Towards Good Practices for Collaborative Development of ML-Based

Cristiana Moroz-Dubenco®?, Bogdan-Eduard-Madilin Mursa®® and Matyas Kuti-Kreszacs

Keywords:

Abstract:

Systems

C

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj Napoca, Romania

Collaborative Development, Machine Learning Systems, Automatization.

The field of Artificial Intelligence (AI) has rapidly transformed from a buzzword technology to a fundamental
aspect of numerous industrial software applications. However, this quick transition has not allowed for the
development of robust best practices for designing and implementing processes related to data engineering,
machine learning (ML)-based model training, deployment, monitoring, and maintenance. Additionally, the
shift from academic experiments to industrial applications has resulted in collaborative development between
Al engineers and software engineers who have reduced expertise in established practices for creating highly
scalable and easily maintainable processes related to ML models. In this paper, we propose a series of good
practices that have been developed as the result of the collaboration between our team of academic researchers
in Al and a company specializing in industrial software engineering. We outline the challenges faced and
describe the solutions we designed and implemented by surveying the literature and deriving new practices

based on our experience.

1 INTRODUCTION

Due to recent advances in Artificial Intelligence (Al),
which used to be considered an academic topic, there
is a surge in demand for integrating Al and, espe-
cially, machine learning (ML) capabilities into soft-
ware products (Makridakis, 2017; Zhang and Lu,
2021). However, there is no standard between the de-
velopment paradigms used in Al and Software Engi-
neering (SE) (Lorenzoni et al., 2021; Cerqueira et al.,
2022). If traditional software systems are built deduc-
tively, by translating the rules that control the system
behaviour into code, ML techniques learn these rules
in a training process, generating the requirements in
an inductive manner (Khombh et al., 2018).

What is more, the process of integrating ML com-
ponents into production-ready applications requires
not only a high understanding of those components
but also robust engineering mechanisms to guarantee
their availability and scalability. Although the sci-
entific literature highlights the necessity of standard-
ized training and deployment processes, there is in-
sufficient literature to guide ML practitioners (Serban

https://orcid.org/0009-0008-7672-6453
@ https://orcid.org/0000-0002-4221-7297
¢ https://orcid.org/0009-0004-4997-2000

604

Moroz-Dubenco, C., Mursa, B. and Kuti-KreszAacs, M.
Towards Good Practices for Collaborative Development of ML-Based Systems.
DOI: 10.5220/0012130500003538

et al., 2020).

Our goal is to find a set of good practices for the
deployment process based on our partnership with a
well-established company that required academic ex-
pertise for integrating Al models into their software
products, regardless of the type of ML model in-
volved. As a means to this, we analyze the challenges
our team of researchers has encountered and the pro-
cesses and procedures employed to overcome each of
these challenges.

The rest of the paper is structured as follows: in
Section 2 we analyze the process of taking ML mod-
els from theory to practice and the state-of-the-art re-
lated to the problem; subsequently, in Section 3, we
examine the challenges we faced and the solutions
developed, and we also analyze the human aspects in-
volved by presenting the results of a survey conducted
within our industry partners; in Section 4 we propose
a set of good practices derived from our experiences
and in Section 5 we analyze possible threats to valid-
ity; and, finally, in Section 6 we present our conclu-
sions and ideas for future work.

In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 604-611

ISBN: 978-989-758-665-1; ISSN: 2184-2833

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Towards Good Practices for Collaborative Development of ML-Based Systems

2 TRAINING MODELS - FROM
THEORY TO PRACTICE

Training artificial intelligence models has become a
demanding task in recent times, as there were no es-
tablished norms or frameworks to facilitate the stan-
dardization of the training procedure in the past. This
resulted in customized processes that often felt like
academic procedures, which were difficult for the in-
dustry to replicate on a large scale. As a result, there
are various logistical challenges that necessitated im-
mediate collaboration between academic and industry
teams.

In the upcoming subsections, we will examine the
challenges encountered and the solutions developed
by our team of researchers in partnership with a well-
established company that required external expertise
for a project centered around a series of Al models.

2.1 Problem Definition

The scientific literature has highlighted the recent ne-
cessity of standardizing the training and deployment
process of Al models in new or existing software ap-
plications, employing robust mechanisms to ensure
their high availability and scalability.

