
Source-Code Embedding-Based Software Defect Prediction

Diana-Lucia Miholca a and Zsuzsanna Oneţ-Marian b

Department of Computer Science, Babeş-Bolyai University, No. 1, Mihail Kogalniceanu street, Cluj-Napoca, Romania

Keywords: Software Defect Prediction, Doc2Vec, Graph2Vec, LSI, Hyperparameter Tuning, Deep Learning.

Abstract: Software defect prediction is an essential software development activity, a highly researched topic and yet a
still difficult problem. One of the difficulties is that the most prevalent software metrics are insufficiently rel-
evant for predicting defects. In this paper we are proposing the use of Graph2Vec embeddings unsupervisedly
learnt from the source code as basis for prediction of defects. The reliability of the Graph2Vec embeddings
is compared to that of the alternative embeddings based on Doc2Vec and LSI through a study performed on
16 versions of Calcite and using three classification models: FastAI, as a deep learning model, Multilayer
Perceptron, as an untuned conventional model, and Random Forests with hyperparameter tuning, as a tuned
conventional model. The experimental results suggest a complementarity of the Graph2Vec, Doc2Vec and
LSI-based embeddings, their combination leading to the best performance for most software versions. When
comparing the three classifiers, the empirical results highlight the superiority of the tuned Random Forests
over FastAI and Multilayer Perceptron, which confirms the power of hyperparameter optimization.

1 INTRODUCTION

Software defect prediction (SDP) is the task of iden-
tifying defective software components, so that testing
effort can be focused on them. Since the resources
for testing are always limited, having accurate SDP
models can lead to the best results with the available
resources. Given its importance, it is not surprising
that SDP is an actively researched topic.

In order to build a Machine Learning (ML) model
for SDP it is necessary to have a common represen-
tation (feature vector) for all the software entities.
The earliest and prevalent representation is based on
software metrics. Initially, the metrics considered
have been procedural code metrics exclusively, but
they have been replaced (or complemented) later by
object-oriented and code change metrics.

More recently, however, several approaches for
constructing software features by directly or indi-
rectly considering the source code, through the Ab-
stract Syntax Tree (AST), have been proposed.

In a recent study (Miholca et al., 2022), an exten-
sive series of traditional software metrics have been
compared to conceptual software features extracted
directly from the source code using Doc2Vec and
LSI. The study’s conclusion is that, on average, the

a https://orcid.org/0000-0002-3832-7848
b https://orcid.org/0000-0001-9006-0389

Doc2Vec and LSI-based software features outperform
the traditional ones in terms of their soundness in pre-
dicting defect-proneness. In extracting the Doc2Vec
and LSI-based features, the source code is seen as a
piece of text. So, its actual structure, which is cap-
tured by the AST, is not taken into consideration.

Consequently, in the current paper, we want to
build on the work of Miholca et al. (Miholca et al.,
2022), while also capitalizing on the structure under-
lying the source code. To this end, we are proposing
an additional representation unsupervisedly learnt
from the AST of the source code using Graph2Vec
(Narayanan et al., 2017). Graph2Vec is a neural
embedding framework which can learn a fixed-length
feature vector (called embedding) for an entire
graph. The Graph2Vec-based embeddings will be
evaluated in terms of their discriminative power when
it comes to classifying software entities as defective
or non-defective. Having the intuition of a possible
complementarity between the Graph2Vec-based
embedding, that capitalizes on the software structure,
and the Doc2Vec and LSI-based embeddings, that
capitalize on the semantics of the source code (espe-
cially of the comments and identifiers), we will also
investigate if combining them leads to a superior SDP
performance. Accordingly, we define the following
research questions:

Miholca, D. and OneÅč-Marian, Z.
Source-Code Embedding-Based Software Defect Prediction.
DOI: 10.5220/0012129600003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 185-196
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

185



• RQ1. What is the relative relevance of the embed-
ding learnt using Graph2Vec for SDP?

• RQ2. Does the combination of the Graph2Vec,
Doc2Vec and LSI embeddings improve the per-
formance of SDP?

Miholca et al. (Miholca et al., 2022) have experimen-
tally compared multiple classifiers of which FastAI
proved to be the best performer, being followed by a
feed-forward artificial neural network that is, in fact,
a Multilayer Perceptron (MLP). Since we build on
their results and conclusions, we will also use FastAI,
which is a deep learning model. However, recently,
some studies (for example (Fu and Menzies, 2017)
and (Majumder et al., 2018)) have shown that there
are many tasks for which there is no need for deep
learning, which in general needs more training data
and takes a longer time to run, since the same perfor-
mance can be achieved with a simpler ML algorithm
if proper hyperparameter tuning is performed. While
these studies considered other tasks, not SDP, Tan-
tithamthavorn et al. in (Tantithamthavorn et al., 2019)
investigated the impact of automated parameter opti-
mization for SDP and concluded that for most classi-
fication techniques a non-negligible performance im-
provement can be achieved by hyperparameter opti-
mization. Starting from this conclusion, we have de-
cided to use the Random Forest (RF) classifier with
optimized parameters as well. Consequently, we add
a third research question:

• RQ3. How does the SDP performance of FastAI
compare to the one of RF with optimized param-
eters for the considered representations?

