
Architectural Evolution Style Representation Model

Kadidiatou Djibo2 a, Mourad Chabane Oussalah1 b and Jacqueline Konate2 c

1LS2N - UMR CNRS 6004, Nantes University, 110 Bd Michelet, Nantes, France
2Faculty of Sciences and Techniques, USTTB, Bamako, Mali

Keywords: Software Architecture, Evolution Styles, Evolution, Model, Component.

Abstract: In this paper, we present a software architecture evolution process representation model following the prin-
ciples of meta-modeling. The architecture evolution process is modeled as a software architecture evolution
style. Then, we introduce an evolution style representation model in square. The model in square allows to
represent the evolution process through four main dimensions of which : the evolution actor, the evolving ar-
chitectural element, The evolution time and the evolution operation signature. Finally, we define a simplified
formalism to express these architectural evolution with more convenience.

1 INTRODUCTION

The software architecture’s objective is to provide an
overview and a high level of abstraction in order to
be able to understand a software system ((Shaw and
Garlan, 1994)). The architecture proposes a system
organization abstracted as a collection of software
parts ((Perry and Wolf, 1992)). They have favored
software mastery which is becoming more and more
complex and distributed. These are often large-scale
heterogeneous distributed software components, em-
bedded systems, telecommunications, wireless ad hoc
systems. As markets and technologies continue to
evolve, these systems must also change to meet new
market and technology requirements. The architec-
ture offers a support for the control, the systems com-
prehension. So when a system needs to be changed,
the ideal starting point for the evolution team is to
understand the system (architecture), in order to try
to find a set of suitable modifications. In this con-
text, large-scale evolution planning is a very difficult
activity that requires an understanding of the overall
system structure, consideration of previous design de-
cisions, principled trade-offs between candidate evo-
lutionary scenarios, and optimal scenario selection
(Barnes et al., 2013). Thus, the system architecture
must also evolve to remain consistent with the sys-
tems documented as a guide.

a https://orcid.org/0000-0003-1916-7364
b https://orcid.org/0000-0001-8049-110X
c https://orcid.org/0000-0002-2599-7658

The role of the software architecture in the soft-
ware evolution process can be considered from two
points of view: as an artifact for evolution, which
guides the planning and conduct of the evolution pro-
cess, and as an evolution artifact, because it must it-
self evolve in order to be consistent with the change
in the system(Cuesta et al. (Cuesta et al., 2013)).

Indeed, the software architecture evolution is a
very complex process to plan and, therefore, the per-
son or team that plays this role must have a mix of
architectural knowledge from different domains, in-
cluding: business architecture, enterprise architec-
ture, data architecture, application architecture and in-
frastructure or technical architecture (Hassan, 2018).

Therefore, architects need tools, methods and
techniques that help them avoid the evaporation of
knowledge about architecture’s evolution (Oussalah
et al. 2006 (Seriai et al., 2006)). This is especially true
with respect to the sharing and reuse of this knowl-
edge by architects who do not have this experience
(Hassan, 2018).

This study is part of the exploration of prediction
and planning in the component-oriented software ar-
chitecture structural evolution.

The need for evolution becomes more necessary
in component-oriented systems where the implemen-
tation is motivated by the principle of reuse. In a
component-oriented system, one or more components
or the whole system can evolve in order to be reused.
Thus, the evolution can concern the source codes or
the system architecture as a support.

The evolution of a software architecture is a com-

596
Djibo, K., Oussalah, M. and Konate, J.
Architectural Evolution Style Representation Model.
DOI: 10.5220/0012130100003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 596-603
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



plex task and requires several expertises. Many re-
search efforts have aimed at modeling and reusing
evolution in software architectures in order to capital-
ize information and foster knowledge sharing in the
architecture community. The evolution styles intro-
duced in (Seriai et al., 2006) are part of this context.
Given the complexity of architectural evolution, it is
not easy to have all the necessary skills within a com-
pany to make a software architecture evolve. It be-
comes necessary to go beyond the reuse offered by
the evolution styles, but to anticipate the future evo-
lutions from the good practices of previous evolution
on similar architectures. This would considerably re-
duce the costs (in terms of skills, time, etc.) related
to the evolution of these architectures and make them
accessible to all.

