
Verifying Data Integrity for Multi-Threaded Programs 

Imran Pinjari1, Michael Shin1 and Pushkar Ogale2 
1Department of Computer Science, Texas Tech University, Lubbock, Texas, U.S.A. 

2Department of Computer Science, Stephen F. Austin State University, Nacogdoches, Texas, U.S.A. 

Keywords: Integrity Breach Condition, Data Integrity, Message Communication, Malicious Code, Multi-Threaded 
Program. 

Abstract: This paper describes the Integrity Breach Conditions (IBCs) to identify security spots that might contain 
malicious codes in message communications in multi-threaded programs. An attacker can inject malicious 
code into a program so that the code would tamper with sensitive data handled by the program. The IBCs 
indicate what functions might encapsulate malicious code if the defined IBC conditions hold true. This paper 
describes the IBCs for multi-threaded based synchronous and asynchronous message communications in 
which two threads communicate via message queues or message buffers. A prototype tool was developed by 
implementing the IBCs to identify security spots in multi-threaded programs. An online shopping system was 
implemented to validate the IBCs using the prototype tool. 

1 INTRODUCTION 

Malicious code can compromise sensitive data to 
impact the business of an organization. In today’s 
world of computers and networks, there are very high 
chances for malicious code to be injected into the 
program by an insider. Insiders (Wang et al., 2020; 
Fadolalkarim et al., 2020; Jiang and Qu, 2020; Zhang 
and Li, 2020; Rozi et al., 2020) could be software 
engineers who have authorized access to the source 
code of applications. Hence, malicious code should be 
detected and removed during software development as 
proactive measures. 

A security spot is a code that may change either 
the value of a sensitive variable in a class or sensitive 
data in a database. Our previous work (Ogale et al., 
2018; Radhakrishnan et al., 2021) presented the 
integrity breach conditions (IBCs) for non-
multithreaded programs to identify security spots 
using sensitive variables (Ogale et al., 2018) and 
object references (Radhakrishnan et al., 2021). This 
paper extends our previous work by defining the IBCs 
to identify security spots in multi-threaded programs, 
where two threads communicate via message queues 
or buffers asynchronously or synchronously. 

Many real-world applications have been 
developed with multi-threads, such as web servers, 
database systems, networking, video, and audio 
processing. Message queues or buffers are frequently 

used in such applications for communication to handle 
enormous volumes of messages or data efficiently. 
The messages or data sent by one thread to another can 
be tampered with if message queues or buffers are 
breached by malicious codes. Also, malicious code 
might be hidden in threads that communicate 
messages or data. It is necessary to detect malicious 
codes that might be hidden in the message queue or 
buffer as well as the threads in the multi-threaded 
programs. 

This paper describes the IBCs to identify security 
spots that may contain malicious code hidden in the 
message queues and buffers and threads in multi-
threaded programs. Some methods or functions in 
multi-threaded programs might contain malicious 
code if the IBC holds for the methods or functions. 
The IBCs are implemented as rules in the prototype 
tool, which is extended from our previous tool. The 
prototype tool is used to validate our research to detect 
security spots. The identified security spots should be 
manually reviewed to determine whether it is a benign 
code or a malicious code. 

This paper is organized as follows. Section 2 
describes the background of our research. Section 3 
describes the integrity breach conditions for the multi-
threaded programs for asynchronous message 
communication, followed by the IBCs for 
synchronous message communication in section 4. 
Section 5 describes the prototype tool, and Section 6 

588
Pinjari, I., Shin, M. and Ogale, P.
Verifying Data Integrity for Multi-Threaded Programs.
DOI: 10.5220/0012130000003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 588-595
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



validates this research. Section 7 describes the related 
work, and section 8 describes the conclusions and 
future work. 

2 BACKGROUNDS 

2.1 Glossary 

The definitions of the terms used in this paper are as 
follows: 
 Message Queue (MQ) Connector is a queue used 

for asynchronous message communication 
between threads. 

 Message Buffer and Response (MBR) 
Connector stores the messages sent by the sender 
thread to the receiver thread in a message buffer in 
synchronous message communication. The 
message response buffer stores the response sent 
by the receiver thread to the sender thread. 

 Sensitive Variable (SV) is a variable that stores 
sensitive value and whose value must not be 
changed maliciously. An SV is exclusively a 
variable of a primitive type in Java. 

