
Automatic Test-Based Assessment of Assembly Programs

Luı́s Tavares1, Bruno Lima1,2 and António J. Araújo1,2

1Faculty of Engineering of the University of Porto, Porto, Portugal
2INESC TEC, Porto, Portugal

Keywords: Arm, Assessment, Programming, Assembly.

Abstract: As computer science and engineering programs continue to grow in enrollment, automatic assessment tools
have become prevalent. Manual assessment of programming exercises can be time-consuming and resource-
intensive, creating a need for such tools. In response, this paper proposes a tool to assess assembly exercises,
specifically ARM64 programs, and provide real-time feedback to students. The tool includes features for
evaluating, analyzing, and detecting plagiarism in student submissions. After two years of intensive usage
in a higher education environment, the results and analysis show a positive impact and potential benefits
for teachers and students. Furthermore, the tool’s source code is publicly available, making it a valuable
contribution to building more effective and efficient automatic assessment tools for computer science and
engineering schools.

1 INTRODUCTION

In the last half-century, there has been a growing
interest in developing and deploying automatic as-
sessment tools, ranging from assembly language pro-
grams on punched cards to web-based platforms. Pro-
gramming assignments have become essential for un-
derstanding programming languages (Douce et al.,
2005). Today, programming courses are offered in
nearly all engineering schools in addition to computer
science programs (Caiza and Álamo Ramiro, 2013).

As the number of students enrolling in computer
science and engineering programs continues to in-
crease, teachers face the challenge of providing ac-
curate and timely feedback in a time-efficient manner
(Marchiori, 2022). This paper proposes the AEAS
(ARM [Extensible] Assessment System) tool for au-
tomatically evaluating ARM64 programs to address
the time-consuming manual assessment of assembly
exercises. The AEAS tool is a web-oriented plat-
form designed to assess assembly exercises automat-
ically and provide students with immediate feedback
on their performance. The tool is built on top of the
AOCO command-line system (Damas et al., 2021),
containing features for plagiarism detection, analysis,
and evaluation of student submissions.

The AEAS tool goes beyond traditional automatic
assessment systems that offer only teacher-specific
features. It provides a web-oriented platform that al-

lows students to test their assembly programs’ flow on
the browser without installing any compiler or Inte-
grated Development Environment. Assembly devel-
opment environments, such as DS-5 (ARM, 2010),
can be complex to configure, which may discourage
novice users. The AEAS tool addresses this challenge
by providing an intuitive platform for testing assem-
bly exercises.

The main contribution of this paper is to present
the AEAS assessment tool and its features.

Section 2 provides an overview of automatic as-
sessment systems’ background, while section 3 de-
scribes the system’s functionalities from the perspec-
tives of both students and teachers. The system’s ar-
chitecture is presented in section 4, and the grading
process is discussed in section 5. Section 6 reports on
the AEAS tool’s experiences and analyses its results
in an educational setting. Finally, section 7 concludes
the paper and points out some future work.

2 BACKGROUND

Douce et al. (Douce et al., 2005) defined three gener-
ations of assessment systems. Firstly, the early as-
sessment systems are grader programs that test the
students’ programs with either correct or wrong re-
sults. Secondly, tool-oriented systems are more com-
plex grader programs, usually encapsulated in a ter-

572
Tavares, L., Lima, B. and AraÃžjo, A.
Automatic Test-Based Assessment of Assembly Programs.
DOI: 10.5220/0012129100003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 572-579
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



minal interface or GUI. The second-generation tools
also introduce features to students themselves to test
their assignments. Lastly, web-oriented systems are
the latter approach to automatic assessment systems.

Typically, these last-generation tools focus on
more than just testing assignments. These tools
propose utilities for managing and maintaining the
assessments to permit teachers to understand how
students are progressing, thus entitling teachers to
make corrective efforts against students who may
be encountering difficulties. The AEAS tool is a
third-generation tool and has evolved from a second-
generation one.