We are convinced of the importance of integrating
prediction and evolution planning into software archi-
tectures. Few works, to our knowledge, are devoted to
the prediction and planning of evolution in software
architectures.

The objective of this study is to help propose a
solution to this lack. We are specifically interested
in the problem of structural evolution prediction and
planning in software architectures. For this, we use
the evolution style key concept introduced by Ous-
salah et al. 2006, we apply data learning techniques
in order to propose possible future evolutionary paths
from previous evolution data (Figure 1).

Figure 1: Overall goal.

Thus, this study takes place in three main phases.
The first one consists in proposing a meta-model to
represent the evolution of software architectures as
a process, which we named evolution representation
model. It is positioned at the M2 modeling level of
the OMG above the architecture layer to represent its
evolution. It has been positioned in relation to the
standards defined for modeling the evolution of soft-
ware architectures. This paper is devoted to the first
phase which presents the new meta-model introduced
to represent software architecture evolution as a pro-
cess and the formalism introduced to collect evolution
data. Given the number of pages allowed, the other
two phases will be published further on.

This paper is organized as follows : Section 2
presents related work on software architecture evolu-
tion styles. The new evolution representation model
introduced is presented in section 3. Section 4 de-
scribes the concepts of the model. In section 5 evo-

lution style relationship is defined, then we give the
evolution style representation formalism in section 6.
Finally, we conclude the paper in section 7.

2 RELATED WORKS

In this study, we are mainly interested in the struc-
tural evolution of component-based software archi-
tectures. A software architecture structural evolution
is reflected by the various changes in its structure
and/or in that of its constituent elements. A change
in an architecture is always generated by one or more
operations applied to this architecture or to one of
its elements, such as deletion, addition, modification.
We refer to these operations as evolution operations
(Sadou et al., 2005). A software architecture’s struc-
tural evolution can be performed at the specification
or design stage of the system it describes (static evolu-
tion) or during the execution of this system (dynamic
evolution). In each of these cases, it is necessary to
consider that any element of the software architec-
ture can be brought to evolve. Thus, it is necessary to
identify what can evolve, how to make it evolve, how
to guarantee the coherence of the architecture having
evolved and then how to pass on these changes in the
software architecture to the system it describes. In
general, to prepare a system or an architecture for evo-
lution, it is necessary to : Be able to specify the need
for evolution; Manage the impact of these changes;
Establish the link between the starting model and the
ending model. Thus, in (Sadou-Harireche, 2007) the
authors introduced the three dimensions of the archi-
tectural evolution namely : the evolution object, the
evolution type and the evolution support. The evo-
lution’s object makes it possible to specify the archi-
tectural elements to which the evolution relates. It
can be any element reified and considered as a first
class entity by the ADL of the software architecture
to be evolved. Thus, according to the basic concepts
of description of a software architecture, an evolution
can concern a configuration, a component, a connec-
tor, and/or an interface. An evolution can concern the
types of these elements and/or their instances, in other
words it can concern the Architectural level or the Ap-
plication level. The evolution type specifies the phase
during which the evolution is executed.

According to Garlan et al. (Garlan, 2008), an evo-
lution style expresses the software architecture’s evo-
lution as a set of potential evolution paths from the
initial architecture to the target architecture. Each
path defines a sequence of evolution transitions, each
of which is specified by evolution operators. The
(Cuesta et al., 2013) team has defined architectural

Architectural Evolution Style Representation Model

597



knowledge-based evolution styles (AKdES), which
are also based on the design decisions of the architec-
ture whenever an evolution step is made. Each evolu-
tion step is preformed because an evolution decision
is made following the verification of an evolution de-
cision. From Oussalah et al’s point of view (Oussalah
et al., 2007), the main idea of an evolution style is
to model the software architecture evolution activity
in order to provide a reusable domain-specific evo-
lution expertise. They consider an architectural evo-
lution as consisting of architectural elements (com-
ponent, connector, interface, etc.) modifications (ad-
dition, update, removal). The authors proposed a
meta-evolution style called MES (Meta Evolution-
Style)(Hassan and Oussalah, 2018) to unify the mod-
eling concepts that formulate evolution styles.

