G)

that is, the vertices and edges of H are a subset of the
vertices and edges of G. A graph H is an induced
subgraph of G if H is a subgraph of G and contains
all the edges between its vertices of the original graph
G.

Graph isomorphism is the problem of detecting if
there is a bijection between two graphs G and H such
that

∀v1,v2 ∈ H ∈ E(H) ⇐⇒ {v1,v2} ∈ E(G)

that is, if two graphs have the same structure. Veri-
fying whether two graphs are isomorphic is known to
be NP (Schöning, 1988), even if the exact complexity
inside that class is unknown.

A subgraph is a subset of a graph’s vertices (or
nodes) and edges (or links). The terms vertex and
node will be used interchangeably in this paper.
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The Maximum Common Subgraph (MCS) prob-
lem between graphs G and H, requires finding the
most extensive graph simultaneously isomorphic to a
subgraph of G and H. In particular, the Maximum
Common Induced Subgraph (MCIS) focuses on find-
ing the induced subgraph with all the vertices in com-
mon between two graphs. The problem is known to
be NP-complete (Michael Garey, 1979).

In our case, we focus on undirected, unlabeled,
and unweighted graphs, as they represent the worst
case scenario for the Maximum Common Subgraph
computation.

2.2 McSplit

McSplit (McCreesh et al., 2017) is a branch-and-
bound recursive algorithm for finding the MCS be-
tween two graphs.

The authors define a label class as a set of ver-
tex pairs (belonging to the first and the second graph)
having the same connections toward the vertices be-
longing to the current solution. As McSplit uses la-
bels to find possible couplings between vertices, the
original algorithm also provides a way to create those
labels based on the adjacency lists of the vertices.

1 BEST ← /0

2

3 Function MCS(G, H, M)
4 if |M|> |BEST | then
5 BEST ←M
6 end
7 if CalculateBound()< |BEST | then
8 return
9 end

10 label class← SelectLabelClass(G,H)
11 G′← G
12 while G′ 6= /0 do
13 v← SelectVertex(G, label class)
14 G′← G′ \{v}
15 forall

w ∈ getVertices(H, label class) do
16 M′←M∪ (v,w)
17 H ′← H \{w}
18 G′←U pdateLabels(G′,v)
19 H ′←U pdateLabels(H ′,w)
20 mcs(G′,H ′,M′)
21 end
22 end
23 mcs(G′,H,M)
24 return
Algorithm 1: The simplified version of the original Mc-
Split algorithm.

Algorithm 1 provides a simplified version of the
McSplit algorithm. It takes as inputs the two graphs,
G and H, as well as the current solution M. La-
bel classes are used to guide the algorithm in find-
ing the solution to the problem. The label class is a
classification of each couple of vertices belonging to
(G,H). First, the algorithm assigns the current solu-
tion to the best one (line 5), in case the current so-
lution has a larger size (line 4). Notice that the best
solution BEST is initially empty (line 1). Then, the
algorithm calculates the upper bound B for the cur-
rent path (line 7). If this upper bound is less than the
size of the best solution, the current solution cannot
be improved along the current path; thus, the algo-
rithm backtracks (line 8). Otherwise, the algorithm
keeps improving the current solution. The bound is
computed as shown in Equation 1.

B = |M|+∑l∈L min(|{v ∈ G\M : L(v) = l}|,
|{w ∈ H\M : L(w) = l}|)

(1)
When improving the current solution, McSplit tries to
build a larger solution by virtually removing a cou-
ple of vertices with the same label from the respective
graphs, updating the labels (lines 18-19) and trying
to explore recursively all possibilities starting from
the current solution (line 20). In each iteration of
the algorithm, the selection of a vertex pair occurs in
three distinct stages. Firstly, the most promising label
class is identified, followed by selecting a vertex from
the set of vertices belonging to that label class in the
graph G (line 14). Subsequently, all vertices w ∈H of
the chosen label class are gathered (line 15), and then
individually selected one by one (line 17). Once v∈G
is selected, the current mcs instance uses recursion to
explore all solutions that include v and all the nodes
of the received partial solution M, therefore at line 23
an additional recursive call is introduced to explore
all the other solutions that include M but exclude v.
Ultimately, as every vertex couple has been explored
(line 12), the procedure returns the best solution.