The main original contributions brought by this pa-
per are as follows. To the best of our knowledge, the
Graph2Vec-based embedding learnt from the source
code AST has not yet been used as representation
in the SDP literature. This being the case, we are
proposing a new software representation for the ben-
efit of SDP. Moreover, we are proposing combining
the Graph2Vec-based embedding with the Doc2Vec-
based and the LSI-based embeddings proposed in
(Miholca et al., 2022) to unite the power of structural
and conceptual information underlying the source
code and thus to boost the SDP performance. In ad-
dition to this contributions, in this paper we are also
assessing the potency of parameter optimization in the
context of SDP by comparing a tuned Random Forest
to the FastAI deep classifier, while feeding them with
the proposed software embeddings.

The remainder of this paper is organized in the fol-
lowing manner. Section 2 shortly presents a selection
of existing SDP approaches that are relevant for the
current paper. Section 3 describes in detail the experi-

mental methodology. Section 4 presents the results of
the performed analysis and formulates the answers to
our research questions. Finally, in Section 5, the con-
clusions are drawn and some directions to continue
this work are outlined.

2 RELATED WORK

There is a huge amount of literature related to the
problem of SDP. Throughout the years, researchers
proposed many approaches using supervised and un-
supervised machine learning, deep learning, ensem-
ble approaches, etc. In the following we will focus
only on a selection of papers that are most related to
the main topic of our paper: different software repre-
sentations to be used in SDP.

Most existing studies use for experimental evalu-
ation the SDP data sets available in Promise Software
Engineering Repository (Sayyad and Menzies, 2015),
that is currently known as SeaCraft (Sea, 2017). Ac-
cordingly, many of the existing SDP approaches are
based on the Promise metrics, that are either static OO
metrics or traditional metrics associated with the qual-
ity of the procedural source code. Literature reviews
reveals that about 87% (Malhotra, 2015) of the case
studies used such procedural or object-oriented met-
rics while being focused on proposing accurate clas-
sifiers.

However, relatively recent studies have opened up
a new, highly active, research direction in the field
of SDP - the one of designing new relevant features
for enabling the discrimination between defective and
non-defective software entities. This research direc-
tion is motivated by the fact that the existing software
features are insufficient or insufficiently relevant for
SDP, making it still a difficult problem. In the fol-
lowing, we will focus on presenting state-of-the art
approaches that are the most related to our approach.

Many approaches proposing new features con-
sider the AST of the source code. One such approach
is presented by Wang et al. in (Wang et al., 2016)
and (Wang et al., 2020). They automatically learn
semantic features starting from the AST and using
Deep Belief Networks (DBNs). The resulted features
have been comparatively evaluated against traditional
metrics in terms of their relevance for SDP, on open
source projects from the Promise repository as case
studies. The evaluation results have confirmed that
the proposed semantic features outperform traditional
SDP features.

Li et al (Li et al., 2017) have proposed a simi-
lar process, but using Convolutional Neural Networks
(CNNs) instead of DBNs, and combining the ex-

ICSOFT 2023 - 18th International Conference on Software Technologies

186



tracted features with some traditional ones. The com-
bined representation has been evaluated in terms of its
soundness for SDP by using the Logistic Regression
(LR) classifier. The results of the experimental eval-
uation confirmed that the AST-based features outper-
form traditional features, while combining the two of
them leads to even better performance.

Another study using AST-based features for SDP
is the one performed by Dam et al. (Dam et al.,
2018). They have introduced a tree-structured net-
work of Long-Short Term Memory (LSTM) units as a
SDP model starting from AST embeddings. Using the
same set of 10 case studies as Wang et al. (Wang et al.,
2016), they train two traditional classifiers: LR and
Random Forest on the features generated by LSTM.

Aladics et al. (Aladics et al., 2021) have pro-
posed an approach, where the AST of the source code
was parsed in a depth-first order, and the sequence
of nodes was recorded and considered as a docu-
ment, on which Doc2Vec was applied. Their experi-
mental evaluation considering several ML algorithms
showed that these embedding might not outperform
traditional source code metrics, but combining the
two of them will improve the performance.

A SDP model based on a Convolutional Graph
Neural Network has been proposed by Sikic et al. in
(Sikic et al., 2022). The neural network architecture
employed is specifically tailored for graph data so that
AST data can be fed into it. For the experimental eval-
uation 7 SDP data sets from the Promise repository
were considered. The results showed that the pro-
posed model outperforms standard SDP models and
is comparable to the state-of-the-art AST-based SDP
models, including (Wang et al., 2020).

Another direction of defining features derived
from the source code, but not involving AST, is the
one of Miholca et. al (Miholca et al., 2020), who have
proposed the COMET metrics suite. This suite starts
from the representations of the source code learnt us-
ing LSI and Doc2Vec, but these are not used directly
for SDP. Rather, for every entity, different descriptive
statistical measures are computed between its repre-
sentation and the other (all or just defective or non-
defective) representations. These statistical measures
together provide the representation of an entity. The
experimental evaluation was performed on 7 Promise
data sets and the COMET metrics suite outperformed
the traditional Promise metrics.

Doc2Vec and LSI vectorial representations of the
source code have been directly used for SDP in a
study by Miholca et al. (Miholca et al., 2022). The
authors have compared them to an extensive set of
4189 metrics containing static code metrics, clone
metrics, warning-based metrics, changes-based and

refactoring-based metrics, AST node counts and code
churn metrics. As experimental case study, multi-
ple versions of a software system have been consid-
ered. Different combinations of the metrics subsets
have been evaluated in terms of their relevance for
SDP. The experimental results led to the conclusion
that combining Doc2Vec and LSI produces a predom-
inantly superior performance of SDP when compared
to the 4189 software metrics, as well as to the separate
use of Doc2Vec and LSI representations.