3 EVOLUTION
REPRESENTATION MODEL

In order to model, standardize, formalize and remain
consistent in the description of evolution styles and to
promote the reuse of these styles, an evolution meta-
style called MES has been introduced in (Hassan and
Oussalah, 2016). MES is positioned at the M3 mod-
eling level of the OMG and defines a generic meta-
model that represents an architectural evolution as a
process by specifying the role (actor), the element to
be evolved and the evolution operation. Thus, any
evolution style language must conform to MES, more
precisely must be an instance of MES that defines the
normal framework for representing, describing and
modeling a reusable architectural evolution. In this
paper, the introduced representation model is posi-
tioned at the M2 modeling level of the OMG as an
instance of the MES and defines an architectural evo-
lution as a process.

The evolution style meta-model that we propose
should allow the transmission of good evolution prac-
tices, promote the reuse of software architecture evo-
lution and will provide a normal framework for the
definition of evolution styles. Thus, it must answer
two main requests : (1) compliance to MES and (2)
The evolution expectations through the following four
questions, What ?(what is evolving ?), Who ?(who
makes it evolve ?), When ?(when to evolve it ?) and
How (how to evolve it ?). These four questions de-
scribe the evolution activity. In answering them, our
meta-model describes an architectural evolution as a
process.
What (what is evolving) ?
It is the basic element (input/output) of any evolution
operation. The evolution concerns all or a targeted

part of the architecture. In the first case, the entire
architecture is affected. In the second case, only the
designated parts will be affected. Thus it remains im-
portant to better reify the architecture, better repre-
sent each of its components and their different con-
figurations. Thus, the meta-model answers the ques-
tion What? through the package EvolvingArchitec-
tureElement.
Who (who makes it evolve ) ?
It is a set of responsibilities, i.e. it describes the skills,
tools and techniques required to perform a specific ar-
chitecture evolution operation. Thus, this question is
answered through the Actor concept.
When (when to evolve it ) ?
The management of the schedule and the chaining, i.e.
defining which operation before or after (the sched-
ule of operations) remains necessary in the definition
of the process models. The TimeEvolution concept
solves this issue. It allows to manage the steps and to
plan the evolution operations.
How (how to evolve it ) ?
It is about defining how to produce visible changes
in the state of the architecture. It is solved from the
concepts EvolutionStyle, Header, Competence, Ac-
tion and Impact.

Taking these concerns (questions) into account al-
lows the meta-model to define an evolution style as a
process. Through the class diagram of the figure 2, we
highlight the concepts and inter-concept relationships
of the model.

4 DESCRIPTION OF THE
EVOLUTION
REPRESENTATION MODEL
CONCEPTS

An architectural evolution style is described by a pro-
cess specifying the activity, the role and the product
(evolving element) as shown in Figure 2. Thus, the
meta model is defined in three main parts. The con-
cepts associated with each part (Fig.2) are defined.

Figure 2: Evolution representation model.

ICSOFT 2023 - 18th International Conference on Software Technologies

598



4.1 Product

The EvolvingArchitectureElement package allows to
represent the architectural element, its category, its
ports and its connections. It tries to give a complete
representation of the architectural element in order to
pass easily to a graphic interpretation of the archi-
tecture. Thus, the Category concept allows to group
and classify architectural elements of the same type
and function. The Element class is used to represent
architectural elements and their properties. Through
the Description concept, the structure of the architec-
tural element is defined. Thus, the EvolvingArchi-
tectureElement package proposes to offer a complete
textual description of the graphical representation of
the architecture in order to promote an automatic tran-
sition from the graphical representation to the textual
or vice versa.

4.2 Role

Defined by the Actor concept, it describes the actor
of the evolution and the skills needed to perform the
evolution operation being defined. An actor can inter-
vene in several evolution operations. It can refer to a
physical person or a computer program.

4.3 Evolution Operation (Activity)

It is one of the units of the process that produces visi-
ble changes in the state of the architecture. It is asso-
ciated with the roles and architectural elements. It is
described through the concepts EvolutionStyle, Evo-
lution_constraint, Impact, Header, Competence, Ac-
tion.