Breaking down the training process is a complex
task that requires a meticulous analysis of each atomic
component in the pipeline that collectively delivers
the model. The pipeline can be broadly and simply
described as consisting of the following stages (Ash-
more et al., 2021): (1) data modeling (2) model train-
ing (3) model deployment (4) model maintenance.

The process of model training begins with data
modeling, which encompasses data gathering, prepro-
cessing, and engineering. Each of these subtasks is
critical, as any issues encountered in this stage can
compromise subsequent steps that rely on the data.
Challenge 1: Establishing a data delivery protocol
- The lack of standardization of the data delivery
routine was crucial to our experiments in the model
training phase. We encountered various issues, rang-
ing from missing columns and improperly formatted
values (e.g., integers represented as strings) to more
complex problems such as excessively large files, cor-
rupted files, and inadequate version control.
Challenge 2: Training the models - After preparing
the dataset, we faced several challenges during the
model training phase, more exactly training multiple
Al models using the prepared dataset and selecting
the one that demonstrated the best performance.

These challenges were primarily related to re-
source limitations and performance. Training the
models necessitated an environment equipped with

physical resources, libraries, and tools. Additionally,
we had to manage the orchestration of the training to
ultimately identify the most accurate model for de-
ployment in the subsequent stage.

Challenge 3: Deploying the models - While the first
two challenges discussed thus far are commonplace in
academic experiments, this last challenge presented
our team with unfamiliar territory due to the need of
using continuous integration and continuous deploy-
ment (CI/CD) frameworks suited for industrial ar-
chitectures, continuous integration (CI) meaning that
when data is updated the ML pipeline reruns generat-
ing new models, evaluation metrics and explanations
while continuous deployment (CD) being the release
of new models into a (pre-)production environment.
Moreover, if the end-user lacks technical capabilities,
it is essential to establish a mechanism that bridges
the gap between the user’s input and the model’s pre-
diction.

In real-world scenarios, it is crucial to have strict
supervision over the deployment package to ensure
smooth maintenance of the model. However, opera-
tional challenges arise as the responsibility of main-
taining the model falls on a team that may lack ex-
pertise in Al This adds to what we have called Chal-
lenges related to human factor, which are discussed
in Section 3.4. In the event of a model failure in a
live environment, the responsibility of maintenance
falls on a team that typically has extensive expertise in
DevOps but reduced knowledge in Al This presents
a significant issue due to the black-box nature of Al
models, particularly as they grow in complexity, such
as with neural networks. As a result, our team faced
the problem of finding a solution to this issue and im-
plementing protocols to facilitate maintenance in case
of real-time failures.

2.2 State-of-the-Art

Serban A. et al (Serban et al., 2020) conducted an out-
standing study that examines the extensive range of
optimal practices suitable for teams and their struc-
tures. The study is a comprehensive case analysis
that scrutinizes all the good practices available at each
stage of Al model training. A quiz derived from the
study was subsequently distributed to corporations ac-
tively involved in Al-based applications in the indus-
try. The study findings indicate that there is no univer-
sally applicable set of optimal practices for Al model
training; rather, their usage is context-dependent and
influenced by factors such as the management frame-
work (Agile, Waterfall, etc. (Beck, 2023; Fair, 2012)),
team structure, market conditions, project size, and
others. Statistical analyses carried out as part of the

605

ICSOFT 2023 - 18th International Conference on Software Technologies

study revealed that there is a direct correlation be-
tween team growth, resource availability, maturity,
and the adoption of good practices and standardiza-
tion. Specifically, as teams expand and mature, there
is a corresponding increase in the rate of optimal prac-
tices employed and a greater degree of standardiza-
tion observed.

With respect to the challenges associated with
establishing standardized and reproducible processes
for Al model training, deployment, and maintenance,
a study of the challenges identified through discus-
sions with several Microsoft teams (Amershi et al.,
2019) describe the discovery, administration, and ver-
sion control of data pertinent to ML applications as
posing a greater challenge compared to other forms
of software engineering as they can display intricate
interdependence and exhibit non-monotonic error be-
havior.

