
Adopting the Actor Model for Antifragile Serverless Architectures

Marcel Mraz, Hind Bangui a, Bruno Rossi b and Barbora Buhnova c

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Keywords: Software Architecture, Software Systems Antifragility, Actor Model, Serverless.

Abstract: Antifragility is a novel concept focusing on letting software systems learn and improve over time based on
sustained adverse events such as failures. The actor model has been proposed to deal with concurrent compu-
tation and has recently been adopted in several serverless platforms. In this paper, we propose a new idea for
supporting the adoption of supervision strategies in serverless systems to improve the antifragility properties
of such systems. We define a predictive strategy based on the concept of stressors (e.g., injecting failures), in
which actors or a hierarchy of actors can be impacted and analyzed for systems’ improvement. The proposed
solution can improve the system’s resiliency in exchange for higher complexity but goes in the direction of
building antifragile systems.

1 INTRODUCTION

Antifragility is an emerging research area aiming to
introduce in a software system and its architecture
stressors, variation, randomness, and uncertainties to
improve over time (Taleb, 2012; Bangui et al., 2022;
Bangui. et al., 2022). Antifragility was introduced
by Nassim Taleb in 2012 in his book “Antifragile:
things that gain from disorder” (Taleb, 2012), ex-
plaining the concept as: ”Some things benefit from
shocks; they thrive and grow when exposed to volatil-
ity, randomness, disorder, and stressors and love ad-
venture, risk, and uncertainty. Yet, despite the ubiq-
uity of the phenomenon, there is no word for the ex-
act opposite of fragile. Let us call it antifragile.”
Compared to the resilience concept, understood as the
ability to plan and prepare for, absorb, recover from,
and adapt to adverse events (Cutter et al., 2013), an-
tifragility is not only helping a system resist shocks
and return to previous levels of operation after re-
covery, but it helps to gain from shocks and learn at
runtime how to increase the adaptability and evolv-
ability. As a result, antifragility is an improved ver-
sion of classical resilience that helps a system han-
dle a variety of hazards and strengthen the protection
and safety of its components and services under un-
foreseen changes while interacting with other inter-
dependable systems.

a https://orcid.org/0000-0003-2689-0382
b https://orcid.org/0000-0002-8659-1520
c https://orcid.org/0000-0003-4205-101X

In this paper, we leverage the antifragility con-
cept to progress toward building antifragile server-
less systems that can gain from unexpected failures
and defects. A simple programming model called
Function-as-a-Service (FaaS) was adopted in server-
less computing. Each task is represented and executed
by an independent and stateless function to provide
high computation power and reduce latency, all cost-
effectively (Taibi et al., 2020).

In previous works (Bangui et al., 2022), the stres-
sor concept was introduced to help a system to ex-
plore its fragilities and set-up mechanisms for learn-
ing and improving based on adverse events (failures).
Likewise, our idea is to focus on supporting the de-
velopment of antifragile systems. Thus, we adopt the
actor model in this work to support creating antifrag-
ile serverless systems.

Many studies have focused on enhancing the
resilience of actors to fulfill their planned tasks;
particularly, they have focused on using three re-
silience properties (De Bleser, 2020; Cao et al.,
2021), which are: a) robustness: the ability to re-
sist faults/crises, b) recoverability: the ability to re-
cover from faults/crises rapidly and back to an orig-
inal condition, and c) reliability: the ability to fulfill
tasks under stress or fault conditions. However, the
recoverability policy options might be exhausted due
to the hazard variety (Wang et al., 2022; Ramezani
and Camarinha-Matos, 2020; Bangui and Bühnová,
2022) leading to considering new perspectives to pro-
vide new self-healing and self-adaptation options.