4.3.1 Evolution Style

An evolution style encapsulates that which allows to
describe and apply an evolution to an architectural
element. The EvolutionStyle class is a named en-
tity that is composed of two complementary parts :
a header defined through the Header concept and a
skill defined by the class Competence. The header has
an informal description of the purpose and publishes
a list of parameters and assertions. The evolving el-
ement appears as an implicit parameter named con-
text. The type of the parameters is provided by the set
of evolutive elements, plus the usual primitive types
(String, int, boolean, float, etc.). The competence rep-
resented by the Competence concept describes a unit
of implementation corresponding to the header. The
implementation unit specifies the data flow and all
control logic. We have extended the EvolutionStyle
concept by adding the notion of condition constraint

which defines or establishes the conditions of execu-
tion of an evolution operation on a given architectural
element. Its definition is not mandatory and there can
be several condition constraints to check for a given
operation. It is described through the concept Condi-
tion_constraint.

An evolution style can cause or invoke another
evolution style, the Impact class allows to specify
the evolution styles invoked by the execution of the
current style.

Evolution Style Representation

Figure 3 schematizes the representation of a style ac-
cording to four compartments : the style name, its
header, its competence and impact.

Every evolution operation is described as an evo-
lution style. An evolution style is in relation with
other evolution styles. This relationship is managed
by the Impact concept which specifies the invoked
styles and the relationship type.

Figure 3: Evolution style representation.

4.3.2 TimeEvolution

The TimeEvolution class associates an execution de-
lay to an evolution operation on an evolving architec-
tural element. It allows us to plan and manage the
steps in the management of evolutions.

5 EVOLUTION STYLES
RELATIONSHIP

The operational mechanisms provided by our model
are instantiation, specialization, composition, and fi-
nally usage. As these mechanisms are largely in-
spired by those of the object-oriented approach, we
can therefore use the notations of the UML class di-
agram for the illustrations to follow in this section.
Figure 4 illustrates the operational mechanisms of the
evolution representation model.

In a general way, instantiation is a mechanism that
allows you to move from a given modeling level to a
lower level. Evolution styles can be instantiated sev-
eral times in an architecture. The instance of an evo-
lutionary style is a particular process that is created
within the structure given by its style. All instances
of an evolution style must offer exactly the same skill

Architectural Evolution Style Representation Model

599



as that style. The instantiation mechanism covers the
binding of formal parameters to effective parameters
(i.e., elements of an architecture), the evaluation of
the precondition and postcondition, and the execution
of the skill body. Therefore, an abstract evolution
style cannot have instances since it does not specify
any competence. We can consider that an instance is
attached to its evolution style type by the relation "is-
a".

Evolution styles can be defined by extension of
other styles. The inheritance mechanism associated
with the specialization relationship is inspired by the
class inheritance mechanism in the object paradigm.
With the proposed bipartite structure, on the one hand
a sub-style can add and override elements of the
header of its super-style, and on the other hand a sub-
style can redefine the competence of its super-style.
This mechanism can be used to define concrete evolu-
tion styles as sub-styles of abstract styles by providing
the missing skill.

Composition is necessary to describe develop-
ments at different levels of detail. Style composi-
tion refers to the "all-part" structuring between two
styles. At each level of composition, each style can
be seen as having as parts those sub-styles which
represent stages entering its competence. This rela-
tionship suggests a strong coupling between evolu-
tion styles and promotes the encapsulation of com-
plex skills. Our model uses the composition mech-
anism to define composite evolution styles, increas-
ingly complex, delegating their functionality to com-
ponent styles. The composition starts from a set of
primitive evolution styles, whose competence is ele-
mentary. Finally, the communication mode assigned
to the composition is necessarily synchronous, be-
cause the execution of the component styles is sub-
ordinated to that of the composite style.

In the evolution representation model, utilization
is a fundamental technique in the perception of an
"expert" system as a set of interrelated expertises.
Thus, usage is a relationship that allows a style to ref-
erence another style to use its functionality. It should
not be confused with a compositional relationship, as
it has a more momentary character and does not in-
volve strong coupling. Finally, the mode of commu-
nication attributed to the use is asynchronous, because
the executions of the styles do not necessarily have to
be concordant.

Figure 4: Evolution styles relationship.