To explore all possible vertex pairs, McSplit uses
two different heuristics. The first one is used to se-
lect the next label class. The second one is adopted
to choose the next vertex to add to the final graph.
The former (line 10) chooses the label class with
the smallest maximum size between G and H, i.e.,
max(|G|, |H|). The latter, instead, prioritizes vertices
in G with the most significant degree, where the de-
gree is the number of links (inward and outward) of
the vertex. In particular, for selecting the next vertex
(line 13), McSplit heuristically considers the degree
of the vertex, choosing each time the vertex with the
most considerable degree and removing it from the
graph. We will refer to this approach as the Node De-
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gree, or simply the Degree heuristic.

2.3 McSplit Variants

Many notable variants of McSplit have been devel-
oped to improve over the original algorithm. This sec-
tion briefly describes some of the most noticeable and
recent ones.

2.3.1 McSplitSD

McSplit works asymmetrically on the two graphs
since it selects a vertex from G and then searches for
a matching vertex in H. This approach may unbal-
ance the algorithm, making it perform better or worse,
depending on the characteristics of the first graph.
Among other strategies, Trimble (Trimble, 2023) pro-
poses McSplitSD, which sets as the first graph the
denser one of the pair. The density K of a graph is
evaluated through Equation 2, using the number of
edges and vertices of the two graphs to express the
density extremeness:

K(G) = |E(G)|
|V (G)|·(|V (G)|−1) (2)

The two graphs G and H are swapped when the in-
equality

| 12 −K(G)| > | 12 −K(H)|
is true.

2.3.2 McSplitRL

Liu et al. (Liu et al., 2020) proposes McSplitRL, a
novel approach that extends the standard McSplit us-
ing Reinforcement Learning. This approach keeps
two vectors, one for the vertices of G and the other for
the vertices of H, which contain the rewards of each
node. Therefore, the node selection heuristic is based
on finding the node with the highest reward. The au-
thors devised a scoring system for a given action using
Equation 3:

R(v,w) = ∑(Vl ,Vr)∈Ev min(|Vl |, |Vr|)−
∑(V ′l ,V ′r)∈Ev′

min(|V ′l |, |V ′r|) (3)

Given a set of label classes of the initial graphs at a
given point of the search, Ev, and the subsequent set
of label classes, E ′v, generated by including a new cou-
ple of vertices to the current solution, Equation 3 cal-
culates the reduction of the size of the label classes.
The size of a label class is considered as the minimum
of |Vl | and |Vr|, which are the number of vertices be-
longing to the label class respectively from the first
or the second graph. Thus, this method can be seen
as a bound reduction and tends to prefer nodes whose
resulting branching cause a higher reduction of the
bound, thus cutting as many branches as possible in
subsequent steps of the algorithm.

2.3.3 McSplitLL

Zhou et al. (Zhou et al., 2022), starting from Mc-
SplitRL, build a more sophisticated version of the
tool called McSplitLL. Their solution introduces a
new heuristic called Long Short Memory (LSM) and
a method to be used in a specific situation called
Leaf Vertex Union Match (LUM). The new heuris-
tic uses Equation 3 but stores the rewards in a vector
for nodes of G and a matrix for the nodes of H, al-
lowing to reward each possible node pair separately
(v,w) ∈ (G,H).

However, since rewards may become huge, an
asymmetric decay is used, following a long-short-
term approach, which halves both G and H rewards
when their respective thresholds are exceeded. Re-
wards for single nodes v decay faster than the re-
wards for pair of nodes (v,w); thus, node pairs have a
smaller threshold.