 Non-Sensitive Variable (NSV) is a variable with 
no sensitive value. 

 Sensitive Object (SO) is an object of a class 
whose value must not be changed maliciously. 

 Non-Sensitive Object (NSO) is an object that 
does not contain any sensitive values. 

 Sensitive Class (SC) is a class that contains a 
sensitive variable or sensitive object (SV/SO).  

 Non-Sensitive Class (NSC) is a class that does 
not contain any SV/SO. 

 Reference to Sensitive Variable (RSV) refers to 
a sensitive variable (SV) in a class. 

 Reference to Sensitive Object (RSO) refers to a 
sensitive object (SO) in a class.  

 Reference to Non Sensitive Variable (RNSV) 
refers to a non-sensitive variable in a class. 

 Reference to Non Sensitive Object (RNSO) 
refers to a non-sensitive object in a class. 

 Security Spot is code that changes either an 
SV/SO value in a class or sensitive data in a 
database.  

 Sensitive Method (SM) is a method that contains 
at least one security spot. 

 Non-Sensitive Method (NSM) is a method that 
does not change the value of an SV/SO in a class 
or the sensitive data in a database.  
 
 

2.2 Approach 

Fig. 1 depicts the overview of our approach in which 
a list of sensitive variables or objects declared in 
classes and sensitive data stored in a database are 
given as input together with the multi-threaded 
programs. Using the IBCs, the programs are analyzed 
for data integrity to identify the security spots. The 
Integrity Breach Conditions (IBCs) are defined to 
identify the security spots in multi-threaded 
programs. The IBCs are the criteria for determining 
the security spots. If a method in a program holds an 
integrity breach condition, then it becomes a security 
spot, and the method becomes a sensitive method 
(SM). The security spots may be either malicious or 
benign. Hence, security spots should be verified 
manually to determine whether they are malicious or 
benign. 

 

Figure 1: Overview of Our Approach. 

3 INTEGRITY BREACH 
CONDITIONS FOR 
ASYNCHRONOUS MESSAGE 
COMMUNICATION  

A message queue (MQ) connector (Gomaa, 2011) is 
used in asynchronous message communication 
between threads, which communicate messages via a 
message queue. An asynchronous message is sent by 
a sender thread to a receiver thread via an MQ 
connector and is stored in the MQ until the receiver 
reads the message. The sender thread can continue to 
send the next message to the receiver if the MQ is not 
full.  

Fig. 2 depicts a message queue (MQ) connector 
for asynchronous message communication between 
the sender and receiver threads. The MQ connector 
provides the threads with two operations: the send() 
operation, called by the sender thread to store a 

Code 
Analysis for 

Data 
Integrity

Sensitive Variables or Objects in Classes
Sensitive Data in Database 

Security Spots

Integrity 
Breach

Conditions

Multi‐
Threaded 
Program 

Verifying Data Integrity for Multi-Threaded Programs

589



message in the MQ, and the receive() operation, 
called by the receiver thread to read a message from 
the MQ. The send() operation has an incoming 
message as a parameter, and the receive() operation 
returns an outgoing message read from the MQ. 

 

Figure 2: Message Queue Connector. 

When a sender thread method (i.e., the run() 
function of a sender thread in Java) sends a message 
to a receiver thread method (i.e., the run() function of 
a receiver thread in Java) via a message queue (MQ) 
connector, the message can be an SV, NSV, RSV, 
RSO, RNSV or RNSO. However, RNSV is not 
possible in our focused programming language. 
Suppose a method in an MQ connector is a method 
M. Under these circumstances, the following IBCs 
are specified to identify security spots in 
asynchronous message communication between two 
threads. 
 

IBC 1: If a sender thread method sends a message, 
which is either an SV or NSV, to a receiver thread 
method, a method M changes the message, and the 
receiver thread method is an SM to use the changed 
message, the MQ connector class becomes an SC, and 
the message becomes an SV in the class.  

Because the message is used by an SM in the 
receiver thread, a change in the message will affect 
the SM. The message becomes an SV in the MQ 
connector and must not be changed in the MQ 
connector. As the message is stored in the MQ 
connector class, the class becomes an SC.  

The IBC 1 can be detailed into IBC 1a, 1b, and 1c: 
 

IBC 1a: If the message is an SV declared as a class 
variable in the sender thread class, the sender thread 
class is already an SC. 