6 FORMALISM FOR
REPRESENTING EVOLUTION
STYLES

The specification of evolution styles should be as sim-
ple as possible, both in terms of the concepts manip-
ulated and the quantity of elements to be described.
Taking into account the functionalities offered by the
evolution representation model, the chosen formalism
must make it possible to distinguish the competence
header of an evolution style, the evolving architectural
elements, the actor and the associated evolution date.
This keeps the style integrity as a process. In addition,
the architect must be able to prioritize headers, skills,
and evolving elements and have multiple views of his
styles.

The Y-model (MY) is a formalism that naturally
incorporates certain functionalities and has also been
used in (Smeda et al., 2008) to describe component-
based software architectures. It has been used as a
support, to describe an evolution style by three as-
pects (corresponding to the three branches of the Y) :
domain, header and competence. These aspects rep-
resent successively all that is related to the evolv-
ing architectural elements, to the operations of evo-
lutions and to the implementations of these opera-
tions (Le Goaer et al., 2008). Given the features of-
fered by the evolution representation model we intro-
duced in this paper, the Y model previously used in
(Goaer, 2009) does not allow us to properly represent
our model. Thus, we introduce the model in square
to represent an evolution style modeled as a process,
distinguishing the skill header of an evolution style,
the evolving architectural elements, the actor and the
associated evolution time. The four elements men-
tioned correspond to the four vertices of the square
(Figure 5).

ICSOFT 2023 - 18th International Conference on Software Technologies

600



6.1 The Model in Square of Style
Representation

Using the square model (Figure 5, Figure 6), an evo-
lution style can be described by four aspects which
are: the evolving architectural element, the evolution
operation header, the evolution actor and the evolu-
tion date. These four elements are linked together to
establish an evolutionary style. They are defined for
the purpose of reuse to describe different evolution
archetypes.

As said before, the three main concepts of the de-
scription of an evolution style are the evolving archi-
tectural element, the role (actor) and the evolution op-
eration. We add a fourth concept, not explained until
now, which is the date and/or the deadline of the evo-
lution operation. The evolving architectural element
provides a vocabulary of evolving elements and their
relationships, typically in the form of classes and at-
tributes in object representations. The acquisition of
this basic conceptual vocabulary is therefore neces-
sary to express the evolution knowledge on this do-
main. We model these concepts using four aspects
(each represented by a vertex of the square): Evolvin-
gArchitectureElement, Header, Actor and TimeEvo-
lution. Each vertex of the square describes an evolu-
tion style concept, as shown in the Figure 5.

Figure 5: Evolution style concepts representation using the
model in square.

The diagonals of the square allow to represent the
concepts of the evolution style. The center of the
square corresponding to the intersection point of the
two diagonals represents the architecture on which the
styles are defined. The evolution styles expressed by
the four concepts at the vertices are described using
different levels of abstraction. Each level of abstrac-
tion is represented by a quadrilateral in the square
model, from the highest level (perfect square) to the
lowest level (other quadrilateral shape). The level of
representation of a concept is deduced by its position
relative to the center of the square. A concept rep-
resented near the center is said to be weakly repre-
sented. A concept located near the top is said to be
strongly represented. In the middle, it is said to be
moderately represented (Figure 6).

When we observe the representations of styles S1

and S2 (Figure 6), the actor A1 is better represented
than A2, in other terms A1 is strongly represented
than A2 with respect to certain criteria defined on the
two elements (competence, experience, etc.) for ex-
ample A1 is more competent than A2, the style S1 is
defined by an actor more competent than the style S2.
Similarly, if we take E1 and E2, the criteria can be the
age of the element, the previous evolution of the ele-
ment, etc. E1 has evolved several times compared to
E2, the S1 style is defined on an architectural element
which is more sensitive because it is much affected by
the evolution operations than the S2 style. TimeEvo-
lution defines the earliest and latest evolution time.
Thus, T2 is more urgent than T1, in other words the
S2 style would be more urgent than S1.

According to the criteria, the model in square
makes it possible to draw hypotheses on the behav-
ior of the styles.

Figure 6: Evolution style concepts representation using the
model in square.

Thus, from the square model, we derive the sim-
plified expression of evolution style.