Moreover, the LUM heuristic introduces a more
optimized strategy to handle leaf nodes. A node is
considered a leaf if it is adjacent to only one vertex
of a given graph, and it has been proved it can always
be added to the current subgraph if its only neighbor
is part of it as well. Thus, whenever a leaf from the
left graph and a leaf from the right graph is found, the
pair formed by these two nodes is added to the current
solution.

2.3.4 McSplitDAL

Liu et al. introduced McSplitDAL (Liu et al., 2022).
This algorithm is the most recent version of McSplit,
and it is built upon McSplitRL and McSplitLL. This
algorithm mainly introduces two new ideas. A new
value function called Domain Action Learning (DAL)
and a hybrid learning policy for choosing the next ver-
tex to match. The DAL value function aims to take
into account, when branching, not only the reduction
of the upper bound but also the simplification of the
problem occurring after the branch. This feature can
be implemented by adding an additional term to the
reward defined in Equation 3, granting a higher re-
ward to the vertices whose generated partitions have
a higher cardinality, when these vertices are added to
the solution:

R(v,w) = ∑(Vl ,Vr)∈Ev min(|Vl |, |Vr|)−
∑(V ′l ,V ′r)∈Ev′

min(|V ′l |, |V ′r|)+
|Ev′ |

(4)

Moreover, the hybrid branching policy of this ap-
proach has the primary goal of overcoming a possible
“Matthew effect”, which causes the algorithm to con-
tinue branching on a subset of nodes with very high
rewards getting trapped in a local optimum. The au-
thors believe this can be overcome by switching from
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the RL to the DAL policy (and vice versa) after a
fixed number of iterations without improvement, al-
lowing to dynamically change the strategy for select-
ing nodes.

For brevity, in this paper, we use the term Mc-
SplitX to generically identify the original McSplit or
one of its variants, i.e., McSplitLL, or McSplitDAL.

2.4 Other Approaches

Many algorithms have been presented to solve the
MCS problem, using strategies that differ from the
original McSplit. Among those, we would like to
mention the following. Levi (Levi, 1973) casts the
MCS problem onto the Maximum Common Clique
problem. McCreesh et al. (McCreesh et al., 2016)
and Vismara et al. (Vismara and Valery, 2008) fol-
low the previous approach while exploiting constraint
programming to solve the problem. Other approaches
take a step back, adopting parallel computation ca-
pabilities of General-Purpose computing on Graphics
Processing Unit (GPGPU) (Quer et al., 2020), to en-
hance McSplit on modern devices. A set of heuristics
to tackle the MCS problem with more than two graphs
has been developed by Cardone et al. (Cardone and
Quer, 2023). However, the most promising heuristics
work by analyzing graphs in couples and later merg-
ing the results, thus still motivating the research on
MCS techniques working on pairs of graphs.

3 OUR APPROACH

The main target of this work is to improve the ver-
tex selection heuristic. In particular, we are interested
in heuristics that can classify the vertices of the two
graphs. From our perspective, a good heuristic should
follow the guidelines presented by Marti et al. (Martı́
and Reinelt, 2022):

• The solution should be nearly optimal.

• The heuristic should require low computational
effort.

In our heuristics, we also aim to generate classifica-
tions as diverse as possible for ranking the vertices.
Moreover, we would like heuristics to classify a ver-
tex with a single number instead of representing it as
a vector. Although vectors have already been used in
MCS solutions, due to the nature of the problem, us-
ing a mathematical vector incurs possible downfalls.
More specifically, vectors may require more compu-
tational power to retrieve a classification than using
single integers and the results may depend on the lex-
icographical order of the vertices. With these con-

siderations in mind, we focus on a classification of
vertices based on single numbers. In particular, we
developed different heuristics for classifying vertices:

• A heuristic considering the PageRank of each ver-
tex.