612
Mraz, M., Bangui, H., Rossi, B. and Buhnova, B.
Adopting the Actor Model for Antifragile Serverless Architectures.
DOI: 10.5220/0012130700003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 612-619
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



Thus, our goal in this paper is to advise resilient
actors on how to ”learn by doing” to reach an ac-
ceptable self-adaptation and performance to deal with
the continuous improvement of vulnerable systems.
Mainly, we focus on examining how to gain from the
antifragility concept to instruct resilient actors on im-
proving system-level qualities. The actor model has
acquired popularity in the serverless cloud and edge
computing domains (Barcelona-Pons et al., 2019;
Sreekanti et al., 2020). In this paper, we argue about
the importance of supervision trees and custom strate-
gies for reaching the requirements of serverless an-
tifragile systems. We put forward the following con-
tributions:

• we describe the importance of actor models for
reaching antifragility of software systems – in par-
ticular, the adoption of supervision trees;

• we introduce custom strategies that can be applied
for customizing the lifecycle of actors to increase
the antifragility of software systems;

This paper is structured as follows. In Section 2,
we provide the main background regarding the actor
model, supervision trees, and serverless systems. In
Section 3, we provide the main contribution as the
proposal of antifragile supervision in serverless sys-
tems and we mention the plan of action for the proof-
of-concept implementation and validation of the ap-
proach. In Section 4, we discuss the related works in
the context of actor models and serverless architec-
tures. In Section 5, we provide the main conclusions.

2 BACKGROUND

2.1 Actor Model

The actor model is a mathematical model of concur-
rent computation with roots dating back to 1973. It
was introduced by Hewitt et al. (Hewitt et al., 1973)
and used as a model for the theoretical understanding
of concurrent computing. The model inspired many
practical languages and frameworks in the past. It
is again starting to receive significant attention due
to the demands of high-throughput and low-latency
applications in the times of serverless systems (Taibi
et al., 2020).

The system using an actor model consists of
location-transparent actors, seen in the model as
the universal primitives of concurrent computations.
Each actor receives input and responds by:

1. sending a finite number of messages to the other
actors,

Figure 1: Parent-child supervision hierarchy in the actor
model.

2. creating a finite number of child actors,

3. modifying its internal state.

Messages are immutable and exchanged between the
actors in an asynchronous way only. Each actor is
assigned a mailbox address, which serves as a queue
for incoming messages, ensuring that each actor pro-
cesses only one message at a time. These princi-
ples are based on shared-nothing architecture (Stone-
braker, 1986), which, apart from other benefits, sim-
plifies the programming model by introducing a lock-
free development environment.

2.2 Supervision Tree

The creation of child actors in the actor model forms a
hierarchical structure with a single root actor. This re-
sulted in the idea of parent-child supervision (Fig. 1),
which Ericsson popularised as part of the Open Tele-
com Platform (OTP). OTP includes several ready-
to-use components and design principles, which are
nowadays integrated into the Erlang/OTP ecosystem.
It was that utilisation of Erlang/OTP that helped Er-
icsson to build their highly available telephony net-
work with reported nine nines availability (Arm-
strong, 2007). Since the actors are standalone dis-
tributed instances, the supervision fundamentally dif-
fers from the traditional single-call stack runtimes.
Such runtimes were designed in the era of single-core
machines and came with the illusion of the shared call
stack, causing many conceptual problems when used
with concurrent models (Lightbend, 2022a). Never-
theless, supervision has become a tool to embrace
failure (Bonér et al., 2014) and was integrated into
mature actor-model languages and frameworks, such
as Erlang, Elixir and Akka.

Adopting the Actor Model for Antifragile Serverless Architectures

613



Supervision enables to push error prone function-
ality to the leaf actors and lets them crash in case of
unexpected failures. In case of such failure, it is up to
the supervising parent to implement a strategy to mit-
igate it. Based on the configured strategy, the parent
then performs a supervision directive to either restart,
resume, or stop the problematic child actor. In case
of lacking knowledge or competence, the supervising
parent can escalate the issue further up the tree.

The let it crash principle enables the developer to
achieve a more readable offensive code style (Cun-
ningham, 2011) without worrying about influencing
the rest of the tree in case of unexpected failures. Such
unexpected failures are known as transient Heisen-
bugs (Gray, 1986), and the supervisor can react to
them based on the configured strategies and direc-
tives, leading to the self-healing of the actor instances
and overall resiliency of the whole tree. On the other
hand, expected failures can be treated as any other do-
main events with simple message passing, which can
be enhanced even by adopting the Railway Oriented
Programming (ROP) style (Eason, 2018).