IBC 1a is trivial because it is a kind of SC 
definition. 
 

IBC 1b: If the message is an NSV declared in the 
sender thread class, the sender thread class becomes 
an SC. 

The message must not be changed in the sender 
thread as well as the MQ connector class because an 
SM in the receiver thread method uses the message. 
The message declared as an NSV in the sender thread 
must become an SV, and the sender thread class must 
become an SC. 
 

IBC 1c: If the message is a local variable declared in 
the thread method, the sender thread method can be 
an SM.  

Although the message becomes an SV, only the 
sender thread method can be an SM because the 
message is declared as a local variable in the sender 
thread method.   
 

IBC 2: If a sender thread method sends a message, 
which is either an RSV or RSO, to a receiver thread 
method via an MQ connector, and a method M in the 
MQ connector class changes the message, the MQ 
connector class becomes an SC.  

Because the message is an RSV or RSO in the 
sender thread, it must not be changed by any method 
in the MQ connector class. The value of the RSV or 
RSO in the sender thread changes if the MQ 
connector tampers with the RSV or RSO. Therefore, 
the MQ connector class becomes an SC.  

Suppose the variables a and b in the Message class 
in Fig. 3 are SVs. The msg declared in the Sender 
class is an RSO because the variables a and b are SVs. 
The Message Queue class becomes an SC if the 
send() operation in the Message Queue class changes 
the value of the message msg sent by the Sender 
thread to the Receiver thread.  
 

Under IBC 2, the following IBC 2a, 2b, 2c, and 
2d are defined.  
 

IBC 2a: The receiver thread method becomes an SM 
if it is an NSM and changes the value of the RSV or 
RSO. 

When the receiver thread method changes the 
value of the RSV or RSO, the RSV or RSO in the 
sender thread method is affected. Thus, the receiver 
thread method becomes an SM. In Fig. 3, the 
Receiver thread method is an NSM and it changes the 
value of the variable msg1.a by increasing by 2000, 
where the msg1 is assigned the msg. The Receiver 
thread method becomes an SM.   

 

IBC 2b: Both the receiver thread method and method 
N become SMs if the receiver thread method is an 
NSM and calls the method N with an RSV or RSO 
parameter whose value is changed in the method N. 

aSenderThread aReceiverThread

«connector»
aMessageQueue

send (in message) receive (out 
message)

«connector»
MessageQueue

+ send (in message)
+ receive (out message)

- messageQ: Queue

ICSOFT 2023 - 18th International Conference on Software Technologies

590



If the RSV or RSO value is maliciously changed by 
method N, the RSV or RSO in the sender thread 
method is affected. Also, the receiver thread method 
calls method N, which can tamper with the RSV or 
RSO. Both the receiver thread method and method N 
must be SMs. In Fig. 3, the Receiver thread method 
calls the method N with the message msg1, which 
changes the value of msg1. The method N becomes 
an SM. At the time, the Receiver thread method also 
becomes an SM if it is an NSM. 
 

 

Figure 3: Multi-threaded Code for Asynchronous Message 
Communication. 

IBC 2c: A method N becomes an SM if the receiver 
thread method is an SM and calls the method N with 
an RSV or RSO parameter whose value is changed in 
the method N. 

Method N can change the value of the RSV or 
RSO maliciously. This change will affect the value of 
the RSV or RSO in the sender thread method as well 
as the receiver thread method. The method N must be 
an SM. 

IBC 2d: The class that contains the receiver thread 
method becomes an SC if the receiver thread method 
assigns the RSV or RSO to a reference to a variable 
or object declared in the class. 

As the RSV or RSO is assigned to a reference to 
a variable or object declared in the receiver thread 
class, the value of RSV or RSO can be changed 
maliciously by some methods in the class. This 
change will affect the RSV or RSO in the sender 
thread method. In Fig. 3, the message msg1 is 
assigned to the obj1, which is a reference to the 
Message object. The Receiver class becomes an SC. 

 

IBC 3: Via the MQ connector class, a sender thread 
method sends an RNSO message to a receiver thread 
method that is an SM and uses the RNSO, and a 
method M in the MQ connector class changes the 
RNSO. In this case, the MQ connector class becomes 
an SC, and the RNSO becomes an RSO in the MQ 
class. 