• A heuristic using both PageRank and McSplit-
DAL.

• A heuristic using both PageRank and McSplitLL.

Please notice that both DAL and LL heuristics are
computed dynamically, whereas the PageRank ap-
proach is applied only once at the beginning of the
procedure.

3.1 The PageRank Algorithm

PageRank (Brin and Page, 1998) is an algorithm de-
veloped by Google that, given a network of web
pages, generates the probability of reaching a page
through a finite sequence of random clicks. PageRank
was the algorithm used by Google to sort the results
of its web engine searches. However, it is not used
anymore, as its patent expired in 2019.

PageRank is usually implemented on a generic
graph, so to account for different web pages, it con-
siders directed and unweighted graphs. A link from
one web page takes the user to another web page, but
the way back is not guaranteed. However, we can also
use it on undirected graphs, as we can think of them
as directed graphs with both forward and backward
edges between each node pair.

Algorithm 2 implements our PageRank algorithm,
and it is strongly inspired by a public version1. In
Algorithm 2, we use the notation ad j(G) to refer to
the indices of the adjacency matrix of graph G.

The Damping Factor (DF), initialized in line 1,
represented a person’s probability of stopping click-
ing random links. We decided to follow Brin et
al. (Brin and Page, 1998) recommendation for the
value of the DF , and we set its value at 0.85. In line 2,
we set the acceptable error ε at an arbitrary value. Ex-
perimentally, we discover that the smaller the epsilon
(i.e., the more we increase the precision of the pro-
cedure), the better the results, as the rankings tend to
be more diverse. However, as the original algorithm
accepts integers numbers, we also want to be able to
map integers to ranks; thus, we chose for ε a precise
enough number that would surely not overflow any
32-bit integer.

PageRank can be described as a Markov chain.
Thus, we build a stochastic matrix representing the
graph in line 17, based on the previously computed

1https://github.com/purtroppo/PageRank
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links going out from each node in line 16. Com-
puting the outgoing links is trivial and is not shown
in the algorithm. On the contrary, the computation
of the stochastic matrix is represented in function
StochasticGraph, from line 4 to line 13. Assuming
that each node has a unitary amount of information
flowing outwards to the neighbors, the matrix identi-
fies how much of that information is flowing through
each of the adjacent edges. In line 18 we transpose
the stochastic matrix, and outgoing links are replaced
with incoming links and vice versa. PageRank ranks
nodes based on their incoming links; thus, the inver-
sion is necessary for the generality of the algorithm.
For undirected graphs, this might represent an unnec-
essary step; however, as McSplit works on directed
and undirected graphs, this must be true also for its
intermediate stages. On line 20, we pre-allocate the
results of the previous iteration and set them to zero.

In line 22 we calculate the ratio between the in-
coming or outgoing links and the size of the graph.
The core section of the evaluation is included from
line 25 to line 38. First, we zero the results for the
current iteration. Then, we compute the current rank
by adjusting the previous results, approximating at
each iteration the clicking probability, and discount-
ing them by the DF . On line 35, we update the er-
ror on the measurement, and on line 37 we update
the result vector p. The algorithm terminates when
(error < ε) in line 25; this condition is triggered when
the rankings converge, reaching a stable configura-
tion.

As we consider it trivial, we do not show the float
to integer conversion in Algorithm 2.

3.2 McSplitX+PR

Within the framework introduced in Section 3.1, we
exploit the ideas introduced by McSplitLL and Mc-
SplitDAL, enhanced by the integration of the PageR-
ank heuristic. The union of these techniques pro-
duced two new versions of the McSplit algorithm,
specifically referred to as McSplitLL+PR and Mc-
SplitDAL+PR.

Whilst the original McSplit idea was centered
around the node degree heuristic, the subsequent vari-
ants were mainly based on McSplitRL, which used
reinforcement learning as a vertex selection heuristic.
However, whenever a tie is encountered, the heuristic
falls back to the node degree for choosing a vertex.