2.3 State of Serverless

In serverless systems, the code is executed in stateless
containers triggered by events and structured as Func-
tions as a Service (FaaS) (Taibi et al., 2020). In FaaS,
each function can represent a small part of the appli-
cation. Differently from services in a Microservices
environment, the functions have a limited time span
when they are instantiated on-demand (Taibi et al.,
2020).

Based on the analysis of the available serverless
applications (Eismann et al., 2022), up to 61% of the
applications rely on some form of underlying storage
holding the application state.

Amazon Web Services (AWS), with its AWS
Lambda services, dominate the serverless Function
as a Services (FaaS) cloud provider platforms, tak-
ing the majority of the market share (Eismann et al.,
2022; Overflow, 2022). Although most applications
rely on the application state, FaaS platforms usually
depend on the stateless nature of functions. For ex-
ample, constructing a stateful application with AWS
Lambda requires the coupling of functions with exter-
nal storage services. For these cases, Amazon offers
highly available and highly scalable storage services,
such as Amazon DynamoDB (DeCandia et al., 2007)
for key-value storage or AWS Simple Storage Service
(S3) for object storage.

Scaling or self-healing of stateless functions is
a relatively easy task due to their idempotency, as
discussed by many previous studies (Helland et al.,

2017; Castro et al., 2019). Horizontal scaling can
be achieved by adding more services with a load bal-
ancer in front. Self-healing, on the other hand, usually
means a simple restart without worrying about side
effects and about losing any current state. Stateless
functions, however, defer the complex state-handling
logic, such as scaling writes, to the developers. Scal-
ing writes, especially in distributed systems, is far
more challenging than scaling reads since one usually
wants to achieve at least a reasonable eventual con-
sistency (Vogels, 2009) without worrying about con-
current access to the same resource. After applying
practices such as data sharding or Command Query
Responsibility Segregation (CQRS), the next viable
option is to rely on the underlying storage support for
optimistic locking (Halici and Dogac, 1991), which
is only feasible until concurrent access is encountered
relatively rarely. In case of a high probability of con-
current access, it is up to the developer to achieve
a Single Writer Principle (SWP) (Thompson, 2011),
which is technically a very complex task to achieve in
a distributed environment (Ludwikowski, 2021).

2.4 Serverless Actors

Actors, on the other side, provide a similar level of
granularity as stateless functions, but compared to
functions, actors are stateful by default. In addition,
the infrastructure for self-healing or scaling is often
built-in inside the existing robust actor model-based
ecosystems. For example, Akka, Lightbend’s ac-
tor model-based framework, supports the Distributed
SWP as part of the Akka Cluster Sharding mod-
ule (Ludwikowski, 2021; Enes et al., 2017) with the
possibility of strong consistency (Lightbend, 2022b)
according to CAP theorem (Gilbert and Lynch, 2002).
Combined with fast append-only event-sourced per-
sistence provided by the Akka Persistence module,
most of the highly complex but common infrastruc-
tural issues are provided at the framework’s level.

Providing similar functionalities inside the server-
less environments, combined with sub-second billing
and the potential for infinite scalability of actors, the
actor model can be a viable option for writing state-
ful serverless applications. Compared to the stateless
functions, the actor model has the potential to abstract
the necessary infrastructure, such as self-healing and
scaling, even further, putting the main focus on writ-
ing solely what actually matters – the domain logic.

2.5 Serverless Platforms

Microsoft Azure, the second most used FaaS cloud
provider platform (Overflow, 2022), introduced Reli-

ICSOFT 2023 - 18th International Conference on Software Technologies

614



able Actors (Cassidy, 2022) built on top of the state-
ful Durable Functions (Burckhardt et al., 2021) as
part of their Service Fabric Platform as a Service
(PaaS). Originating from Microsoft Research on the
Orleans (Bernstein et al., 2014) project, Reliable Ac-
tors bring virtual actors into the serverless environ-
ment. Furthermore, the Reliable Actors are further
utilized in serverless runtime environments, such as
Microsoft’s Distributed Application Runtime (Dapr).