Subsequent to the release of BERT, an advanced
language representation model, its feasibility for pre-
dicting software defects has begun to be investigated.
Cong et al. (Pan et al., 2021) have employed Code-
BERT, a BERT model pre-trained on open source
repositories, while Uddin et al. (Uddin et al., 2022)
have pre-trained themselves a BERT model on source
code. In both approaches the code comments have
been eliminated in the pre-processing phase, whereas
in our approach, presented in the following, we inten-
tionally keep them, considering that they are potential
carriers of semantic information that can benefit SDP.

3 APPROACH

3.1 Case Study

As a case study, we have selected 16 releases of
Apache Calcite, an open-source dynamic data man-
agement framework (Begoli et al., 2018). Details
about the considered versions of Calcite are presented
in Table 1.

We started from the Calcite data sets provided
by Herbold et al. (Herbold et al., 2022), that have
been produced by an extended version of the SZZ-RA
(Neto et al., 2018) algorithm. These data sets contain
the names of the classes, the value of 4189 software
metrics and the class label. Since in this study we use
as features different embeddings extracted from the
source code, we have only used the labels provided
by Herbold et al. and added them to our representa-
tions, using the class name to match the instances.

3.2 Proposed Vectorial Representations

Instead of considering static structural or code churn
metrics like the vast majority of SDP approaches,
in this paper we consider three different embeddings
constructed (directly or indirectly) from the source
code of a software system.

The first embedding is unsupervisedly learnt by
Doc2Vec (Le and Mikolov, 2014), a prediction-based
model for representing texts (in our case, source code)

Source-Code Embedding-Based Software Defect Prediction

187



Table 1: Number of non-defective and defective instances,
total number of instances and rate of defective instances for
all Calcite versions.

Version Non- Defective Total Defective
defective rate

1.0 897 178 1075 0.166
1.1 990 113 1103 0.102
1.2 982 126 1108 0.114
1.3 1003 112 1115 0.100
1.4 1004 123 1127 0.109
1.5 1073 103 1176 0.088
1.6 1086 107 1193 0.090
1.7 1124 128 1252 0.102
1.8 1200 101 1301 0.078
1.9 1220 90 1310 0.069
1.10 1226 84 1310 0.064
1.11 1251 80 1331 0.060
1.12 1334 81 1415 0.057
1.13 1222 53 1275 0.042
1.14 1255 53 1308 0.041
1.15 1307 45 1352 0.033

as a fixed-length numeric vector. It is a MLP based
model that extends Word2Vec and an alternative to
traditional models such as bag-of-words and bag-of-
n-grams. The main advantage of Doc2Vec over tradi-
tional models is that it considers the semantic distance
between words (Le and Mikolov, 2014).

The second embedding is extracted by LSI (Deer-
wester et al., 1990), a count-based model for repre-
senting texts (in our case, source code). LSI builds
a matrix of occurrences of words in documents and
then uses singular value decomposition to reduce the
number of words while keeping the similarity struc-
ture between documents.

The third embedding is based on Graph2Vec, a
model which can create a fixed-length vector of an
entire graph, using unsupervised learning (Narayanan
et al., 2017). The basic idea behind the algorithm is
to view an entire graph as a document and its rooted
subgraphs around the nodes as the words of the doc-
ument and apply document embedding models (more
exactly, Doc2Vec) to learn graph embeddings. Source
code can easily be parsed into AST which is in fact a
graph, for which an embedding can be generated us-
ing Graph2Vec.

For any embedding, the software entities are rep-
resented as numeric vectors. These are composed
of numerical values corresponding to a set F =
{ f1, f2, . . . , fs} of features learned from the source
code directly (in case of Doc2Vec and LSI) or indi-
rectly, through the AST (in case of Graph2Vec).

Therefore, a software entity se is represented as an
s-dimensional vector in an emb space:

• seemb = (seemb
1 , · · · ,seemb

s ), where seemb
i (∀1≤ i≤

s) denotes the value of the i-th feature computed

for the entity se by using embedding emb, emb ∈
{Doc2Vec, LSI, Graph2Vec}.

For extracting the conceptual vectors, we have opted
for s = 30 as the length of the embedding. In case of
Doc2Vec and LSI, the source code (including com-
ments) afferent to each class was filtered so as to
keep only the tokens presumably carrying semantic
meaning. So, operators, special symbols, English
stop words or Java keywords have been eliminated.
For both Doc2Vec and LSI, we have used the im-
plementation offered by Gensim (Řehůřek and Sojka,
2010). For Graph2Vec we have used the implemen-
tation from Karateclub (Rozemberczki et al., 2020),
with the number of epochs set to 100 and the flag to
consider the labels of the AST-nodes set to True.

The experimental results of previous studies (Mi-
holca and Czibula, 2019) (Miholca and Onet-Marian,
2020) (Miholca et al., 2022) revealed that combining
Doc2Vec and LSI is appropriate and increases the per-
formance of SDP, while, to the best of our knowledge,
Graph2Vec was not used previously for SDP. Conse-
quently, we have decided to use the following three
representation in our experimental evaluation:

• Doc2Vec + LSI - each software entity se
is represented as a 2 ∗ s-dimensional vector:
seDoc2Vec+LSI = (seDoc2Vec

1 , · · · ,seDoc2Vec
s ,seLSI

1
, · · · ,seLSI

s ), where seDoc2Vec
i (∀1 ≤ i ≤ s) denotes

the value of the i-th feature computed for the en-
tity se by using Doc2Vec and seLSI

i (∀1 ≤ i ≤ s)
denotes the value of the i-th feature computed for
the entity se by using LSI.