Looking at the state of the art, there are several
automatic assessment evaluation tools with different
characteristics and focused on different programming
languages, such as:

• CodePost (codepost, 2023): CodePost is a web-
based commercial tool that provides automatic
grading and feedback for programming assign-
ments. It supports multiple programming lan-
guages (but not assembly) and integrates with
popular learning management systems(Mpungose
and Khoza, 2022) like Canvas and Blackboard.

• Gradescope (Turnitin, 2023): Gradescope is a
popular commercial platform for online grading
and assessment, including programming assign-
ments for multiple programming languages (but
not assembly). It allows for various question
types, including coding questions, and provides
automatic grading and feedback tools.

• CodeRunner (CodeRunner, 2022): CodeRunner
is a free open-source question-type plug-in for
Moodle that can run program code submitted by
students in answer to a wide range of program-
ming questions in many different languages (as-
sembly not supported). It is intended primarily
for computer programming courses, although it
can be used to grade any question for which the
answer is text.

• Web-CAT: (Edwards and Perez-Quinones, 2008):
Web-CAT is a web-based tool for automatically
assessing programming assignments. It supports
multiple programming languages (but not assem-
bly) and provides various testing options, includ-
ing input/output and black-box testing.

• BOSS (Joy et al., 2005): BOSS is a platform-
independent system for submitting and grading
programming assignments in C and Java. It in-
cludes a set of customizable program metrics, al-
lows for online marking and feedback delivery,
and has built-in plagiarism detection software.

• CourseMarker (Higgins et al., 2005): Course-
Marker is a Java-based client-server evaluation
tool that automatically evaluates Java and C/C++
programming assignments and diagrams.

Regarding these types of tools, (Tarek et al., 2022)
recently carried out an extensive review where they
identified a few more tools such as Mooshak (Leal
and Silva, 2003) and EvalSeer (Nabil et al., 2021).
However, none of the presented tools support the eval-
uation of assembly assignments.

However, in constructing this tool, we want to take
advantage of our previous tool, AOCO (Damas et al.,
2021), and what is best in current tools. The objec-
tive is to construct a free and open-source tool, thus
allowing the community to adapt it to its needs.

3 FUNCTIONALITIES

The AEAS tool offers functionalities for two distinct
types of users: students and teachers. Students use the
tool to test the assignments. Teachers use the system
to assess students’ work, maintain assignments, and
support administration demands. Before going into
detail about the system’s features, it is necessary to
make a few considerations about the general opera-
tion of the system and how it is modeled.

The AEAS tool does not provide a direct channel
for students to upload their assignments to be auto-
matically graded by the system. The system exclu-
sively provides students with a way to test their exer-
cises. When the assignments reach the grading pro-
cess, it is necessary to deliver and later store the stu-
dents’ solutions (typically a source file) in another in-
frastructure. This architectural decision is motivated
to avoid requiring students to log into the assessment
system. With these considerations in mind, it is possi-
ble to describe the grading progress of an assignment
with the following workflow.
1. The teacher creates an assignment in the system. The

assignment contains a set of public and private tests.

2. The teacher informs students that a new assignment is
available in the system.

3. Students access the system and develop solutions for
the assignment.

4. Students test their assignment solutions in the system
against a set of public tests.

5. Students upload their assignment solutions to an exter-
nal infrastructure before the deadline.

6. The teacher collects the assignment solutions from the
external infrastructure.

7. The teacher grades the assignment in the system with
the private tests and gives students feedback.

Automatic Test-Based Assessment of Assembly Programs

573



3.1 What Defines an Exercise?

This subsection defines an exercise inside the AEAS
tool, going through its definition and structure. Exer-
cises are the central component of grading students.
Exercises must have a description of how to design
the exercise, a list of parameters and returns, and a
list of tests that map each group of inputs to a spe-
cific output. Teachers can add a list of private tests.
These latter tests are merely used for student grad-
ing, while the system uses the default ones for student
public feedback.

The exercise requires two definitions that work
symbiotically, a viewing definition and a technical
definition. The technical one includes the exercise pa-
rameter types, return types, and the list of tests. On
the other hand, teachers must define a viewing defi-
nition that contains a name, a description of the work
to be done, and, optionally, a label to categorize it-
self. Below are the explanation and examples of each
viewing definition and the technical definition.