WasmCloud is another platform utilizing the
serverless actor model. The projects aim to de-
velop applications in WebAssembly, without an in-
frastructural boilerplate. Individual actors are the
smallest deployable units in the cloud, which facili-
tates microservices-like deployment. Due to the low
memory footprint runtime of WebAssembly, actors
are well-suitable for deployment into a cluster at the
edge. Orchestration itself can be potentially utilized
with the help of Kubernetes, by adopting Krustlet
Kubelet (Rac and Brorsson, 2021).

Cloudflare Workers represent another viable op-
tion for writing serverless actors, as they support the
actor model through their Durable Objects (Varda,
2020). Similarly to WasmCloud and µActor, they rely
on a low memory footprint runtime, promoting the
suitability for real-time applications and edge com-
puting via distributed databases at the edge.

Hetzel et al. (Hetzel et al., 2021) proposed a state-
ful platform called µActor by utilizing an actor model
that can run in the whole edge-cloud continuum. They
specifically focused on the microcontrollers in the
edge computing domain, which are not able to run
heavyweight virtual machines or even containers. In-
stead, they rely on a low-memory footprint runtime
running Lua, which does not cause cold start issues
and neither prevents running operations in the leaf
nodes. To sum up, existing platforms are focused on
proposing resilient solutions to discover and prevent
the root causes of vulnerabilities. However, existing
resilient solutions focus mainly on helping serverless
applications recover from the negative impacts, hav-
ing yet to address self-adaptability learning from run-
time events.

3 ANTIFRAGILE SERVERLESS
SUPERVISION

Even though the actor model is nowadays becoming
popular in the serverless cloud and edge computing
domains, the existing serverless actor-model-based
frameworks do not support the creation of supervi-
sion trees. This is either due to the low maturity of the
existing frameworks or due to the frameworks being

based on the virtual actors, which are immediately re-
instantiated on failure by the runtime – without a pos-
sibility of applying any kind of supervision strategy.
Automatic restart of virtual actors certainly promotes
some level of resiliency but does not fit into the an-
tifragile view since the system just tolerates failures
instead of utilizing them to improve further.

3.1 Built-in Strategies

We support the idea that the ability to configure strate-
gies and directives should not be restricted to server-
less developers. Therefore moving the supervision
strategies (Fig. 2) from the existing robust actor-based
ecosystems (Erlang, Akka) into the serverless envi-
ronment could result in higher resiliency at the ex-
pense of a higher development complexity.

3.2 Custom Strategies

Existing built-in strategies are formed around resum-
ing, restarting, and stopping the given actor with
or without its siblings and usually do not offer any
further customization (Lightbend, 2022c; Ericsson,
1999). However, extending supervision by enabling
a definition of custom strategies (Fig. 2) could be an-
other step towards the high availability and overall re-
siliency of the serverless actors. In the end, some of
the custom but generic enough strategies could be im-
plemented back in the serverless services.

Figure 2: Supervising actor lifecycle strategy.

There is also potential for defining strategies
based on the expected domain events. Handling of ex-
pected domain events, including domain errors, could
potentially benefit from similar directives applied in
case of unexpected failures. Moreover, analyzing the
expected domain events can be a step towards pre-
venting failure by applying a set of given preemptive
strategies before a potential failure could happen.

In case of independently deployable versioned ac-
tors, a type of custom strategy can be based on pro-
viding a fallback functionality and falling back to a
previous working version of the failing actor. The par-

Adopting the Actor Model for Antifragile Serverless Architectures

615



ent supervisor could spawn other actors, which could
either try to heal the failed actor or provide similar
functionality but in a less error-prone way.

Strategies can also be applied for orchestration,
ranging from load-balancing of stateless actors to de-
ployment strategies based on heuristics(Tardieu et al.,
2022) for individual actors. Similarly to the orches-
tration of the FaaS, containers orchestration based on
Kubernetes, or scaling out/in policies based on the re-
source metrics, actors need the orchestration strate-
gies provided both on the infrastructural and on the
application level.