Although discussions surrounding the establish-
ment of optimal practices for the training, utilization,
and maintenance of Al models typically focus on the
procedural aspects of these processes, a separate cate-
gory of pragmatic concerns also emerges through the
level of standardization and safety checks incorpo-
rated into a process increases, there is often a corre-
sponding increase in the amount of time required for
the process to reach completion.

To address this issue, Zhang A. et al. (Zhang et al.,
2017) conducted an experiment aimed at investigating
the extent to which the training procedures associated
with various Al models contribute to their relative
time requirements. Based on their findings, the re-
searchers proposed a novel framework called SLAQ,
which is a scheduling system designed to prioritize
quality in the context of large-scale ML training tasks
executed within shared computing clusters.

In the upcoming sections, we will provide an
overview of our research team’s experience collabo-
rating with a software company in the domain of AL
Leveraging the current state-of-the-art literature, we
devised a pipeline of procedural and logistical steps
aimed at proposing a scalable process for training
Al models and deploying them in a production envi-
ronment, while prioritizing ease of maintenance and
monitoring for a team without previous expertise in
the field of Al

606

3 ADDRESSING CHALLENGES
IN THE DEVELOPMENT OF
ML-BASED SOLUTIONS

3.1 Data Processing

In our collaboration with the software company team,
we needed to establish the protocol for receiving
datasets, which may seem straightforward. However,
even this simple process presented significant chal-
lenges that greatly affected the productivity of our ex-
periments.

Challenge 1.1: Finding an all-in-one solution. To
meet the requirements for a data management plat-
form with features such as warehouse storage for ef-
ficient dataset upload/download operations and file
content validation, we sought a comprehensive solu-
tion that would address all of these issues. Our search
led us to Microsoft AzureML, which proved to be an
ideal candidate for our needs, as discussed in the pre-
vious section.

Challenge 1.2: Integration of new dataset versions
during ongoing experiments. We utilized Microsoft
AzureML blob storage as a repository for all the
datasets provided by our collaborators. The storage
was structured to allow for both horizontal and verti-
cal flexibility, meaning new datasets could be added
at any time, and new versions could be appended
to existing datasets. This allowed our collaborators
to effortlessly integrate new dataset versions at any
point of the experiments without disrupting the pro-
cess. Throughout the experiments, the latest stable
version of the dataset was fetched until a new version
was deemed stable.

Challenge 1.3: Validation of new dataset versions.
Before a new version could be considered stable, it
was subjected to a set of custom rules and valida-
tions that were implemented as scripts. The valida-
tion scripts aim to verify various aspects of the new
version, such as computing the distributions of miss-
ing values by column and checking if the number of
missing values exceeds a threshold. Additionally, the
column names and types are checked against a pre-
defined file definition to ensure that the file structure
is as expected and that training processes will not fail
due to unexpected data types or values. To automate
this process, we set up an AzureML event trigger that
automatically runs the validation scripts upon upload-
ing a new version. The output of the validation script
is then used to label the version as either ”stable” or
’not stable”.

Towards Good Practices for Collaborative Development of ML-Based Systems

3.2 Model Training

Compared to data modeling, which is a common step
in any Al model training process, the model training
step is challenging when it comes to understanding
why and how a model behaves during training, es-
pecially for more complex models that tend to be-
have like black boxes. Our project focused on two
types of models - decision trees (Breiman et al., 1984)
and neural networks (Hopfield, 1982) - for forecasting
various indicators.
Challenge 2.1: Understanding the models’ be-
haviours. Decision trees are mathematical models
that can be reverse-engineered to understand their
training accuracy or result. However, neural networks
are much more complex, composed of thousands of
operations between their neurons, making it close to
impossible for a human mind to replicate their behav-
ior, especially for individuals without expertise in ar-
tificial intelligence. Analyzing the weights, biases,
and gradients of a neural network’s layers to under-
stand its behavior during training requires advanced
skills in AL

Our primary objective was to create an interface
that would eliminate the need for advanced analysis
and rely solely on a qualitative assessment of the re-
sults. We achieved this by implementing standard
metrics for each trained model that can be numer-
ically compared (Figure 1), thus shifting the focus
from comprehending the intricate architecture of the
black box model to a qualitative comparison of the

trained models.
@

Y

Validate model

Threshold
reached
No

Yes
\ 4

Package model

Y

Deploy model

[Monitor] [Scale]

Figure 1: General description of the proposed pipeline for
Al model training.