Name. This is the name of the exercise. It is the
main field to identify an exercise.

Example: Sum of odd numbers in an array

Description. The description provides the students
with a complete exercise description. It should guide
students on the details of the exercise and contain all
the information needed to develop it. Additionally,
the system supports LATEX, Markdown, and code snip-
pets on this field to allow teachers to point more effi-
ciently to particular aspects.

Example: Develop a subroutine to calculate the
sum of the odd integers in an array. If there
are no odd numbers, return 0.. A subroutine call
can be as follows oddSum(array, length) where
int array = {1,4,7} and int length = 3 and
the expected output would be 8.

Label. This optional field categorizes exercises. It
can be helpful to differentiate distinct types of exer-
cises and allow students to identify them better.

Example: Array problems

Technical Definition. The technical definition of
the exercise defines how the exercise’s solution must
be modeled and how it should perform. The AEAS
tool module that uses this technical definition pro-
vides an instruction manual 1 on defining an exercise.

1Repository of the AEAS grading module with the in-
struction manual on defining exercises. github.com/luist18/
areas

Listing 1: Example of an exercise’s technical definition.
# e x e r c i s e d e f i n i t i o n
sumOdd :

params : [ a r r a y i n t , i n t ]
r e t u r n : [ i n t ]

# t e s t s d e f i n i t i o n
sumOdd :

− i n p u t s : [ [ ] , 0 ]
o u t p u t s : [ 0 ]
we ig h t : 0 . 5

− i n p u t s : [ [ 2 , 5 , 7 ] , 3 ]
o u t p u t s : [ 1 2 ]
we ig h t : 0 . 2 5

− i n p u t s : [ [ 5 , 7 ] , 2 ]
o u t p u t s : [ 1 2 ]
we ig h t : 0 . 2 5

3.2 Student Functionalities

Students interact through the web interface. In the
system, students have access to a list of the exercises,
together with a succinct description and a pointer to
their page. The name, description, label, author, and
publication date are some properties that define an ex-
ercise. The students see these properties and an inte-
grated code editor that allows them to develop their
solutions inside the browser. Then, students can sub-
mit their approaches and acquire immediate feedback
from the system on how their solution performed on
the public tests. When students submit their exercise
solutions, a set of unit tests verifies the program’s va-
lidity. These unit tests are public tests that teachers
define and do not cover all possible program flows.
While students may use this as a means to test their
exercises more efficiently, it is important to note that
passing all public tests does not guarantee the com-
plete validity of their solutions.

Submit

2 tests failed

Expected [0] for input [[],0], instead got [1]
Expected [12] for input [[2,5,7],3], instead got [14]
Test passed. Input == [[5,7],2]. Output == [12]

Practice your code in a friendly environment

Pages

Home
Exercises
Report an issue WIP

Useful pages

Moodle
SIFEUP

Copyright © 2023 arm tester @feup

        ldr     w0, [sp, 28]
        add     sp, sp, 32
        ret

31
32
33

Figure 1: Output for the exercise and solution mentioned
above.

Considering the previously defined exercise in the
examples of section 3.1 that is assumed to sum odd
integers, and a program which sums all integers re-
gardless of their parity. Also, assume that the pro-
gram does not check if the array is empty before read-
ing from it. Thus, it will fail on the edge case of the
empty array since it will try to read from an invalid
memory address. With these considerations, the out-
put for three test cases can be observed in figure 1.

ICSOFT 2023 - 18th International Conference on Software Technologies

574



3.3 Teacher Functionalities

Teachers have access to a large set of functionalities.
This happens because teachers are the main actors
maintaining and managing the system. Hence, this
leads to a few distinct categories of functionalities that
a teacher can perform. This section explains teachers’
functionalities in each area.

Teachers are privileged users in the system.
Therefore, to access their features, teachers must be
previously registered in the system and then log in to
the system’s dashboard to access those features.

3.3.1 Administrative Functionalities

To give teachers an overall summary of the system’s
performance and operations, the AEAS tool offers
teachers a dashboard to monitor information about
the system’s status. These details include CPU usage,
memory usage, server uptime, and request traffic. In
addition, the system also presents a functionality to
set up other teachers’ accounts.