3.3 Antifragile Strategies

Custom supervision strategies have the potential to be
implemented based on the predictive model, which
could result in a more robust system in response to
negative incidents - an antifragile system. A similar
idea is proposed in the microservices domain, which
is based on applying external stressors to a microser-
vice (Bangui. et al., 2022; Bangui et al., 2022). In our
case (Fig. 3), instead of stressing a microservice, we
stress an individual actor, consequentially resulting an
a more robust version of the actor itself or strengthen-
ing the supervisor-child actor relationship.

Stress is the process of intentionally introducing
scenarios which could result in the failure of a sys-
tem component - an actor or a whole tree of actors.
The term ”intentional stress” means artificially inject-
ing failures into the system or deploying a defective
system component and exposing it to a stressful envi-
ronment. In that sense, stress is related to a state of
a system component in both runtime and design time
periods.

Actors can be picked to be stressed based on sev-
eral strategies, ranging from analysing the history of
past runtime incidents to choosing actors responsible
for the system’s critical parts. For the sake of sim-
plicity, we can argue that in the case of limitless re-
sources, stress can be applied to each individual actor
in the system.

The whole process of applying antifragile strategy
consists of the following components:

1. Stressor selects an Actor to stress, on top of
which it will try to generate errors,

• The selected actor can be stressed indepen-
dently or together with its hierarchy.

• Stress can be performed in a production envi-
ronment or a virtual sandbox environment.

• Stressor can artificially create stressful situa-
tions, i.e. based on the expected non-functional
requirements or be represented by production

load and cope with stressful situations on de-
mand.

2. Autonomous Learner, as a machine learning
component, is responsible for analysing the gen-
erated errors outputting a list of system fragilities,

3. Antifragility Builder, as another component
which is responsible for analysing the fragilities
and building a list of antifragile improvements,

• Improvements can be external to the actor and
related to the implementation of the supervision
strategy or internal, meaning modifying the im-
plementation of the stressed actor.

• Application of external and internal improve-
ments can be automatically and gradually dis-
tributed by re-deploying new versions of re-
spective actors.

4. Supervisor is the actor responsible for managing
the lifecycle of its child actors throughout the im-
plemented supervision strategies. In case of in-
ternal improvements, the supervisor can pass the
list of improvements to the child, which could be
updated, automatically re-deployed and gradually
activated by the supervisor as an improved version
of the same actor,

5. Actor is the selected stressed child actor, which is
managed by its supervisor.

Figure 3: Predictive strategies.

3.4 Action Plan

The biggest argument against supervision is the addi-
tional complexity of defining different strategies and
directives due to managing failed actors. However,
the increased software development complexity is an
anticipated and accepted metric in all the critical do-
mains. There is already a need for rigorous testing or
software verification due to high resiliency demands.
This is why the next step in this research is a proof-of-
concept solution validating the proposed supervision
strategies, which is now ongoing. We plan to vali-
date our ideas by extending the built-in supervision

ICSOFT 2023 - 18th International Conference on Software Technologies

616



strategies in the existing actor model-based frame-
works (i.e., Akka) outside the serverless environment.
However, we know that implementing custom strate-
gies with the existing actor-model frameworks is not
trivial. Ultimately, we still need to apply these ideas
in the serverless environment. Therefore, we intend
to focus directly on the available serverless platforms.
Since, to our knowledge, there is no out-of-the-box
support for the supervision strategies in the current
serverless platforms, we plan to explore the following
options to validate our ideas:

1. extend the existing actor model-based open-
source serverless platform with the supervision
strategies (i.e. WasmCloud),

2. create a simple proof-of-concept solution for the
actor model and the strategies on top of the exist-
ing open-source serverless runtime (i.e. FAASM),

3. simulate the actor-model strategies using the ex-
isting actor-model-based serverless platform (i.e.
Cloudflare Durable Objects).

4. run experiments about the implemented proof-
of-concept solution to apply software systems’
stressors by injecting failures at runtime (e.g., by
adopting chaos engineering toolkits).