Challenge 2.2: Setting up the training process. We
have established a training pipeline in AzureML by
utilizing pre-defined architectures for the aforemen-
tioned models. The output of this pipeline is a re-
port consisting of Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and R-Squared (R2)
values (Kane, 2013), along with the identification of
the model that performed the best based on at least
two out of the three metrics. This approach is re-
garded as elegant by the team without any experience
in Al model training since it requires minimal inter-
vention. Whenever a new stable version of a dataset
is associated with it, the AzureML pipeline automati-
cally initiates and trains a set of models on a platform
maintained by AzureML. Following the series of tests
performed to ensure that the best model is selected, it
returns the best model to be used.

Challenge 2.3: Creating an environment for mod-
els’ training. Although there are differences in the
required libraries and resources for each model, we
have standardized these variations by setting up the
models as AzureML pipeline modules. This one-time
setup eliminates the need for external intervention.

3.3 Model Deployment

Our aim was to find a set of good practices for the de-
ployment process for the trained models, irrespective
of the type of model that performed the best during
the training stage, such that the trained models can be
deployed and consumed by third parties without the
need for technical knowledge of the models used.
Challenge 3.1: Encapsulation of the models for de-
ployment. We utilized state-of-the-art technologies
commonly used for deploying software applications,
such as Docker (Merkel, 2014). Docker is a frame-
work that enables the encapsulation of an application
and its dependencies, including operating systems, li-
braries, and other tools, as a container. These contain-
ers can be easily deployed using orchestration frame-
works like Kubernetes.

Challenge 3.2: Communication with the models. Fol-
lowing a discussion with our collaborator’s engineer-
ing team, we concluded that the optimal way of
communicating with the trained model was through
HTTPS requests of a REST API. AzureML provides
a built-in feature to deploy any trained Al model as a
REST web service that is automatically encapsulated
as a container and deployed on AzureML infrastruc-
ture. Additionally, the web service endpoint interface
created for prediction consumption is documented us-
ing Swagger (Swagger, 2022), a cutting-edge frame-
work that offers a user-friendly interface to describe
the structure of REST APIs and generates documenta-

607

ICSOFT 2023 - 18th International Conference on Software Technologies

Data sets

|
A
cessing |

Data processing

Y

Best model

Train models

Deploy model

Y Y A 4 Y

Y Y

[Selection] [Augmentation] [Cleaning]

(model1 | [Modelz | [Modein |

Figure 2: Architecture of the generic process implemented as an AzureML pipeline.

tion that is easily understandable for both developers
and non-developers.
Challenge 3.3: Ensuring that the deployed models
are easy to use. The approach we employed guaran-
tees a high level of abstraction, which is reduced to a
straightforward input/output protocol. As a user, you
are aware of the expected input and output data struc-
tures when consuming the latest version of a trained
model. Furthermore, the deployment is performed
in versions, enabling quick rollback to any previous
version in the event of unexpected behavior. Since
we are dealing with a web service-based architecture,
AzureML offers a built-in option for scaling the num-
ber of instances to meet production loads (Figure 2).
We have created an ecosystem that, despite being
part of the project architecture, provides a continuous
sense of autonomy and reliability as a third party.

3.4 Human Aspects in Model
Development

Know-how transfer has been designed as part of the
project unfolding. Based on the development team
assessment, the academic team designed several ac-
tivities aiming to increase the knowledge in the do-
main of Artificial Intelligence in general, respectively
ML in particular, from both theoretical and applied
perspectives. These activities include presentations,
tutorials, collaborative working exercises, Q&A ses-
sions, together with weekly technical meetings.

In order to evaluate the knowledge transfer pro-
cess and to assess the acquired competencies of the
development team, we investigated through a survey
the apprehension of the development team. We col-
lected 16 answers to this survey. The participants
represent positions in the project ranging from junior
programmers and programmers to business analysts,
lead developers, and database administrators, with an
average experience of 10.1 years (ranging from expe-
rience ranging from less than a year to more than 20

608

years).