• Graph2Vec - each software entity se is represented
as the embedding provided by Graph2Vec for it:
seGraph2Vec =(seGraph2Vec

1 , · · · ,seGraph2Vec
s ), where

seGraph2Vec
i (∀1 ≤ i ≤ s) denotes the value of the

i-th feature computed for the entity se by using
Graph2Vec.

• Doc2Vec + LSI + Graph2Vec - each software
entity se is represented as 3 ∗ s-dimensional
vector, the concatenation of the three em-
beddings for it: seDoc2Vec+LSI+Graph2Vec =
(seDoc2Vec

1 , · · · ,seDoc2Vec
s , seLSI

1 , · · · ,seLSI
s ,

seGraph2Vec
1 · · · seGraph2Vec

s ).

The third representation is inspired by the intuition
that the Doc2Vec + LSI embedding captures semantic
(or conceptual) information contained by the source
code, including the comments, while overlooking the
structural information, whereas the Graph2Vec em-
bedding also captures data related to the syntactic
structure of the source code. Consequently, we intend
to experimentally verify whether or not joining them
enhances the SDP performance.

ICSOFT 2023 - 18th International Conference on Software Technologies

188



3.3 Vectorial Representations Relevance
Analysis

Given that the representation obtained by joining the
Doc2Vec and LSI conceptual vectors have been ex-
perimentally proven to be prevalently superior to the
representation based on traditional software metrics
in terms of their effectiveness for SDP (Miholca et al.,
2022), for assessing the relative relevance of the
Graph2Vec-based representation, we will compare it
to the combined representation Doc2Vec + LSI.

3.3.1 Difficulty Analysis

To comparatively analyse how the different embed-
dings facilitate the discrimination between defective
and non-defective software entities, but also to outline
the complexity of the SDP task, we have computed for
each version of Calcite and for each of the three repre-
sentations (Doc2Vec + LSI, Graph2Vec and Doc2Vec
+ LSI + Graph2Vec) two difficulty measures.

As defined by Zhang et al. (Zhang et al., 2007),
the difficulty of a class c, in a binary classification
context, is the proportion of data instances belong-
ing to class c for which the nearest neighbor (com-
puted using the Euclidean distance, when ignoring the
class label) belongs to the opposite class. In our case,
the two difficulty measures are computed for the de-
fective (positive) and for the non-defective (negative)
classes. Intuitively, the difficulty of a class indicates
how hard it is to distinguish the instances belonging
to that class from the others, considering a given vec-
torial representation for the software entities.

3.3.2 Supervised Analysis

The difficulty analysis is supplemented by a super-
vised analysis which involves three different classi-
fication models: FastAI, a deep learning model that
proved to be the best-performing one in (Miholca
et al., 2022), Multilayer Perceptron, an untuned con-
ventional model that proved to be the second best-
performing classifier in (Miholca et al., 2022) and
Random Forest with hyperparameter optimization, as
a tuned conventional classifier.

FastAI. FastAI, the first classification model em-
ployed in the supervised analysis, is a deep learning
classifier implemented in the FastAI machine learning
library (Howard et al., 2018). It is composed of an ar-
tificial neural network with embeddings of the input
layer. The architecture consists of 1 input, 1 output
and 2 hidden layers. Compared to other deep learning
models, especially Convolutional Neural Networks,
FastAI is very small and fast, which makes it suitable

for real-time usage scenarios. The model is trained
using the FastAI fit one cycle method, which uses a
learning rate that varies according to a specific pat-
tern: first it increases, then it decreases and the pro-
cess is repeated for each epoch.

Multilayer Perceptron. The second classification
model employed is a Multilayer Perceptron. We used
the scikit-learn implementation for this model, while
opting for one single hidden layer and a rectified lin-
ear unit activation function. The model has been
trained using a stochastic gradient-based optimizer
for maximum 2000 epochs and with a constant learn-
ing rate of 0.001.

Random Forest. The third classification model
used in this analysis is Random Forest (Breiman,
2001), an ensemble learning method, which builds a
set of decision trees and uses a majority voting mech-
anism to make a prediction for an unseen instance.
Each decision tree is built considering only a random
selection of features from the data set and, in general,
using only a subset of the training instances, sampled
randomly with replacement. RF have previously been
used extensively for SDP (Matloob et al., 2021).

RF was one of the classifiers used in a study about
the effect of hyperparameter tuning for SDP models
(Tantithamthavorn et al., 2019), but only one parame-
ter, the number of classification trees, was tuned. The
conclusions of that study were that RF is not that sen-
sitive to hyperparameter values when AUC is used as
a performance measure. Since we use different data
sets and different representations than the ones used
in (Tantithamthavorn et al., 2019), we have decided
to see if their conclusions are valid for our data as
well and to try and find the best set of parameters for
the RF classifier.

We have used the implementation for RF from the
scikit learn library (Pedregosa et al., 2011), where
there are a set of parameters related to building the
trees that can be used to find the best model. We have
decided to tune 8 of them, that are presented in Table
2 together with the considered values.