4 RELATED WORKS

The self-healing resilience strategy realizes the idea
that an actor can always bounce back to the original
condition. In contrast, our antifragility strategy re-
quires an actor capable of reaching a previously un-
expected condition. Enabling an actor to learn from
shocks, random events, or stresses is highly desirable
as it allows the continuous improvement of smart en-
vironments. For instance, actors with learning abili-
ties have been suggested in (Cao et al., 2021) to help
the constant observation and optimization of health-
care systems. In this work, the role of actors mainly
centers around how to achieve their tasks to provide
an acceptable quality of service. However, consider-
ing how actors can gain from faults is not discussed.

Similarly, in other existing studies, e.g.,
(Barcelona-Pons et al., 2018; Barcelona-Pons
et al., 2019), the idea of exploring the circumstance
of risk occurrence is limited to making an actor
robust and reliable but not ready to exploit gains to
develop a better understanding of the environment
and manage a similar risk in the future.

The research by Barcelona-Pons et al. (Barcelona-
Pons et al., 2018) modelled an actor model in a server-
less environment on top of the existing AWS ser-
vices. The authors proposed a proof of concept solu-

tion and compared it to the traditional FaaS stateless
model. Apart from some technical challenges, the re-
sults brought nearly 6x better performance in favor
of stateful actors, primarily because of the caused la-
tency of saving state per request to the external stor-
age in the case of the stateless functions.

Other research by Barcelona-Pons et
al. (Barcelona-Pons et al., 2019), and early projects
also bet on statefulness in serverless environments
and a higher abstraction of the mentioned infrastruc-
tural concerns. Lighbend’s Kalix stateful serverless
PaaS combines years of Lightbend’s experience with
the actor model on the Akka framework, promising
the developers to focus purely on the domain logic.

Moreover, another recent research (Barcelona-
Pons et al., 2019; Sreekanti et al., 2020) supports the
idea of statefulness, with or without the actors, inside
serverless environments.

5 CONCLUSION

In this paper, we proposed adopting the actor model
for building antifragile serverless systems. To move
towards antifragility, we suggested to adopt supervi-
sion trees and custom strategies that can be applied
for customizing the lifecycle of actors to increase the
antifragility of serverless systems. We proposed a
predictive strategy based on the concept of stressors,
in which actors or a hierarchy of actors can be se-
lected for some stressing activity (i.e., injecting fail-
ures). Other components can analyze the behavior of
actors and generate a list of improvements for the sys-
tem. In contrast, the supervisor component is respon-
sible for managing the lifecycle of the child actors.
Overall, the solution adopting a robust actor model-
based ecosystem can improve the system’s resiliency
in exchange for higher complexity. For this reason,
we detailed the next steps for implementing a proof-
of-concept solution to evaluate the benefits and lim-
itations of the approach, as we strongly support the
adoption of actors models to build antifragile systems.

ACKNOWLEDGEMENT

The work was supported from ERDF/ESF “Cy-
berSecurity, CyberCrime and Critical Informa-
tion Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16 019/0000822).

Adopting the Actor Model for Antifragile Serverless Architectures

617



REFERENCES

Armstrong, J. (2007). Concurrency Oriented Programming
in Erlang. https://www.cs.uml.edu/ecg/uploads/Rob
otControl2007/Erlang-concurrency-armstrong.pdf.
Last accessed on 2022-12-04.

Bangui, H. and Bühnová, B. (2022). Blockchain patterns in
critical infrastructures: Limitations and recommenda-
tions. Proceedings of the 17th International Confer-
ence on Software Technologies - Volume 1: ICSOFT,,
pages 457–468.

Bangui., H., Buhnova., B., and Rossi., B. (2022). Shift-
ing towards antifragile critical infrastructure systems.
In Proceedings of the 7th International Conference on
Internet of Things, Big Data and Security - IoTBDS,,
pages 78–87. INSTICC, SciTePress.

Bangui, H., Rossi, B., and Buhnova, B. (2022). A concep-
tual antifragile microservice framework for reshaping
critical infrastructures. In IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME
2022, Limassol, Cyprus, October 2-7, 2022, pages 1–
4. IEEE.