We propose using PageRank as a standalone or
tie-breaking heuristic, substituting it for the node de-
gree. This approach is summarized by Algorithm 3.
First, we apply the PageRank to classify the vertices
of graphs G and H (in lines 2 and 3, respectively).

1 DF ← 0.85
2 ε← 0.00001
3

4 Function StochasticGraph(G,out links)
5 Gs← [0.0]∗ |G|
6 forall x,y ∈ ad j(G) do
7 if out link[x] = 0 then
8 Gs[x,y]← 1.0/|G|
9 else

10 Gs[x,y]← G[x,y]/out link[x]
11 end
12 end
13 return Gs
14

15 Function PageRank(G)
16 out links← OutLinksForEachNode(G)
17 Gs← StochasticGraph(G,out links)
18 Gt ← TransposeMatrix(Gs)
19 result← /0∗ |G|
20 p← /0

21 forall x,y ∈ ad j(Gt) do
22 push(Gt [x,y]/|G|)
23 end
24 error← 1.0
25 while error > ε do
26 result← /0∗ |G|
27 forall x,y ∈ ad j(Gt) do
28 result[x]←

result[x]+Gt [x,y]∗ p[y]
29 end
30 forall rank ∈ result do
31 rank← rank ∗DF + 1.0−DF

|G|
32 end
33 error← 0.0
34 forall rank, prev ∈ zip(results, p) do
35 error← error+abs(rank− prev)
36 end
37 p = result
38 end
39 return result
Algorithm 2: Our version of the popular PageRank al-
gorithm, implemented on an adjacency matrix repre-
senting the graph G.

Then, we sort the vertices following their ranks ob-
tained by the previous classification (lines 4 and 5).
Finally, we apply our McSplitLL or McSplitDAL
(i.e., McSpliX , generically speaking) on the sorted
vertices (line 6). This method leverages the Rein-
forcement Learning, to choose vertices dynamically
along the search, and guarantees the use of the PageR-
ank scores as a tie-breaker, particularly at the begin-
ning of the algorithm, when the rewards are initialized
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1 Function McSplitX+PR(G, H)
2 Granks← PageRank(G)
3 Hranks← PageRank(H)
4 Gsorted ← SortGraph(G,Granks)
5 Hsorted ← SortGraph(H,Hranks)
6 McSplitX(Gsorted ,Hsorted)
7 return
Algorithm 3: The proposed McSplitX+PR algorithm
optimizing a McSplitX implementation recalled in
line 6.

to zero.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We ran our tests on a workstation with an Intel Core
i9-10900KF CPU and 64 GBytes of DDR4 RAM.

All our algorithms are written in C++, and we
compiled it with GCC version 9.4. For McSplit and
McSplitLL, we use the original versions obtained
from the WEB and adapted for being used with our
new heuristic. For McSplitDAL, we wrote an imple-
mentation that follows the ideas indicated by the au-
thors (Liu et al., 2022) as we were unable to find an
official version publicly available. In addition, since
it has been proven to be beneficial, we borrow the
graph swap idea from McSplitSD (Trimble, 2023),
and include it in all the variants of McSplit. Our
core implementation adopts the C++ parallel version
of McSplit. Unfortunately, not all versions may run
in multi-threading mode. Thus, as we are interested
in comparing our results with the ones gathered with
the previous variants of McSplit, we present all results
running all parallel versions with a single thread.

All algorithms were tested on a publicly available
dataset (Foggia et al., 2001). We focused on the most
extensive graphs, the ones with 100 nodes. Given the
size of the set, we chose at least one experiments for
each graph category, finally selecting 400 graph pairs.

Our tests are designed to evaluate the most prac-
tical aspect of all algorithms; thus, we evaluate their
ability to find suitable solutions in a limited amount
of time, instead of finding the optimal solution with
an unlimited timeout. For each graph pair, we then
record the size of the most significant solution found.
We compare the different methodologies in terms of
their capacity to find the largest solution in the slotted
time.