A change to the RNSO message affects the 
receiver thread method because the method is an SM. 
If a method M in the MQ connector class can tamper 
with the value of the RNSO, the breached RNSO is 
used by the receiver thread method, which is an SM. 
As the RNSO is stored in the MQ connector class, the 
MQ connector class becomes an SC, and the RNSO 
comes to be an RSO in the MQ connector. 

 

The following IBC 3a and IBC 3b hold under the 
IBC 3: 

  

IBC 3a: The sender thread method becomes an SM if 
it changes the RNSO. If the message is an RNSO 
declared in the sender class (but not in the method), 
the sender thread class becomes an SC. The RNSO 
becomes an RSO in the sender thread class. 

Because the RNSO message is used by the 
receiver thread method, the change to the RNSO 
message in the sender thread method affects the 
receiver thread method, which is an SM. Thus, the 
sender thread method must become an SM if it 
changes to the RNSO. At this time, the RNSO 
declared in the sender thread class must be an RSO in 
the sender thread class, which also becomes an SC.   

 

IBC 3b: The sender thread method becomes an SM 
if it changes the RNSO. If the message is a local 
object declared in the thread method, the sender 
thread method becomes an SM. 

When the RNSO is declared in the sender thread 
method, the sender thread class cannot be an SC. 
However, the sender thread method must be an SM. 

Class Message{ 
double a; //Assume a is an SV
double b; //Assume b is an SV

} 
Class MessageQueue
{ 

…
public synchronized void send(Message message) { 

……
message.a = message.a - 500.00;
……

} 
public synchronized Message receive(){

…
return message;

} 
} 
Class Sender implements runnable { 

MessageQueue queue; 
Message msg; 
…
public void run()
{ 

msg = new Message() 
msg.a = 100.00; 
msg.b = 200.00; 
queue.send(msg); 

}
}
Class Receiver implements runnable { 

MessageQueue queue; 
Message obj1; 
……
public void run(){

Message msg1 = new Message();  
msg1 = queue.receive(); 
msg1.a = msg1.a + 2000.00; 
msg1 = methodN(msg1);
obj1 = msg1; 

} 
public Message methodN (Message msg) {

msg.b = msg.b - 100.00; 
return msg 

} 
}

Verifying Data Integrity for Multi-Threaded Programs

591



4 INTEGRITY BREACH 
CONDITIONS FOR 
SYNCHRONOUS MESSAGE 
COMMUNICATION  

In synchronous message communication, a sender 
thread method sends a message to a receiver thread 
via a message buffer and response (MBR) connector 
(Gomaa, 2011) and waits for a reply from the 
receiver. When a reply arrives from the receiver, the 
sender can continue to work and send the next 
message to the receiver. The MBR connector class 
provides the send(), receive(), and reply() operations 
that enable synchronous message communication 
between the sender and receiver threads. A sender 
thread calls the send() operation to store a message in 
a message buffer, while the receiver thread calls the 
receive() operation to read a message from the buffer. 
The receiver thread returns a reply to the sender 
thread by calling the reply() operation. 

Using the IBCs for asynchronous message 
communication, the IBCs for synchronous message 
communication can also be specified for both sending 
a message from a sender thread to a receiver thread 
and replying from the receiver to the sender. When a 
sender sends a message to a receiver, a message can 
be an SV, NSV, RSV, or RSO. The IBCs for 
asynchronous message communication are utilized 
for a sender to send a message to a receiver to identify 
SMs. Similarly, the IBCs are used to detect SMs 
relating to replying to the sender from the receiver. In 
this case, a reply can be an SV, NSV, RSV, or RSO, 
and the IBCs are applied reversely, meaning that a 
sender comes to be a receiver, and a receiver becomes 
a sender. 

5 PROTOTYPE TOOL 

A prototype tool was developed to validate the IBCs 
specified for multi-threaded Java programs. We 
extended our previous prototype tool to develop a new 
prototype tool for this research. The prototype tool 
(Fig. 4) consists of the GUI, code scanner, data 
integrity relation database, and data integrity analyzer. 

5.1 GUI 

The GUI (Fig. 4) is used to input a text file containing 
SVs, NSVs, RSOs, and RNSOs in a multi-threaded 
Java program; and a program folder encompassing 
the multi-threaded Java program code. The input can 

be entered via GUI in a format that includes the 
package names, class names, SVs, NSVs, RSOs, and 
RNSOs in each class. 