Despite the initial level of AI knowledge in the
team, being close to non-existing, the survey results
presented in Figure 3 indicate promising outcomes.
The perspectives of each team member on how each
component works, starting from data processing steps
such as parameter selection to model understand-
ing/implementation, training, and deployment using
the proposed CI/CD pipelines, were assessed. The re-
sults suggest that each team member’s understanding
of these components and their workings beyond their
black box implementation is more than promising in
most categories. Based on the survey results, the level
of understanding of the proposed Al model training
process was mostly evaluated as medium. This level
of knowledge is deemed sufficient for the mainte-
nance and minor improvement of each step in the pro-
cess.

As anticipated, the evaluation results demonstrate
that neural networks, as a family of Al models, are
more challenging to comprehend compared to deci-
sion trees across all categories. Nonetheless, the en-
couraging aspect is that the ratio does not exclusively
label neural networks as models that cannot be ac-
commodated in the proposed pipeline. Instead, the
results illustrate that the proposed pipeline is well ab-
stracted and can support models with diverse com-
plexities in terms of architectures, ranging from sim-
pler to more complex.

The survey results highlight an interesting finding:
despite the team’s limited level of understanding, they
exhibit high levels of trust in the deployed models. In-
terestingly, the trust increases with the complexity of
the models, as neural networks were found to have
higher trust than decision trees. This observation sug-
gests that the knowledge-sharing process has been ef-
fective, as the developers seem to have understood
that the more complex architectures yield higher ac-
curacy in the models.

Based on the survey results overviewed in the pre-

Towards Good Practices for Collaborative Development of ML-Based Systems

Neuronal Networks e

(a) Model understanding.

Not applicable Not applicable

(d) Parameter selection.

(b) Model training.

(e) CI/CD.

(c) Model implementation.

(f) Trust.

Figure 3: People’s perceptions over aspects related to decision trees and neural networks.

vious paragraphs, it can be concluded that the pro-
posed generic framework for the Al model training
process is successful in achieving its intended goal.
The survey showed that team members with limited
knowledge in the field of Al were able to understand
and trust the proposed pipeline, indicating that the
framework is well abstracted and easily applicable to
a real-world scenario. The pipeline was able to ac-
commodate both simple and complex Al models, in-
cluding neural networks, demonstrating its versatil-
ity and scalability. These findings validate the effec-
tiveness of the proposed framework in simplifying the
process of Al model training, enabling software engi-
neering teams to adopt Al technology in a simple and
smooth manner.

4 TOWARDS PROPOSING GOOD
PRACTICES

The insights gained from this collaboration were
shaped by the disparity between an experimental un-
dertaking and an industrial enterprise. Notably, nu-
merous industrial applications in the realm of com-
puter science have their roots in academia and have
evolved into implementations that adhere to princi-
ples that impact the economic aspects of the business.
Marketing a product to a customer entails a set of obli-
gations that become a compulsory part of the logistics
and maintenance of the said product.

One of the demanding experiences encountered by
our academic team was to conform to these princi-
ples and transform our experimental methodologies
into ones that could be integrated into scalable pro-
cesses, which could be effectively maintained within
state-of-the-art software architectures. The most valu-

able insights acquired during this collaboration are
those that we think could serve as a foundation for
establishing a set of good practices. The hurdles en-
countered, ranging from data modeling to model de-
ployment, were overcome through the utilization of
state-of-the-art practices, ultimately resulting in the
successful training of accurate models and proposing
an interface for interacting with said models:

* Data Processing

— Utilizing data warehouses that support ver-
sioning to streamline the process of uploading
datasets. It is critical to ensure that the correct
dataset is not lost due to accidental overwriting
by a corrupted one.

— Implementing unit testing principles on
datasets to validate new versions against a set
of rules for each field, such as validating field
types. This autonomous and automated step
facilitates model training.

* Model Training

— Creating an interface that eliminates the need
for advanced analysis and shifts the focus from
understanding the models’ architecture to a
qualitative comparison. Standard metrics that
can be numerically compared are much easier
to understand and instruct the personnel on than
understanding a black box model’s behavior.