Out of the parameter values from Table 2 not all
possible combinations are valid: if the value of boot-
strap is set to False, the value of max samples has to
be set to None. Considering this restriction, the to-
tal number of valid parameter combinations for the
RF algorithm is 32.400. Checking such a large num-
ber of parameter combinations using grid search is not
possible, especially since some of the parameters (for
example bootstrap and max features) introduce ran-
domness in the process, so in order to get a more ac-
curate view of the performance of a point from the hy-

Source-Code Embedding-Based Software Defect Prediction

189



Table 2: Hyperparameters of the Random Forest algorithm and the values used for tuning.

Parameter Description Values considered for tuning
n estimators number of trees to build 50, 75, 100, 150, 200

criterion function used to measure the quality of the split gini, etropy, log loss
max depth maximum depth of a tree 3, 5, 7, 9

max features number (fraction) of features to check for the best split log2, sqrt, 0.25, 0.5, 0.75, 0.95
bootstrap whether bootstrap sampels are used for building the trees True, False

class weight weights assigned for the classes None, balanced,
balanced subsample

ccp alpha parameter used for determining which subtree to prune 0, 0.01, 0.02, 0.03, 0.04
max samples the maximum fraction of samples to use if bootstrap is True 0.5, 0.6, 0.7, 0.8, 0.9

Figure 1: Steps of the hyperparameter tuning process.

perparameter space, several runs for that point should
be executed. In order to balance the total run time and
the exploration of the hyperparameter space, we have
decided to use a two-step parameter tuning process,
which is presented on Figure 1.

For each of the 16 data sets and each of the three
representations, first we have selected 1000 random
hyperparameter points and evaluated them using a
single run of a 3-fold cross validation on the current
data set using the AUC measure. This is called ran-
dom search-based hyperparameter tuning and is an
alternative for grid search which was shown in (Tan-
tithamthavorn et al., 2019) to perform just as well as
grid search for SDP.

In the second step of the process, the 20 points
with the highest AUC from the first step were selected
and re-evaluated. The 3-fold cross validation was re-
peated 20 times and for each repetition 5 different ran-
dom splittings into the 3-folds were considered. Con-
sequently, for every point, we had the value of AUC
for 100 evaluations. The average of these values was
considered to be the evaluation value of that hyperpa-
rameter point. Finally, the point with the highest AUC
was selected as the best hyperparameter for the given
data set and representation.

3.3.3 Evaluation Methodology

In order to evaluate the performance of the three su-
pervised models, when fed with different vectorial
representations, scaled in [0,1] using Min-Max nor-
malization, we employed the following evaluation

methodology. For FastAI and MLP the data was split
into 70% train, 10% validation (for early stopping)
and 20% test sets. For RF there was no early stopping,
so the data was split into 80% train and 20% test set.
In order to get consistent results, 30 experiments with
different splits had been performed.

During this evaluation process, the confusion ma-
trix for the binary classification task has been com-
puted for each of the 30 testing subsets. Based on the
confusion matrix (TP - number of true positives, FP -
number of false positives, TN - number of true neg-
atives and FN - number of false negatives), the Area
under the ROC curve (AUC) has been computed as a
performance indicator. The reported values have been
averaged over the 30 experiments.

We considered AUC as a performance evalua-
tion measure because the SDP literature reveals that
AUC is particularly suitable for evaluating the per-
formance of the software defect classifiers (Fawcett,
2006). In general, the AUC measure is employed for
approaches that yield a single value, which is then
converted into a class label using a threshold. Thus,
for each threshold value, the point (1−Spec,Sens) is
represented on a plot and the AUC is computed as
the area under this curve. For the approaches where
the direct output of the defect classifier is the class la-
bel, there is only one (1− Spec, Sens) point, which
is linked to the (0, 0) and (1, 1) points. The AUC
measure represents the area under the trapezoid and is
computed as the mean of sensitivity (Sens) and speci-
ficity (Spec): AUC = Sens+Spec

2 , where Sens= T P
T P+FN

ICSOFT 2023 - 18th International Conference on Software Technologies

190



and Spec = T N
T N+FP . AUC ranges from 0 to 1. Higher

values indicate better classification performance.

4 RESULTS AND DISCUSSION

4.1 Difficulty Analysis

In order to answer our first research question pre-
sented in Section 1, we have first computed the posi-
tive and negative difficulty of the data sets generated
by using each of the three embeddings for each of the
16 versions. The computation of the difficulty values
was performed according to Section 3.3.1.

The difficulty values computed for the defective
class can be seen on Figure 2, while the ones for the
non-defective class are represented on Figure 3.

By analyzing Figure 2, where, for a clearer pre-
sentation of the differences, the y-axis labels start
from 0.5, we can observe that the difficulty for the
positive class is quite high. Most values are around
0.6-0.7, the minimum is 0.551 and for some versions
and representations it can be as high as 0.83. This
means that, on average, around two thirds of the de-
fective instances are closer to a non-defective instance
than to a defective one, which makes the correct pre-
diction of defective entities a very difficult task.

If we compare the values for different embed-
dings, we can see that for 12 versions out of 16,
the Graph2Vec representation leads to a lower dif-
ficulty than the other two. This suggests that the
Graph2Vec embedding captures structural informa-
tion which could be relevant for identifying defects.

However, analyzing Figure 3 that represents the
difficulty for the negative class, besides observing that
the values are a lot smaller, most of them below 0.1,
we can also observe that this time the Doc2Vec + LSI
embedding is the one that produces lower difficul-
ties. This suggests that the Doc2Vec + LSI embed-
ding manages to better capture the characteristics of
the non-defective entities.