We fixed the timeout to 60 seconds for each ex-
periment. This timeout has been selected because ex-
perimentally McSplit often finds an effective solution

along the first recursion path and it improves it only
sporadically. Figure 1 plots the typical growth of the
solution size with respect to the number of recursions.
We can see that at the beginning (within a few thou-
sand of recursions, usually performed in less than one
second in our setup) the solution size increases very
rapidly. Unfortunately, after the first few seconds, the
solution grows slowly as most of the time is spent
searching the enormous solution space. In orange, we
highlighted the solution size at the end of the recur-
sion process. Please, notice that the number of recur-
sions is reported on the x-axis on a logarithmic scale.

Figure 1: Typical behavior of the effectiveness of the origi-
nal implementation of McSplit. The size of the solution of-
ten increases rapidly in the first part of the process; then, the
procedure is captured by local minima which slow down the
convergence process and force the algorithm to visit enor-
mous state spaces that do not improve the solution size. In
orange, we can see the solution size at the end of the execu-
tion.

4.2 Experimental Evaluation

Figure 2 reports the number of graph pairs on which
each method finds the largest MCS out of the 400
graph experiments run. When an MCS with the same
size is returned by more than one heuristic (i.e., we
have a ex aequo) that pair is assigned to all the meth-
ods returning that result.

It is straightforward to see that our PR heuris-
tic, only applied to McSplit, McSplitLL, and Mc-
SplitDAL, easily outperforms the original strategies.
Moreover, the fastest strategy, i.e., McSplitDAL+PR,
finds the most significant solution in almost 300 cases
out of 400.

Table 1, using no tie-breaker, shows the percent-
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Figure 2: The histogram plots the number of times each
heuristic finds the MCS (i.e., the largest maximum com-
mon subgraph) on the 400 experiments. When a graph with
the same size is returned by more than one method, each
strategy is reported as a winner.

age of victories of all PR-improved strategies with re-
spect to each original method.

Table 1: Percentage of instances improved by the PR meth-
ods (columns) over the original methods (rows), without
breaking ties.

Heuristics

McSplit McSplitLL McSplitDAL
+ + +

PR PR PR
[%] [%] [%]

McSplit 64 72 77
McSplitLL 60 69 76

McSplitDAL 63 72 77

Figure 2 and Table 1 focus on the number of ex-
periments on which PageRank could return larger so-
lutions than the original algorithms. Overall, they
show that PR methods provide larger solutions for
most of cases. However, we can also compare the
size of the different solutions to understand the av-
erage improvements. To highlight the size of the re-
sults, we collected the size of the best solution found
by each algorithm for every graph pair. To account
for the natural variation in solution sizes between a
wide range of instances of different complexity, we
normalized all results with respect to the size of the
subgraph found by the original McSplit algorithm.

In Figure 3, we show the average performance of

our normalized heuristics. Due to the significant dif-
ferences in solution sizes across instances, we plot a
circular rolling average with a window size of 50 to
better present the outcomes of our experiments. This
strategy implies that each point on the plot represents
the average normalized performance over a window
of 50 consecutive tests. Due to the normalization, the
original McSplit always returns solutions of size one,
whereas all other methods almost always return more
extensive solutions. Notably, PageRank demonstrates
a distinct advantage over the degree heuristic. More-
over, McSplitDAL+PR and McSplitLL+PR methods
consistently outperform their McSplitX counterparts
in any batch of 50 instances and when they fall be-
hind, they do not fall behind by a large amount.

Figure 3: A circular rolling average (with a window width
of 50 consecutive tests) of the sizes of the solutions obtained
by the McSplitX and McSpliX+PR algorithms on each in-
stance. All values are normalized with respect to the results
obtained by the original McSplit.