— Implementing Al model architecture as mod-
ules that can be orchestrated based on a com-
mon interface. Platforms like AzureML offer
parallel training capabilities for multiple mod-
els, enabling the selection of the best model
based on exhaustive analysis (Microsoft, 2023).

* Model Deployment

609

ICSOFT 2023 - 18th International Conference on Software Technologies

— Deploying models as web services to align with
modern software architectures characterized by
interactions between micro-services over the
internet. Our experience suggests that deploy-
ing models as web services is a seamless opera-
tion from the perspectives of infrastructure and
integration. Utilizing containerization princi-
ples to create contained models using technolo-
gies like Docker to facilitate DevOps activities.

* Collaborative Development

— Conducting a series of theoretical sessions, fo-
cused on the applications of Al models and
their architectures. These sessions should be
followed by practical workshops, featuring in-
teractive coding sessions aimed at transforming
the traditional black-box approach into a more
flexible grey-box approach. The primary objec-
tive of this practice is to enable maintenance ac-
tivities that involve lightweight improvements
to existing processes, by providing a better un-
derstanding of the internal workings of Al mod-
els.

Commencing from the data processing procedures,
through to model training and deployment, we under-
went a learning curve of contemporary technologies
and good practices to determine the optimal combina-
tion of tools and frameworks that could accommodate
the requirements of an industrial application infras-
tructure. Given that this domain is nascent, there is no
standardization with regard to proposals. Therefore,
through our collaboration, we developed bespoke so-
lutions that were tailored to meet our specific needs.

The principal takeaway from our experience was
navigating the learning curve of these technologies,
wherein we recognized a significant potential for in-
tegrating them into our scientific research activities
to augment overall productivity. Platforms such as
AzureML offer an excellent means of developing ex-
perimental pipelines that can execute experiments at
scale, curate and archive datasets, and conveniently
share outcomes across a team of researchers (Mi-
crosoft, 2022).

S THREATS TO VALIDITY

Internal validity refers to factors that might influence
the obtained results. In our study, they refer to project
processes, respectively to the survey conducted as an
investigation method for human aspects in model de-
velopment. While it may be difficult to quantify the
validation of our defined practices, we believe that
our in-depth research of the existing literature (Sub-

610

section 2.2) provided a reliable foundation for the
practices that we designed and implemented through-
out the data processing, model training, and model
deployment processes discussed in the previous sec-
tions.

The survey was constructed and then validated by
members of the research team, not part of the tar-
get population. The biggest threat is represented by
the small number of participants, so the findings are
formulated as lessons learned from this experiential
study, with no proposed generalization. As mitiga-
tion strategies, we strive to include all members of the
project benefiting from the knowledge transfer, with
different roles and experiences.

External validity refers to the generalization of
the findings. The findings are not generalized, but
rather formulated as remarks and lessons learned, as
the study is an experience report and does not repre-
sent a general view of the domain. In our assessment,
the proposed good practices represent a suitable level
of formalization comparable to other experiments that
have been studied in the literature. We believe they
can enable more effective collaboration between Al
engineers and software engineers, ultimately leading
to more efficient and scalable development processes.

6 CONCLUSIONS

This paper presents a study based on a collaborative
development project of an ML-based system. The
project involved a team of researchers with exper-
tise in the field of Artificial Intelligence (AI) and a
software engineering company specialized in creat-
ing large-scale industrial applications. Through this
collaboration, the study examines a series of experi-
ences that were gained during the development pro-
cess. The study aims to highlight the challenges en-
countered and the strategies that were employed to ad-
dress them, to provide insights that can inform future
efforts to develop ML-based systems in industrial set-
tings.

Through our collaborative work, we came to real-
ize a gap in the existing literature related to best prac-
tices for defining interfaces of communication and
technical designs for creating autonomous pipelines.
These pipelines are capable of automating the experi-
mental processes involved in data engineering, model
training, model deployment, and their maintenance in
a real-world infrastructure. Our study highlights the
challenges encountered due to this void in the litera-
ture and the strategies that were employed to address
them. Our work aims to contribute to the develop-
ment of more robust and efficient processes for the

Towards Good Practices for Collaborative Development of ML-Based Systems

collaborative development of ML-based systems. We
propose a set of good practices for defining interfaces
of communication and technical designs for creating
autonomous pipelines that can help to streamline the
development process and improve the scalability and
maintainability of ML-based systems.