6.2 Simplified Expression of
Evolutionary Style

The introduced evolution style meta-model defines
the style modeling language. In order to provide a
formalism to express evolution styles with more con-
venience and entirely based on the introduced meta-
model, we have introduced a simplified expression to
express software architecture evolution styles. Thus,
the simplified expression provides the framework for
expressing an evolution style while remaining con-
sistent with the representation model. It allows to
define the process parameters. It is presented as a
quadruplet defining the actor, the evolving architec-
tural element, the operation header and the execution
date. The evolving architectural element is presented
as a couple of elements and its category. The header
is the transaction’s signature and allows the transac-
tion to be uniquely identified. Figure 7 gives us an
overview of the simplified expression. This expres-
sion allows to name and express one by one all the
evolution styles of an evolving software architecture.

Architectural Evolution Style Representation Model

601



Figure 7: Evolution style simplified expression.

6.3 Interests and Benefits of Simplified
Formalism

The simplified formalism allows to build an evolution
style library that can be submitted to analyses in order
to infer on the evolution process of software architec-
tures. Indeed, the work done in this paper leads us to
develop a model for planning and predicting architec-
tural evolution. For this purpose, the style library ob-
tained through the simplified formalism is subjected
to analysis.

Sequential pattern extraction techniques can be
applied to the style library in order to discover the se-
quences of recurrent evolution operations, the archi-
tectural elements more or less affected by the evolu-
tion operations, the evolution actors more or less so-
licited and several other types of information. This in-
formation can be used to build a learning base to pre-
dict and plan future architecture evolution by learn-
ing from past facts and data. This would allow to an-
ticipate the evolutions and to reduce considerably the
costs (competence, delay).

7 CONCLUSION

In this paper we have presented the evolution style
meta-model introduced to represent the software ar-
chitecture evolution process. It models the evolution
as a process by specifying the activity, the evolv-
ing product, the role and the execution date of the
operation. The evolution representation model pro-
vides the necessary concepts for specifying and prop-
erly managing software architecture evolution inde-
pendently of the architecture model and any ADL.
Thus, it considers the different modeling levels of a
software architecture and the need to manage the evo-
lution through these different levels. In addition, we
introduced the model in square which, based on the
introduced evolution representation model, provides
an evolution style representation framework with ab-
straction levels and a simplified software architec-
ture evolution style expression in order to easily col-
lect evolution data while respecting the model policy.
These data collected through the simplified expres-
sion can be submitted to studies or analyses in order
to infer on evolution styles.

The results obtained lead us to plan and predict
the future evolution paths of an evolving software ar-
chitecture from the previous evolution data collected

according to the presented model. From the previ-
ous evolution data of a software architecture evolv-
ing in time A1 towards An, the aim is to elaborate a
training base in order to predict the possibilities and
the skills required to evolve towards An+1. This work
will be developed in a future study and will facilitate
evolution management in software architectures with
a good management of resources and a better capi-
talization of information in the architect community.
These results can also be applied to other artifacts.

REFERENCES

Ahmad, A., Pahl, C., Altamimi, A. B., and Alreshidi,
A. (2018). Mining patterns from change logs to
support reuse-driven evolution of software architec-
tures. Journal of Computer Science and Technology,
33(6):1278–1306.

Barnes, J. M., Pandey, A., and Garlan, D. (2013). Au-
tomated planning for software architecture evolution.
In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 213–
223. IEEE.

Breivold, H. P., Crnkovic, I., and Larsson, M. (2012).
A systematic review of software architecture evolu-
tion research. Information and Software Technology,
54(1):16–40.

Cuesta, C. E., Navarro, E., Perry, D. E., and Roda, C.
(2013). Evolution styles: using architectural knowl-
edge as an evolution driver. Journal of Software: Evo-
lution and Process, 25(9):957–980.

Falcarin, P. and Alonso, G. (2004). Software architecture
evolution through dynamic AOP. In Oquendo, F.,
Warboys, B., and Morrison, R., editors, Software Ar-
chitecture, First European Workshop, EWSA 2004, St
Andrews, UK, May 21-22, 2004, Proceedings, volume
3047, pages 57–73. Springer.

Filho, J. W., de Figueiredo Carneiro, G., and Maciel, R.
S. P. (2019). A systematic mapping on visual so-
lutions to support the comprehension of software ar-
chitecture evolution. In Jr., J. J. P., editor, The 25th
International DMS Conference on Visualization and
Visual Languages, DMSVIVA 2019, Hotel Tivoli, Lis-
bon, Portugal, July 8-9, 2019, pages 63–82. KSI Re-
search Inc. and Knowledge Systems Institute Gradu-
ate School.