The fact that one representation produces lower
difficulty values for the positive class while the other
produces lower difficulty values for the negative class
suggests that the two representations capture different
aspects of the software entities and thus confirm our
intuition that they complement each other by catch-
ing together both semantic and syntactic information
underlying the source code.

4.2 Supervised Analysis

For performing the comparative analysis from the per-
spective of supervised learning, we have run the three

classification algorithms presented in Section 3.3.2 on
all 16 versions of Calcite fed with the three embed-
dings proposed in Section 3.2.

The AUC values for FastAI, MLP and RF are de-
picted on Figures 4, 5 and 6, respectively. All the
AUC values are the averages for the 30 runs, as pre-
sented in Section 3.3.3. While we did not put them
on the figures to avoid visual overcrowding, we have
computed the 95% confidence intervals (CI) for all
AUC values. For FastAI and RF the margin of error
is at most 0.03 (although there is one single case for
RF where it is 0.08), while for MLP it is at most 0.02.

Even if, due to the lack of space, we do not detail
all the numeric results in the current paper, a docu-
ment with the complete values for all algorithms and
all runs is available on Figshare (fig, 2023).

4.2.1 RQ1: The Relative Relevance of
Graph2Vec-Based Embedding

As regards RQ1, considering the FastAI algorithm
(Figure 4), we can see that the Graph2Vec and
Doc2Vec + LSI embeddings lead to quite similar SDP
performance, but almost always (15 cases out of 16)
Doc2Vec + LSI outperforms Graph2Vec. The same
stands if we look at the results of the MLP classifier
(Figure 5): the values are close, but Doc2Vec + LSI
performs better for 14 Calcite versions. When con-
sidering the results of RF (Figure 6), we can notice
that Doc2Vec + LSI is better in only 8 cases. More-
over, there are 4 cases (versions 1.5, 1.6, 1.11 and
1.15) where the AUC values for Doc2Vec + LSI are
a lot lower than the ones for Graph2Vec. This aspect
will be discussed in Section 4.2.3. In conclusion, our
answer for RQ1 is that the Graph2Vec embedding per-
forms similarly to Doc2Vec + LSI, but in most cases,
irrespectively of the classification algorithm used, it
is outperformed by Doc2Vec + LSI.

4.2.2 RQ2: The Potency of Combining Doc2Vec,
LSI and Graph2Vec-Based Embeddings

In order to answer RQ2, we look at Figures 4, 5, and
6 again. We can see that, for all three algorithms, in
12 out of 16 cases, the Doc2Vec + LSI + Graph2Vec
is the best-performing one. This is summarized on
Figure 7. To further verify if the Doc2Vec + LSI +
Graph2Vec representation indeed captures informa-
tion about the characteristics of defective and non-
defective entities, we have performed an additional
experiment. We run the RF classifier with the best hy-
perparameter selected for each version of the Calcite
software system, but we have randomly shuffled the
class labels. In this way, we try to learn from a ran-
dom data set. If the classifier has, on the random data,

Source-Code Embedding-Based Software Defect Prediction

191



Figure 2: Difficulty values for the three vectorial representations considering only the defective class.

Figure 3: Difficulty values for the three vectorial representations considering only the non-defective class.

results comparable to the ones on the original one, it
suggests that only random noise has been learnt. We
have used the same methodology as for the other ex-
periments, 20% of data being randomly selected for
testing (the labels being randomly shuffled) and for
each version the experiment being repeated 30 times
to account for randomness in the classifier. The aver-
age AUC values obtained for the 16 versions are be-
tween 0.478 and 0.521, so a lot below the AUC values
for the original data set, which are above 0.71. This

confirms that the Doc2Vec + LSI + Graph2Vec em-
bedding captures aspects carrying discriminative in-
formation that enables differentiating between defec-
tive and defect-free software entities.

Consequently, our answer for RQ2 is that the
Graph2Vec and Doc2Vec + LSI embeddings improves
the performance of the SDP model.

ICSOFT 2023 - 18th International Conference on Software Technologies

192



Figure 4: AUC values computed for the experimental evaluation of the FastAI classifier and the three studied embeddings.

Figure 5: AUC values computed for the experimental evaluation of the MLP classifier and the three studied embeddings.

4.2.3 RQ3: FastAI Versus Tuned Random
Forest as Defect Prediction Models

Our third research question is related to the perfor-
mance of the hyperparameter-tuned RF compared to

FastAI, the deep learning classifier.
To answer this question, we have looked at our

results from a different perspective. Instead of com-
paring the performance obtained by the same classi-
fier for different embeddings, we have compared the

Source-Code Embedding-Based Software Defect Prediction

193



Figure 6: AUC values computed for the experimental evaluation of RF classifier and the three studied embeddings.

Figure 7: The number of best-performing vectorial repre-
sentations for the 16 versions of the Calcite software sys-
tem, for each classification algorithm.

performance of the two classifiers for the same em-
beddings. Due to lack of space, we only include the
summary of the comparisons, depicted on Figure 8.

Figure 8: The number of best-performing classifiers for the
16 versions of the Calcite software system, for each embed-
ding.