Barcelona-Pons, D., Ruiz, Á., Arroyo-Pinto, D., and
Garcı́a-López, P. (2018). Studying the feasibility
of serverless actors. In ESSCA’18, volume 2330 of
CEUR Workshop Proceedings, pages 25–29. CEUR-
WS.org.

Barcelona-Pons, D., Sánchez-Artigas, M., Parı́s, G., Sutra,
P., and Garcı́a-López, P. (2019). On the FaaS Track:
Building stateful distributed applications with server-
less architectures. In Proceedings of the 20th Interna-
tional Middleware Conference, pages 41–54. ACM.

Bernstein, P., Bykov, S., Geller, A., Kliot, G., and Thelin,
J. (2014). Orleans: Distributed Virtual Actors for Pro-
grammability and Scalability. Technical Report MSR-
TR-2014-41, Microsoft.

Bonér, J., Farley, D., Kuhn, R., and Thompson, M. (2014).
The reactive manifesto. Dosegljivo: http://www. reac-
tivemanifesto. org/.[Dostopano: 21. 08. 2017].

Burckhardt, S., Gillum, C., Justo, D., Kallas, K., McMahon,
C., and Meiklejohn, C. S. (2021). Durable functions:
semantics for stateful serverless. Proceedings of the
ACM on Programming Languages, 5(OOPSLA):1–
27.

Cao, Z., Liu, L., and Wang, J. (2021). Intelligent health in-
formation services requirements revisited from an ac-
tor’s perspective. In 2021 IEEE International Con-
ference on Digital Health (ICDH), pages 244–253.
IEEE.

Cassidy, T. (2022). Service Fabric Reliable Actors
Overview - Azure Service Fabric. https://learn.mi
crosoft.com/en-us/azure/service-fabric/service-fab
ric-reliable-actors-introduction. Last accessed on
2022-12-04.

Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A.
(2019). The rise of serverless computing. Commun.
ACM, 62(12):44–54.

Cunningham (2011). Offensive Programming. http://wiki
.c2.com/?OffensiveProgramming. Last accessed on
2022-12-03.

Cutter, S. L., Ahearn, J. A., Amadei, B., Crawford, P.,
Eide, E. A., Galloway, G. E., Goodchild, M. F., Kun-
reuther, H. C., Li-Vollmer, M., Schoch-Spana, M.,
et al. (2013). Disaster resilience: A national impera-
tive. Environment: Science and Policy for Sustainable
Development, 55(2):25–29.

De Bleser, J. (2020). An Automated Delta-Debugging Ap-
proach to Resilience Testing of Actor Systems through
Fault Injection. PhD thesis, Vrije Universiteit Brussel.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: Ama-
zon’s highly available key-value store. SIGOPS Oper.
Syst. Rev., 41(6):205–220.

Eason, K. (2018). Railway oriented programming. In
Stylish F#, pages 283–307. Springer.

Eismann, S., Scheuner, J., Eyk, E. v., Schwinger, M.,
Grohmann, J., Herbst, N., Abad, C. L., and Iosup, A.
(2022). The State of Serverless Applications: Col-
lection, Characterization, and Community Consen-
sus. IEEE Transactions on Software Engineering,
48(10):4152–4166.

Enes, V., Almeida, P. S., and Baquero, C. (2017). The
Single-Writer Principle in CRDT Composition. In
Proceedings of the Programming Models and Lan-
guages for Distributed Computing, PMLDC ’17,
pages 1–3, New York, NY, USA. Association for
Computing Machinery.

Ericsson (1999). Supervision Principles. https://erlang.org
/documentation/doc-4.9.1/doc/design principles/su
p princ.html. Last accessed on 2022-12-04.

Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture
and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News, 33(2):51–59.

Gray, J. (1986). Why do computers stop and what can be
done about it? In Symposium on reliability in dis-
tributed software and database systems, pages 3–12.
Los Angeles, CA, USA.

Halici, U. and Dogac, A. (1991). An optimistic lock-
ing technique for concurrency control in distributed
databases. IEEE Transactions on Software Engineer-
ing, 17(7):712–724.