3.3.2 Managing Functionalities

As teachers are the only administrative user of the
system, they are responsible for managing almost ev-
ery data stored in the system’s database. This data
includes the exercises as well as other information
entries related to them. Exercises are the central in-
formation element of the system. Each database en-
try, except for teachers’ authentication entries, is con-
nected to an exercise. The system’s information ele-
ments are the following:

• Exercise - represents the central information element
of the system. Holds the exercise definition;

• Label - represents a designation to label exercises;

• Submission - represents an exercise submission. This
element is mostly used for statistical purposes and later
explained in section 3.3.4;

• Batch Result - represents the information of an assign-
ment batch evaluation. The following section details
this element. Holds the information about each stu-
dent’s unit-test results, plagiarism, and instruction.

The assessment system allows teachers to perform
CRUD operations (Create, Read, Update, Delete) on
the above items. Filling out forms on the system’s
dashboard enables teachers to create new instances
of these information items. To read the information
from the system, teachers can access a set of listings
in the dashboard. Listings allow them to view the data
stored and have a menu of quick actions to delete the
element or navigate to the element’s update/edit page.

3.3.3 Grading Functionalities

The grading functionalities are an important set of the
system’s functionalities. These are assessment sys-
tems’ characteristic functionalities. This group com-
prises functionalities to test student assignments in
three ways: unit-test-wise, plagiarism-wise, and in-
struction presence-wise. In addition, it also features
an option to grade student assignments in a batch
mode, allowing teachers to test unit tests, plagiarism,
and instruction present at once. Details about the in-
ternal functioning of these functionalities are given in
section 4.

The AEAS tool evaluates student assignments us-
ing unit tests. As previously stated, students have a
collection of public tests to work with when design-
ing exercises’ solutions. Most of the time, public tests
only cover some potential program flow of an exer-
cise solution, leaving edge situations to private test-
ing. The teachers then use a different set of tests,
known as private tests, to evaluate the student’s re-
sponses. With this in mind, the system enables teach-
ers to design exercises that include the two kinds of
tests. While students can only test their solutions in a
public setting, teachers can evaluate the assignments
in a more confidential configuration.

Delivering the same exercises to multiple students
could lead to plagiarism. Plagiarism in coding assign-
ments differs from other types of plagiarism (Agrawal
and Sharma, 2016). It often happens that if the ex-
ercise assignment is very objective and, since there
are not many workarounds in assembly solutions,
students’ programs are similar (Kustanto and Liem,
2009). Given this, the evaluation system allows teach-
ers to choose a similarity level between pairs of as-
signments for each plagiarism analysis. The preced-
ing allows teachers to raise the barrier when exercise
solutions are likely identical and lower the thresh-
old when solutions are expected to be highly diverse.
The results of a plagiarism analysis advise the teacher
on which pair of students exceed the defined barrier.
These examples, however, are not free from manual
analysis by the teacher because they may turn out to
be false positives.

Another grading functionality is to check whether
students have used a specific assembly instruction in
their code submissions. Teachers may intend to evalu-
ate the use of particular instructions in an assignment.
For example, a teacher may want students to imple-
ment an activity with SIMD (Single Instruction Mul-
tiple Data) instructions. However, it could be pos-
sible to implement the same program without SIMD
instructions. Despite completing the work, doing so
would be immoral. Thus, to prevent these circum-
stances, the system checks for specific instructions in

Automatic Test-Based Assessment of Assembly Programs

575



User

PATH /

NGINX
(reverse proxy)

Website

Backend

Pl
ag

ia
ris

m
D

et
ec

to
r

Unit
Testing

MongoDB 
Database

HTTP Requests 
Socket connections

PATH /api

Figure 2: Architecture diagram of the AEAS tool.

assignment solutions and creates a report for each stu-
dent.

Despite allowing to run the actions aforesaid in-
dividually, the system can run these actions in batch
mode. The batch mode is advantageous when grading
a whole assignment for a group of students, allowing
the teacher to obtain a combined report for each stu-
dent with all the task information.