 

Figure 4: Prototype Tool. 

5.2 Code Scanner 

As our previous research selects Java code, we select 
a multi-threaded program in Java as our target 
program. The code scanner (Fig. 4) scans all classes, 
including the thread classes in the multi-threaded 
program, to build the data integrity relations used to 
analyze the IBCs. The class names, methods and their 
parameter names, and variable names are scanned and 
stored in the data integrity relation database. The local 
variables in each method are also scanned for some 
IBCs that are checked with the local variables. The 
code scanner can handle synchronized methods that 
communicate with each other via MQ or MBR 
connectors. 

5.3 Data Integrity Relations Database 

The data integrity relation database (Fig. 4) stores the 
data integrity relations extracted by the code scanner 
from a multi-threaded Java program. The database is 
a relational database containing relations handled by 
the SQLite3 database. The data integrity relation 
database contains four new data integrity relations: 
local variables, class objects declared at the class 
level, and local objects declared in methods. Also, we 
modified existing integrity data relations for method 
calls, changed variables, and used variables in each 
method to identify security spots in a multi-threaded 
Java program using the IBCs specified in this paper.  

5.4 Data Integrity Analyzer 

The data integrity analyzer (Fig. 4) identifies the 
security spots in a multi-threaded Java program using 

Code Scanner

Data Integrity 
Relation Database

Data Integrity 
Analyzer

OUTPUT
Security spots listed out as 

Package/Class/Method/Line 
number of security spots, Log 

file, DB file

GUI

Java Code

Package folder location

List Of SVs and SOs

ICSOFT 2023 - 18th International Conference on Software Technologies

592



the data integrity relation database. The data integrity 
analyzer detects the SMs if any method in the given 
program holds any specified IBC. We implemented 
the IBCs for both asynchronous and synchronous 
message communications as the data integrity 
analyzer to detect the security spots.  

The data integrity analyzer processes all the data 
integrity relations in the database to identify all the 
SMs. When the data integrity analyzer identifies an 
SM, it inserts them into an output file that contains 
the package, class, method, message string explaining 
why it is SM, and line number. The data integrity 
analyzer repeats until all the classes in the given 
package are analyzed. The data integrity analyzer also 
creates a log file that contains information on every 
step executed from the beginning to the end of finding 
SMs. 

6 VALIDATIONS 

A multi-threaded online shopping system was 
developed to validate our approach using the 
prototype tool. The online shopping system consists of 
the Browse catalog, Make Order, Confirm Shipment 
and Bill Customer, Process Delivery Order, View 
Order, and Notify Shipment use cases. A customer can 
log in and browse the catalog, make an order, and view 
orders, while a supplier can log in to confirm 
shipment, bill the customer, process delivery orders, 
and notify the customer of shipment. All the use cases 
except the notify shipment are designed with 
synchronous message communication. The Notify 
Shipment use case is an example of asynchronous 
message communication, where the Supplier Interface 
sends the shipment status message to the Customer 
Interface asynchronously.  

The IBCs specified in this paper were tested two-
fold with simplified test cases for each IBC and then 
those for use cases in the multi-threaded online 
shopping system. Simplified test cases were used to 
check if the IBCs had been implemented correctly in 
the data integrity analyzer. We intentionally added at 
least one malicious code to the MQ and MBR 
connector classes or Sender and Receiver thread 
classes to verify each IBC. In the second round of 
testing, we implemented the use cases in the multi-
threaded online shopping system and created the test 
cases for those use cases.  

As there was only one asynchronous 
communication Notify Shipment use case in the multi-
threaded online shopping system, 11 test cases were 
designed to test each IBC specified in this paper. We 
added one malicious code to the Notify Shipment use 

case and ran the use case 11 times separately. For 
comprehensive testing (11 times), the total methods 
recorded are 46, and the SMs identified are 7. All the 
SMs are correctly identified. In addition, the tool has 
identified 6 SCs as designed in the test cases.  

The test cases for synchronous message 
communication were designed for Browse catalog, 
Make Order, Confirm Shipment and Bill Customer, 
Process Delivery Order, and View Order use cases. 
We added at least four malicious codes to the test 
cases for each use case. The tool has identified the 
unique 18 SMs and 16 SCs correctly as per the 
malicious code we added along with the other 
methods, which hold true to the IBCs specified in this 
paper. 