In order to address the challenges encountered
during the collaborative development of our ML-
based system, we structured our difficulties under a
series of challenges. We then designed solutions to
these challenges based on other state-of-the-art exper-
iments and practices that exist in the literature. Our
aim was to combine the knowledge gained from a sur-
vey of proposed practices with our own experiences,
to design more general and standardized practices
that could be applied successfully in future projects.
The solutions we proposed were based on careful
consideration of the unique needs and constraints of
our project, as well as the broader context of indus-
trial ML development. We believe that our approach
can help to improve the efficiency and effectiveness
of collaborative ML development efforts, while also
contributing to the development of more robust and
scalable ML-based systems.

ACKNOWLEDGEMENTS

This research was partially supported by DataSEER
project, financed through POC 2014-2020, Action
1.2.1, by European Commission and National Gov-
ernment of Romania (Project ID: 121004).

The authors express their gratitude to the indus-
trial partner, OPTIMA GROUP SRL, for their collab-
oration and valuable information exchange.

REFERENCES

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Ka-
mar, E., Nagappan, N., Nushi, B., and Zimmermann,
T. (2019). Software engineering for machine learning:
A case study. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), pages 291-300.

Ashmore, R., Calinescu, R., and Paterson, C. (2021). As-
suring the machine learning lifecycle: Desiderata,
methods, and challenges. ACM Computing Surveys
(CSUR), 54(5):1-39.

Beck, K. (2023). The agile manifesto. agile alliance.
http://agilemanifesto.org/. Accessed: Apr. 10, 2023.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,

C. J. (1984). Classification and regression trees
(wadsworth, belmont, ca). ISBN-13, pages 978-
0412048418.

Cerqueira, M., Silva, P., and Fernandes, S. (2022). Sys-
tematic literature review on the machine learning ap-
proach in software engineering. American Academic
Scientific Research Journal for Engineering, Technol-
0gy, and Sciences, 85(1):370-396.

Fair, J. (2012). Agile versus waterfall: approach is right for
my erp project? In Proceedings of Global Congress
2012—EMEA, Marsailles, France. Newtown Square,
PA: Project Management Institute.

Hopfield, J. (1982). Neural networks and physical systems
with emergent collective properties like those of two-
state neurons. Proc. Natl. Acad. Sci.(USA), 79:2554—
2558.

Kane, M. T. (2013). Validating the interpretations and uses
of test scores. Journal of Educational Measurement,
50(1):1-73.

Khombh, F., Adams, B., Cheng, J., Fokaefs, M., and Anto-
niol, G. (2018). Software engineering for machine-
learning applications: The road ahead. IEEE Soft-
ware, 35(5):81-84.

Lorenzoni, G., Alencar, P., Nascimento, N., and Cowan, D.
(2021). Machine learning model development from a
software engineering perspective: A systematic litera-
ture review. arXiv.

Makridakis, S. (2017). The forthcoming artificial intelli-
gence (ai) revolution: Its impact on society and firms.
Futures, 90:46-60.

Merkel, D. (2014). Docker: lightweight linux containers for
consistent development and deployment. Linux jour-
nal, 2014(239):2.

Microsoft (2022). Microsoft customer stories. Microsoft
Azure Blog.

Microsoft (2023). Azure machine learning.
https://azure.microsoft.com/en-us/services/machine-
learning/. Accessed: Apr. 10, 2023.

Serban, A., van der Blom, K., Hoos, H., and Visser, J.
(2020). Adoption and effects of software engineer-
ing best practices in machine learning. In Proceed-
ings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM). ACM.

Swagger (2022). Swagger: The world’s most popular
framework for apis. https://swagger.io. Accessed:
Apr. 10, 2023.

Zhang, C. and Lu, Y. (2021). Study on artificial intelligence:
The state of the art and future prospects. Journal of
Industrial Information Integration, 23:100224.

Zhang, H., Stafman, L., Or, A., and Freedman, M. J. (2017).
Slaq: Quality-driven scheduling for distributed ma-
chine learning. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC *17, page 390-404, New
York, NY, USA. Association for Computing Machin-
ery.

611