3.3.4 Progress Functionalities

Tracking students’ progress and performance are
functionalities that third-generation systems should
offer (Douce et al., 2005). The AEAS tool is no ex-
ception. The system offers a method to supervise stu-
dents’ progress.

Through a statistics section in the dashboard, the
teacher can track how students progress in an exer-
cise. For each exercise submission, the system stores
the score for that exercise in the database. Later, the
teacher can observe which tests students fail most and
some score metrics for that exercise. The previous
helped teachers shift efforts and tackle problems that
students might encounter.

4 INTERNAL ARCHITECTURE
OF THE AEAS TOOL

The AEAS tool is complex and substantially large.
This section uses four made-up modules to help clar-
ify the assessment system: web interface, backend,
unit testing, and plagiarism detector. These modules
do not exist in practice since they grow in more ad-
ditional microservices. However, for explaining pur-
poses, they are convenient.

As it is possible to observe in figure 2, apart from
the modules mentioned above, two additional archi-
tectural modules represented in the diagram appear
– reverse-proxy (NGINX) and the database (Mon-
goDB). Firstly, the system uses a reverse proxy to

Home Exercises Login

Practice assembly exercises
Follow the tutorial to learn how to submit your first

exercise or explore the exercises list

Read tutorial Exercises list

How do I submit an exercise?
Follow the steps below to learn how to submit your first exercise

Select an exercise
Select an exercise from the
exercises list

Read the instructions
Read, carefully, the instructions of
the exercise

Develop a solution
Develop a solution to the exercise

Test locally
When you have got your solution
ready, test it locally

Evaluate your solution
Finally, submit your solution and
evaluate it against the exercise
tests

Practice your code in a friendly environment

Pages

Home
Exercises

Useful pages

Moodle

Copyright © 2022

Figure 3: The AEAS tool Web-interface main page.

proxy requests from the outside environment to the
inner system backend environment and the website.
Secondly, the system’s database is a MongoDB clus-
ter running alongside the system. The system’s open-
source architecture is available at github.com/luist18/
computers-architecture-platform.

4.1 Web-Interface

The web-interface module communicates between
end-users (students and teachers) and the system’s
backend. It is accountable for most of the system’s
functionalities, while some administration and main-
tenance features are exclusively accessible via back-
end API.

The web interface communicates between the
users and the assessment system. This way, the inter-
face supplies the essential features for users to com-
municate with the system. The functionalities avail-
able to students and teachers significantly differ in
finality and complexity. Consequently, their visual
interface implementation follows the same rationale.
The student interface is designed to be simple and
user-friendly, allowing them to select and complete
exercises quickly. In contrast, the teacher interface is
more complex, requiring a manual for initial interac-
tion. The teacher interface mainly consists of forms
and data listings for managing system data, accompa-
nied by helpful text hints or instructions when neces-
sary. Figure 3 shows the web platform implementa-
tion main page.

4.2 Backend

The backend of the system is essentially the core of
the system, it does most of the work, and all system
requests pass by it through the API. In this subsection,
the responsibilities of the backend are discussed in the
following order: providing endpoints through an API,

ICSOFT 2023 - 18th International Conference on Software Technologies

576



communicating with the internal modules, and man-
aging files in the system’s storage.

4.2.1 Rest API

The API is the external facade of the system and is ac-
countable for all the communication between an end-
user and itself. All interactions from the outside en-
vironment that affect the assessment system must go
through the API. The API endpoints, which follow the
RESTful architecture, must be used to communicate
with the assessment system. Essentially, the API of-
fers endpoints to create, read, update, and delete data
either in the database or stored in the system, together
with various endpoints to perform grading operations
that do not necessarily impact the data already in the
system.

4.2.2 Communication with Internal Modules

Aside from communicating with the end-users, the
backend has to communicate with the modules encap-
sulated internally in the system’s environment: pla-
giarism detector and unit testing module. These small
modules perform extensive operations such as check-
ing plagiarism between assignments or testing them
against a set of use cases. Internally, a RESTful API
encapsulates both modules. This way, the commu-
nication between the backend and these modules is
performed via HTTP requests.