As illustrated in Figure 8, the tuned RF classi-
fier outperforms FastAI for all representations. This
confirms the conclusions presented in (Fu and Men-
zies, 2017) and (Majumder et al., 2018), claiming that
properly tuned simpler models can outperform deep

learning models. In order to check that the parameter
tuning indeed matters, we have repeated the experi-
ments for the Doc2Vec + LSI + Graph2Vec represen-
tation (since, according to the conclusions of RQ2,
this is the best-performing embedding) considering
the default parameters of RF from scikit-learn. The
results were all less than 0.55, which is significantly
lower than the AUC values achieved for the tuned RF,
that are all above 0.71.

As presented in Section 3.3.2 we have used the
random search-based parameter tuning approach for
RF. The previous experiment demonstrated that de-
fault parameters perform quite poor on the Doc2Vec
+ LSI + Graph2Vec embedding, so we have decided
to look at the initially generated 1000 hyperparameter
points, to see how varied their AUC values are. For all
data sets and representations there were hyperparame-
ter points with an AUC value of 0 (at least 97, at most
462) and a lot of points with an AUC value below 0.5
(at least 162 and at most 995). Actually, there were 4
versions of the Calcite data set, for which there was an
exceptionally high number of hyperparameter points
with an initial AUC value below 0.5: version 1.5 (995
points), 1.6 (903), 1.11 (844) and 1.15 (929). On Fig-
ure 6 we can see that these are exactly the versions
with an AUC value a lot less than the other versions
and representations. This is probably the result of a
random search which produced a lot of hyperparame-
ter points with very poor performance. This suggests
that in some cases, random search might not gener-
ate good enough points, and probably the number of
points should be increased in such cases.

Our findings about how much parameter tuning

ICSOFT 2023 - 18th International Conference on Software Technologies

194



matters for RF are different from the findings of Tan-
tithamthavorn (Tantithamthavorn et al., 2019), who
concluded that RF is not sensitive to hyperparame-
ter tuning (although they only tuned the parameter
denoting the number of trees). The reason for this
discrepancy might be given by the difference in the
considered features: we have used embeddings learnt
from the source code, while in (Tantithamthavorn
et al., 2019) structural, complexity and size metrics
are used. There is another observation regarding RFs
in (Tantithamthavorn et al., 2019): they are not among
the top-performing classifiers. In our study, RFs had
the best performance, but we compared only 3 ap-
proaches and only the parameters of RF were tuned,
while Tantithamthavorn et al. compared 26 classifiers,
so it is possible that even better performance can be
achieved by considering other classifiers.

Consequently, our answer for RQ3 is that, for our
data sets, the RF classifier with the best hyperparam-
eter setting outperforms FastAI in most cases. Never-
theless, there were 4 identified cases when the random
search parameter tuning approach could not identify
good enough parameters and in these cases the per-
formance of FastAI was better than that of RF.

4.2.4 Statistical Tests

In order to test if the conclusions of the three re-
search questions are statistically significant, we have
performed some statistical tests. RQ1 and RQ2 fo-
cus on the comparison of different source code em-
beddings, so we have first considered the 48 AUC
values for each source code embedding (16 values
for each classifier). According to the Kolmogorov-
Smirnov test (with Lilliefors’ method) all three vari-
ables (i.e. set of AUC values for code embeddings)
are normally distributed so we have used a one-way
repeated measures ANOVA test. Mauchly’s test indi-
cated that the assumption of sphericity had been vio-
lated, therefore degrees of freedom were corrected us-
ing Greenhouse-Geisser estimates of sphericity. The
results of ANOVA show that the AUC values for
the three embeddings differ significantly. Post hoc
tests revealed that the Doc2Vec + LSI + Graph2Vec
representation has significantly higher AUC values
than both other representations. However, there is
no significant difference between Doc2Vec + LSI and
Graph2Vec embeddings.

For RQ3, we have compared the 16 AUC values
for the FastAI and RF classifier for the Doc2Vec +
LSI + Graph2Vec embedding. Since the Kolmogorov-
Smirnov test showed that both variables are normally
distributed, we used a one-way repeated measures
ANOVA again (even if we had only two variables)
whose results show that the AUC values for RF are

significantly higher than those for FastAI.
Consequently, we can conclude that the results for

RQ2 and RQ3 are statistically significant.

5 CONCLUSIONS

In this paper, we proposed using Graph2Vec embed-
ding as a new representation of software entities in
defect prediction models. Results from several exper-
imental analyses have confirmed the relevance of the
proposed representation in identifying defect prone-
ness. Additionally, when using Graph2Vec embed-
ding in conjunction with Doc2Vec and LSI embed-
dings, their complementarity boosts the defect pre-
diction performance. In our comparative analysis, we
have employed three classification models, including
the FastAI deep learning model and a hyperparame-
ter tuned Random Forest, the latter outperforming the
former, which reveals the potency of hyperparameter
optimisation in the case of software defect predictors.

To reinforce the conclusions of our present study
we aim to further extend the experimental analyses
by considering additional open-source software sys-
tems and machine learning models. We also envision
investigating the potency of CodeBERT and graph-
CodeBERT for SDP and to reliably compare it to that
of our current approach.

ACKNOWLEDGEMENTS

This work was supported by a grant of the Min-
istry of Research, Innovation and Digitization,
CNCS/CCCDI – UEFISCDI, project number PN-III-
P4-ID-PCE-2020-0800, within PNCDI III.

REFERENCES

(2017). The seacraft repository of empirical software engi-
neering data.

(2023). Source-code embedding-based software defect pre-
diction - data sets and detailed results. https://figshare.
com/s/d5a7e8126ccd94181511.