7 RELATED WORK 

Several methods have been suggested to examine the 
vulnerabilities in a program that deals with 
confidentiality, integrity, privacy, and availability of 
applications. The following discusses some of the 
approaches:  

The Integrity Breach Conditions (IBCs) that 
compromise the sensitive data in an application are 
described in (Ogale et al., 2018). IBCs are developed 
using couplings associated with the language 
features. The authors (Radhakrishnan et al., 2021) 
extended the approach in (Ogale et al., 2018) by 
specifying IBCs by object reference (SOs and RSOs). 
However, the IBCs and prototype tools developed in 
previous work focused on general programming and 
did not handle multi-threaded programming. Also, 
local variables in methods were not handled.  

The study by (Jovanovic et al., 2006) discusses the 
problem of vulnerable web applications by static 
source code analysis. This approach targets the 
tainted data inserted by malicious users to cause 
security problems. When the tainted data is used for 
the execution of dangerous commands, a prototype 
developed by (Jovanovic et al., 2006) warns about the 
possible vulnerabilities through data flow analysis. 
This approach aims at data confidentiality, integrity, 
and privacy. 

The authors (Camps et al., 2019; Wang et al., 
2020; Zhang et al., 2019) utilized machine learning to 
detect malicious code. The research (Camps et al., 
2019) classified C source code to distinguish 
malicious code from benign code. In (Wang et al., 
2020), the study caught malicious code based on 
malicious code metadata using a random forest 
classification algorithm. In (Zhang et al., 2019), the 
authors have proposed an Android malware detection 

Verifying Data Integrity for Multi-Threaded Programs

593



method based on the application’s abstracted API 
calls’ method-level correlation. Different behavioral 
patterns of malicious and benign apps are identified 
by combining machine learning with the detection 
system. Instead of machine learning techniques, our 
approach specified the IBCs to identify malicious 
code that might compromise the integrity of multi-
threaded programs.  

Authors (Fadolalkarim et al., 2020) proposed an 
anomaly detection system, AD-PROM, which would 
protect relational database systems against malicious 
application programs that steal data by tracking the 
calls made by application programs on data extracted 
from the database. The approach proposed by 
(Fadolalkarim et al., 2020) aims at data 
confidentiality, but our research focuses on data 
integrity in a program.  

In (Jiang and Qu, 2020), the authors proposed an 
approach to detecting malicious code using behavior 
patterns identified by network behavior analysis.  A 
memory tracking method is used to realize the real-
time tracking of network behavior. The study (Jiang 
and Qu, 2020) focused on an outsider’s attack on a 
network to detect malicious code. However, our 
approach deals with an insider’s attack on a software 
program. 

The authors (Zhang and Li, 2020) described 
malicious code detection using code semantic 
structure features to reflect semantic information. 
They utilized a deep learning technique with code 
semantic structure features to detect malicious code. 
In contrast, our approach used the IBCs to determine 
security spots that might contain malicious code. 

The authors (Rozi et al., 2020) proposed a deep 
neural network for detecting malicious JavaScript 
codes by examining their bytecode sequences to 
protect users from cyberattacks. The study (Rozi et 
al., 2020) used Java bytecode, but our research used 
Java source code to detect malicious code. 

In (Ognawala et al., 2016), the authors present a 
tool (MACKE) that analyzes vulnerabilities with 
symbolic execution and directed inter-procedural 
path exploration. The tool is developed using KLEE, 
a coverage-first symbolic execution tool for covering 
paths in a program. The MACKE performs a 
compositional analysis using symbolic execution on 
the functional level first and then combines the results 
using static code analysis based on a targeted path 
search. However, our tool identifies security spots 
using the IBCs specified for multi-threaded programs. 

String analysis by (Yu et al., 2014) determines 
possible dangerous string constructs and provides a 
warning if there is a vulnerability. Malicious user 
input without proper input sanitization is vulnerable 

to attacks. String analysis focused on analyzing input 
strings to detect vulnerabilities in string manipulating 
programs. In contrast, our approach focused on the 
malicious code introduced by insiders in a program.  

The authors (Zhioua et al., 2014) have assessed 
the static code analysis approaches and available tools 
to determine their effectiveness. The authors 
demonstrated that the static code analysis tools could 
not cover all the security issues.  