4.2.3 Managing System Local Storage

At last, another backend’s responsibility is managing
and storing information. For most data, the system
stores it in the database. Although, student assign-
ment files are not stored in the database but directly
in the system’s file system. Whenever a teacher evalu-
ates a set of students, the system generates a directory
with the students’ files. Later, the database record for
that evaluation holds a pointer to the files stored.

4.3 Unit Testing

As said in the previous subsection, the unit testing
module is a RESTful API. Internally, the module
uses an extended Python library built on the AOCO
tool (Damas et al., 2021). Apart from performance
changes, the modifications made to the tool add new
data types to the exercise definition and JSON output
to facilitate communication via HTTP. The API in this
module only offers one endpoint employed to test an
assignment against a set of test cases.

The library typically receives an exercise defini-
tion (i.e., name, parameters’ types, and return type),

a set of tests, and an exercise solution. After receiv-
ing that data, the library runs the unit tests against the
solution received in the parameter. It returns a JSON
object containing information about the result of the
unit tests.

4.4 Plagiarism Detector and Instruction
Presence

In the same way as the unit testing module, the pla-
giarism detector module is also a RESTful API. This
module offers two operations available through two
endpoints: verifying occurrences of instructions in as-
signment files and checking plagiarism between as-
signment files.

The first operation verifies the occurrences of in-
structions, a simple operation that reads an assign-
ment file and searches for any instruction dynamically
specified as a parameter. The operation searches in-
structions in the code and determines if an instruction
is in a student’s code file.

The second operation verifies plagiarism between
students’ submission files. The AEAS tool imple-
ments a plagiarism detection system natively. The
detection system uses a token comparison approach,
one of the simplest and most effective source code
plagiarism detection methods (Agrawal and Sharma,
2016). The system converts each file into tokens
in a tokenization process to detect plagiarism. Tok-
enization removes comments and transforms equiva-
lent code into the same token (e.g., registers x0 and
x1 are converted to REG). After tokenization, the to-
kens present in all submissions, such as the return to-
ken RET, are removed. The previous is made to avoid
similarity smoothing. Finally, the approach uses the
Sørensen–Dice coefficient to gauge the similarity be-
tween each pair of token sets.

5 GRADING

The AEAS tool grading system is semi-automatic
when considering plagiarism detection. The previ-
ous means that, in some cases, it is inconceivable to
grade students based on the system’s output automat-
ically. As plagiarism detections often come as false
positives, it is impossible to directly map the system’s
results to a student’s grade. Thus, this section covers
an assignment’s grading process without considering
plagiarism detection. When using the tool, teachers
should handle detected plagiarism manually and sep-
arately, and the final decision is up to each teacher’s
belief about each case.

Automatic Test-Based Assessment of Assembly Programs

577



The grading process of an assignment in the
AEAS tool takes advantage of the batch mode ex-
plained in section 3.3.3. Teachers collect students’
assignments and upload them to the system’s batch
mode. After the batch mode is complete, the system
generates a report containing the information repre-
sented in table 1. There is also an option to export the
report to a spreadsheet format.

Table 1: Assignment report example.
ID Compiled Test1 Test2 Test3 Test4 Instruction Score

student1 true 1 1 0 0 true 0.5
student2 true 1 1 1 1 true 1
student3 false 0 0 0 0 true 0
student4 true 0 0 1 0 true 0.25
student5 true 1 1 1 1 false 0

The score value for each student depends on unit
tests and instruction presence. Considering an assign-
ment a and an arbitrary student i, the score for a stu-
dent in a specific assignment is the following:

score(si,a) = [
T

∑
j=1

testa( j,si)×wa( j)]× instruction(l,si)

(1)

testa( j,si) =

{
0, if si does not pass test j
1, if si passes test j

(2)

instruction(l,si) =

{
0, if si does not contain l
1, if si contains l

(3)

T

∑
j=1

wa( j) = 1 (4)

Where si is the source code solution for the stu-
dent i, testa( j,si) is the result of the unit test j for
the assignment a, T is the number of unit tests, wa( j)
is the weight of test j for the assignment a, and
instruction(l,si) is the result of the instruction lookup
for the instruction l and the source code si. The score
has a domain between 0 and 1. Sometimes, verifying
if an instruction is in the students’ assignments is un-
necessary. In those cases, the score function does not
consider the instruction function.