The heat-map in Figure 4 shows the relative per-
formance across all combinations of the algorithms.
For each method on the vertical axis, the results are
individually normalized with respect to the results of
the algorithm on the horizontal axis; then, all the nor-
malized values are averaged together.

From the map, we learn that McSplitDAL+PR ex-
hibits an average improvement of 6% over McSplit-
DAL, McSplitLL+PR yields solutions that are 4%
larger compared to McSplitLL, and McSplit+PR pro-
duces solutions 3% larger than McSplit. These re-
sults suggest that PageRank is an effective standalone
heuristic, providing even more significant benefits
when used as a tie-breaker on top of more complex
Reinforcement Learning rewards.
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It has to be noticed that in our testing, the McSplit-
DAL policy is not always better than the McSplitLL,
unlike what was observed by Liu et al. (Liu et al.,
2022). This result is likely due to our different evalua-
tion methodologies. However, McSplitDAL+PR ben-
efits from the PageRank heuristic, convincingly out-
performing both McSplitLL and McSplitLL+PR by
6% and 2%, respectively.

Figure 4: The relative performance of the McSplitX and
McSplitX+PR methods. For each row, we report the aver-
age improvement relative to the respective column. Darker
blue colors highlight the size improvements.

In Figure 5 we present a comprehensive com-
parison of the solution sizes achieved by each Mc-
SplitX+PR method and its corresponding McSplitX
counterpart. For each instance, a dot is reported to
show the size of the solutions found by the two al-
gorithms. By removing the need for the rolling aver-
age, this scatter plot offers a better view of the results
of the individual instances. Notably, the PageRank
heuristic is the winner in most cases, particularly in
the McSplitDAL+PR variant. Upon careful examina-
tion, it becomes evident that the average performance
of the McSplitX methods is influenced by a few out-
lier instances that exhibit exceptional results. How-
ever, in contrast, McSplitX+PR consistently demon-
strates improved performance across the entire range
of instances.

5 CONCLUSIONS AND FUTURE
WORKS

In this paper, we focus on solving the Maximum
Common Induced Subgraph problem. Starting from

(a)

(b)

(c)
Figure 5: The dispersion of the points above the main di-
agonal shows that McSplitX+PR finds more extensive solu-
tions in the vast majority of the cases.

a state-of-the-art algorithm called McSplit, and its
recent variants (namely McSplitLL, McSplitRL, and
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McSplitDAL). we propose a family of Branch-and-
Bound algorithms called McSplitX+PR.

The original McSplit algorithm uses a node de-
gree heuristic to select the vertices of the graphs dur-
ing the recursive search. McSplitRL and its deriva-
tives use rewards obtained through Reinforcement
Learning, but still enforce the node degree to break
ties. We propose the McSplitX+PR algorithm family,
namely McSplit+PR, McSplitLL+PR, and McSplit-
DAL+PR, to replace the original node degree heuris-
tic with the ranking produced by the PageRank algo-
rithm. PageRank, famously known as the former al-
gorithm behind the Google search engine, generates
more effective node orderings compared to the de-
gree of vertices, as it prioritizes nodes that are easier
to reach across multiple hops rather than just in the
local neighborhood, effectively differentiating them
over more categories than the original heuristic.

Using publicly available graph pairs, we con-
ducted experiments on both the McSplitX+PR and
McSplitX families. We mainly focus on finding the
best solution within a limited time to simulate real-
world scenarios. Our results indicate that all Mc-
SplitX+PR algorithms consistently outperform their
McSplitX counterparts, with McSplitDAL+PR yield-
ing the most effective solutions than the other strate-
gies.

Among the possible future works, we would
like to mention the necessity of studying the multi-
threaded versions of the above tools. In this work,
this analysis has been limited by the fact that not all
the considered tools were initially implemented with
multi-threading capabilities. Consequently, one of
our targets is to improve the above heuristics obtain-
ing uniform scalability on multi-core architectures.
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