Garlan, D. (2008). Evolution styles-formal founda-
tions and tool support for software architecture evo-
lution. Computer Science Department, reports-
archive.adm.cs.cmu.edu, page 650.

Gasmallah, N., Amirat, A., Oussalah, M., and Seridi-
Bouchelaghemi, H. (2019). Developing an evolution
software architecture framework based on six dimen-

ICSOFT 2023 - 18th International Conference on Software Technologies

602



sions. International Journal of Simulation and Pro-
cess Modelling, 14(4):325–337.

Goaer, O. L. (2009). Styles d’évolution dans les architec-
tures logicielles. (Evolution styles within software ar-
chitectures). PhD thesis, University of Nantes, France.

Hassan, A. (2018). Style and Meta-Style: Another way to
reuse Software Architecture Evolution. (Style et Meta-
Style: Une autre façon de réutiliser l’évolution dans
les architectures logicielles). PhD thesis, University
of Nantes, France.

Hassan, A. and Oussalah, M. (2016). Meta-Evolution Style
for Software Architecture Evolution. In SOFSEM
42th International Conference on Current Trends in
Theory and Practice of Computer Science-LNCS, Har-
rachov, Czech Republic.

Hassan, A. and Oussalah, M. C. (2018). Evolution styles:
Multi-view/multi-level model for software architec-
ture evolution. JSW, 13(3):146–154.

Kouroshfar, E., Mirakhorli, M., Bagheri, H., Xiao, L.,
Malek, S., and Cai, Y. (2015). A study on the role
of software architecture in the evolution and quality
of software. In 2015 IEEE/ACM 12th Working Con-
ference on Mining Software Repositories, pages 246–
257. IEEE.

Le Goaer, O., Tamzalit, D., Oussalah, M. C., and Seriai,
A.-D. (2008). Evolution styles to the rescue of archi-
tectural evolution knowledge. In Proceedings of the
3rd International Workshop on Sharing and Reusing
Architectural Knowledge, SHARK ’08, page 31–36,
New York, NY, USA. Association for Computing Ma-
chinery.

Oussalah, M., Goaer, O. L., Tamzalit, D., and Seriai, A.
(2007). Evolution styles in practice - refactoring re-
visited as evolution style. In Filipe, J., Shishkov, B.,
and Helfert, M., editors, ICSOFT 2007, Proceedings
of the Second International Conference on Software
and Data Technologies, Volume SE, Barcelona, Spain,
July 22-25, 2007, pages 138–143. INSTICC Press.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the
study of software architecture. ACM SIGSOFT Soft-
ware engineering notes, 17(4):40–52.

Plakidas, K., Schall, D., and Zdun, U. (2018). Model-based
support for decision-making in architecture evolution
of complex software systems. In Proceedings of the
12th European Conference on Software Architecture:
Companion Proceedings, pages 1–7.

Sadou, N., Tamzalit, D., and Oussalah, M. (2005). How
to manage uniformly software architecture at differ-
ent abstraction levels. In International Conference on
Conceptual Modeling, pages 16–30. Springer.

Sadou-Harireche, N. (2007). Evolution Structurelle dans les
Architecture Logicielles à base de Composants. PhD
thesis, PhD thesis, Université de Nantes.

Seriai, A., Oussalah, M. C., Tamzalit, D., and Goaer,
O. L. (2006). A reuse-driven approach to update
component-based software architectures. In Proceed-
ings of the 2006 IEEE International Conference on In-
formation Reuse and Integration, IRI - 2006: Heuris-
tic Systems Engineering, September 16-18, 2006,
Waikoloa, Hawaii, USA, pages 313–318. IEEE Sys-
tems, Man, and Cybernetics Society.

Shaw, M. and Garlan, D. (1994). An introduction to
software architecture. School of Computer Science
Carnegie Mellon University Pittsburgh, PA.

Smeda, A., Oussalah, M., and Khammaci, T. (2008). My
architecture: a knowledge representation meta-model
for software architecture. International Journal of
Software Engineering and Knowledge Engineering,
18(07):877–894.

Architectural Evolution Style Representation Model

603