Aladics, T., Jász, J., and Ferenc, R. (2021). Bug predic-
tion using source code embedding based on Doc2Vec.
In Computational Science and Its Applications, pages
382–397.

Begoli, E., Camacho-Rodrı́guez, J., Hyde, J., Mior, M. J.,
and Lemire, D. (2018). Apache Calcite: A founda-
tional framework for optimized query processing over
heterogeneous data sources. In Proc. of the Interna-
tional Conf. on Management of Data, page 221–230.

Source-Code Embedding-Based Software Defect Prediction

195



Breiman, L. (2001). Random forests. Machine Learning,
45:5–32.

Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J.,
Ghose, A., Kim, T., and Kim, C.-J. (2018). A deep
tree-based model for software defect prediction.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., and Harshman, R. A. (1990). Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41:391–407.

Fawcett, T. (2006). An introduction to ROC analysis. Pat-
tern Recognition Letters, 27(8):861–874.

Fu, W. and Menzies, T. (2017). Easy over hard: A case
study on deep learning. In Proc. of the Joint Meeting
on Foundations of Software Engineering, page 49–60.

Herbold, S., Trautsch, A., Trautsch, F., and Ledel, B.
(2022). Problems with szz and features: An empirical
study of the state of practice of defect prediction data
collection. Empirical Software Engineering, 27(2).

Howard, J. et al. (2018). fastai. https://github.com/fastai/
fastai.

Le, Q. V. and Mikolov, T. (2014). Distributed represen-
tations of sentences and documents. Computing Re-
search Repository (CoRR), abs/1405.4:1–9.

Li, J., He, P., Zhu, J., and Lyu, M. R. (2017). Software de-
fect prediction via convolutional neural network. In
IEEE International Conf. on Software Quality, Relia-
bility and Security, pages 318–328.

Majumder, S., Balaji, N., Brey, K., Fu, W., and Menzies,
T. (2018). 500+ times faster than deep learning: A
case study exploring faster methods for text mining
stackoverflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
MSR ’18, page 554–563.

Malhotra, R. (2015). A systematic review of machine learn-
ing techniques for software fault prediction. Applied
Soft Computing, 27:504 – 518.

Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad,
M., Khan, M. A., Abbas, S., and Soomro, T. R.
(2021). Software defect prediction using ensemble
learning: A systematic literature review. IEEE Access,
9:98754–98771.

Miholca, D. and Onet-Marian, Z. (2020). An analysis of
aggregated coupling’s suitability for software defect
prediction. In 2020 22nd International Symposium on
Symbolic and Numeric Algorithms for Scientific Com-
puting, pages 141–148. IEEE Computer Society.

Miholca, D.-L. and Czibula, G. (2019). Software defect
prediction using a hybrid model based on semantic
features learned from the source code. In Knowledge
Science, Engineering and Management: 12th Interna-
tional Conference, Part I, page 262–274.

Miholca, D.-L., Czibula, G., and Tomescu, V. (2020).
Comet: A conceptual coupling based metrics suite for
software defect prediction. Procedia Computer Sci-
ence, 176:31–40.

Miholca, D.-L., Tomescu, V.-I., and Czibula, G. (2022). An
in-depth analysis of the software features’ impact on
the performance of deep learning-based software de-
fect predictors. IEEE Access, 10:64801–64818.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen,
L., Liu, Y., and Jaiswal, S. (2017). Graph2vec: Learn-
ing distributed representations of graphs.

Neto, E. C., da Costa, D. A., and Kulesza, U. (2018).
The impact of refactoring changes on the szz algo-
rithm: An empirical study. 2018 IEEE 25th Inter-
national Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 380–390.

Pan, C., Lu, M., and Xu, B. (2021). An empirical study on
software defect prediction using CodeBERT model.
Applied Sciences, 11(11).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Řehůřek, R. and Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50. ELRA.

Rozemberczki, B., Kiss, O., and Sarkar, R. (2020). Karate
Club: An API Oriented Open-source Python Frame-
work for Unsupervised Learning on Graphs. In Proc.
of the ACM International Conf. on Information and
Knowledge Management, page 3125–3132. ACM.

Sayyad, S. and Menzies, T. (2015). The PROMISE reposi-
tory of software engineering databases. School of In-
formation Technology and Engineering, University of
Ottawa, Canada.

Sikic, L., Kurdija, A. S., Vladimir, K., and Silic, M. (2022).
Graph neural network for source code defect predic-
tion. IEEE Access, 10:10402–10415.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and
Matsumoto, K. (2019). The impact of automated
parameter optimization on defect prediction models.
IEEE Trans. on Software Eng., 45(7):683–711.

Uddin, M. N., Li, B., Ali, Z., Kefalas, P., Khan, I., and
Zada, I. (2022). Software defect prediction employ-
ing BiLSTM and BERT-based semantic feature. Soft
Computing, 26:1–15.

Wang, S., Liu, T., Nam, J., and Tan, L. (2020). Deep se-
mantic feature learning for software defect prediction.
IEEE Trans. on Software Eng., 46(12):1267–1293.

Wang, S., Liu, T., and Tan, L. (2016). Automatically learn-
ing semantic features for defect prediction. In Proc. of
the Int. Conf. on Software Eng., pages 297–308.

Zhang, D., Tsai, J., and Boetticher, G. (2007). Improving
credibility of machine learner models in software en-
gineering. In Advances in Machine Learning Applica-
tions in Software Engineering, pages 52–72.

ICSOFT 2023 - 18th International Conference on Software Technologies

196