8 CONCLUSIONS  

This paper has described an approach to identify the 
security spots in multi-threaded programs that might 
contain malicious code. The IBCs for multi-threaded 
programs were specified by considering both 
asynchronous and synchronous messages 
communicated via the MQ and MBR connectors. A 
prototype tool was developed by extending our 
previous tool. The IBCs were validated with a multi-
threaded online shopping system case study using the 
prototype tool. 

We envision our future work as follows. Our 
future work will specify more IBCs for advanced Java 
language features, including an interface, inner class, 
and lambda expression. Also, we can extend the IBCs 
for smart contracts in blockchain applications, which 
are developed in Java or JavaScript. In addition, we 
can investigate artificial intelligence techniques to 
automatically classify benign and malicious codes in 
the security spots. Our approach must manually 
review the security spots to filter malicious codes 
from benign ones. 

REFERENCES 

Camps, G. S., Agostini, N. B., and Kaeli, D., 2019, 
December. Discovering Programmer Intention Behind 
Written Source Code. In 18th IEEE International 
Conference on Machine Learning and Applications 
(ICMLA), Florida, USA. 

Fadolalkarim, D., Bertino, E., and Sallam, A., 2020, April. 
An Anomaly Detection System for the Protection of 
Relational Database Systems against Data Leakage by 
Application Programs. In IEEE 36th International 
Conference on Data Engineering (ICDE), Dallas, 
Texas. 

Gomaa, H., 2011. Software modeling and design: UML, 
use cases, patterns, and software architectures. 
Cambridge University Press. 

Jiang, C., and Qu, Q., 2020, June. A New Automatic 
Detection System Design of Malicious Behavior Based 
on Software Behavior Sequence. In 10th International 

ICSOFT 2023 - 18th International Conference on Software Technologies

594



Conference on Information Science and Technology 
(ICIST) Lecce, Italy. 

Jovanovic, N., Kruegel, C., and Kirda, E., 2006. Pixy: A 
Static Analysis Tool for Detecting Web Applications 
Vulnerabilities. In IEEE Symposium on Security and 
Privacy, Washington DC, pp. 258-263. 

Ogale, P., Shin, M., and Abeysinghe, S., 2018, July. 
Identifying Security Spots for Data Integrity. In the 13th 
IEEE International Workshop on Security, Trust,  
and Privacy for Software Applications (STPSA/ 
COMPSAC), Tokyo, Japan.  

Ognawala, S., Ochoa, M., and Pretschner, A., 2016, 
September. MACKE: Compositional analysis of low-
level vulnerabilities with symbolic execution. In 31st 
IEEE/ACM International Conference on Automated 
Software Engineering (ASE), Singapore. 

Radhakrishnan, R., Shin, M., and Ogale, P., 2021, July. Data 
Integrity Security Spots Detected by Object Reference. 
IEEE 45th Annual Computers, Software, and 
Applications Conference (COMPSAC), pp 469-474. 

Rozi, M. F., Kim, S., and Ozawa, S., 2020, July. Deep 
Neural Networks for Malicious JavaScript Detection 
Using Bytecode Sequences. In International Joint 
Conference on Neural Networks (IJCNN), Glasgow, 
UK. 

Wang, Z., Cong, P., and Yu, W., 2020, July.  Malicious 
Code Detection Technology Based on Metadata 
Machine Learning. In IEEE Fifth International 
Conference on Data Science in Cyberspace, Hong 
Kong, China. 

Yu, F., Alkhalaf, M, Bultan, T., and O. H. Ibarra, O. H., 
2014. Automata-Based Symbolic String Analysis for 
Vulnerability Detection. Formal Methods in System 
Design, Vol. 44. 

Zhang, H., Luo, S., Zhang, Y., and Pan, L., 2019. An 
Efficient Android Malware Detection System Based on 
Method-Level Behavioral Semantic Analysis.  IEEE 
Access, Volume: 7. 

Zhang, Y., and Li, B, 2020. Malicious Code Detection 
Based on Code Semantic Features. IEEE Access, 
Volume: 8. 

Zhioua, Z., Short, S., and Roudier, Y., 2014, July. Static 
Code Analysis for Software Security Verification: 
Problems and Approaches. In COMPSACW’14 
Proceedings of the 2014 IEEE 38th International 
Computer Software and Applications Conference 
Workshops. Washington, USA, pp 102-109.  

 

Verifying Data Integrity for Multi-Threaded Programs

595