Helland, P., Weaver, S., and Harris, E. (2017). Too big not
to fail: Embrace failure so it doesn’t embrace you.
Queue, 15(1):57–70.

Hetzel, R., Kärkkäinen, T., and Ott, J. (2021). µactor:
Stateful Serverless at the Edge. In Proceedings of the
1st Workshop on Serverless mobile networking for 6G
Communications, pages 1–6, Virtual WI USA. ACM.

Hewitt, C., Bishop, P., and Steiger, R. (1973). Session 8 for-
malisms for artificial intelligence a universal modular
actor formalism for artificial intelligence. In Advance
Papers of the Conference, volume 3, page 235. Stan-
ford Research Institute Menlo Park, CA.

Lightbend (2022a). Actor model :: Akka Guide. https:
//developer.lightbend.com/docs/akka-guide/concepts
/akka-actor.html. Last accessed on 2022-12-03.

Lightbend (2022b). Distributed Data • Akka Docs. https:
//doc.akka.io/docs/akka/current/typed/distributed-da

ICSOFT 2023 - 18th International Conference on Software Technologies

618



ta.html#write-consistency. Last accessed on 2022-11-
22.

Lightbend (2022c). Supervision and Monitoring • Akka
Docs. https://doc.akka.io/docs/akka/2.5/general/
supervision.html. Last accessed on 2022-12-04.

Ludwikowski, A. (2021). When do you need Akka Cluster?
https://blog.softwaremill.com/when-do-you-need-a
kka-cluster-5885d43e901b. Last accessed on 2022-
11-22.

Overflow, S. (2022). Stack Overflow Developer Survey
2022. https://survey.stackoverflow.co/2022/?utm
\ source=social-share&utm\ medium=social&u
tm\ campaign=dev-survey-2022. Last accessed on
2022-11-22.

Rac, S. and Brorsson, M. (2021). At the Edge of a Seamless
Cloud Experience. arXiv:2111.06157 [cs].

Ramezani, J. and Camarinha-Matos, L. M. (2020). Ap-
proaches for resilience and antifragility in collabora-
tive business ecosystems. Technological Forecasting
and Social Change, 151:119846.

Sreekanti, V., Wu, C., Lin, X. C., Schleier-Smith, J., Faleiro,
J. M., Gonzalez, J. E., Hellerstein, J. M., and Tu-
manov, A. (2020). Cloudburst: Stateful Functions-
as-a-Service. Proceedings of the VLDB Endowment,
13(12):2438–2452. arXiv:2001.04592 [cs].

Stonebraker, M. (1986). The case for shared nothing. IEEE
Database Eng. Bull., 9(1):4–9.

Taibi, D., Spillner, J., and Wawruch, K. (2020). Serverless
computing-where are we now, and where are we head-
ing? IEEE software, 38(1):25–31.

Taleb, N. N. (2012). Antifragile: Things that gain from
disorder, volume 3. Random House Incorporated.

Tardieu, O., Grove, D., Bercea, G.-T., Castro, P., Cwiklik,
J., and Epstein, E. (2022). Reliable Actors with Retry
Orchestration. arXiv:2111.11562 [cs].

Thompson, M. (2011). Mechanical Sympathy: Single
Writer Principle. https://mechanical-sympathy.bl
ogspot.com/2011/09/single-writer-principle.html.
Last accessed on 2022-11-22.

Varda, K. (2020). Workers Durable Objects Beta: A New
Approach to Stateful Serverless. http://blog.cloudfla
re.com/introducing-workers-durable-objects/. Last
accessed on 2022-12-04.

Vogels, W. (2009). Eventually consistent. Communications
of the ACM, 52(1):40–44.

Wang, X., Mazumder, R. K., Salarieh, B., Salman, A. M.,
Shafieezadeh, A., and Li, Y. (2022). Machine learning
for risk and resilience assessment in structural engi-
neering: Progress and future trends. Journal of Struc-
tural Engineering, 148(8):03122003.

Adopting the Actor Model for Antifragile Serverless Architectures

619