6 VALIDATION

Since the 2020 academic year, the Faculty of En-
gineering of the University of Porto has used the
AEAS tool in the Computers Architecture course of
the Bachelor in Informatics and Computing Engineer-
ing to help students progress and automatically grade
the assembly assignments. On both occasions, the

students had to complete weekly tasks to ease learn-
ing the assembly programming language.

To evaluate the AEAS tool’s effectiveness, stu-
dents answered a questionnaire regarding some as-
pects of the AEAS tool and the evaluation methodol-
ogy. This section firstly analyzes the common ques-
tions for the 2020/2021 (Y1) and 2021/2022 (Y2) aca-
demic years, and then each year separately. On a
563 students universe (257 from Y1; 306 from Y2),
93 students (46 from Y1; 47 from Y2) answered
the questionnaire – making an overall coverage of
16.52% (17.90% in Y1; 15.35% in Y2).

Table 2: Results for questions 3, 4, and 5.

Question 1 2 3 4 5
3 (Y1) 8.7% 8.7% 65.2% 8.7% 8.7%
4 (Y2) 8.5% 6.4% 17.0% 23.4% 44.7%
5 (Y2) 4.3% 10.6% 27.7% 31.9% 25.5%

The questionnaire questions are the following:
Q1 (Year 1 & 2) Do you consider mandatory weekly as-

signments would be beneficial to the process of learning
ARM64 programming?

Q2 (Year 1) Did the web-oriented platform positively im-
pact the development of your solutions to the weekly
assignments?

Q3 (Year 1) On a scale of 1 (only used DS-5) to 5 (only
used the web-oriented platform), how do you use these
tools to test the assignments? (Level 3 corresponds to a
balanced use.)

Q4 (Year 2) On a scale of 1 (very difficult) to 5 (very easy),
how would you evaluate the ease of programming in the
web-oriented test platform compared to the DS-5 IDE?

Q5 (Year 2) On a scale of 1 (only used DS-5) to 5 (only
used the web-oriented platform), how do you consider
your environment to develop and test the assignments?
(Level 3 corresponds to a balanced use.)

Table 3: Results for questions 1 and 2.

Question Yes No No opinion
1 (Y1) 93.5% 4.3% 2.2%
1 (Y2) 82.9% 12.8% 4.3%
2 (Y1) 89.1% 8.7% 2.2%

As shown in table 3, most students believed that
the weekly assignments positively impacted learning
the ARM64 programming language. Although, only
some of them considered that it had no impact on un-
derstanding the ARM64 programming language.

Table 3 also shows that almost nine in every ten
students feel that the AEAS system positively im-
pacted the solutions for the weekly assignments. The
previous confirms the usefulness of the AEAS system
in helping students. Finally, regarding the first year, it
is observed in table 2 that students took a balanced use

ICSOFT 2023 - 18th International Conference on Software Technologies

578



between DS-5 and the assessment system to develop
their solutions.

Concerning the second year, table 2 shows an
overall opinion that the web-oriented test platform is
easier to use than DS-5. Finally, the table also shows
that compared with the assessment system in the pre-
vious year, there was a shift towards using more the
assessment system than DS-5.

These results help confirm the system’s validity
and that students can shift their programming envi-
ronment to mostly the assessment system with more
student-directed changes and easier processes to de-
velop exercises.

7 CONCLUSIONS

This paper proposes a novel and open-source au-
tomatic assessment tool for assembly exercises, the
AEAS tool. This highly configurable tool was devel-
oped to be used in a teaching environment and to sup-
port the assessment of exercises in courses with a high
number of students.

The results of the validation, carried out using the
students who used the system, revealed that it signif-
icantly impacted their understanding of the ARM64
assembly language. It allowed students to acknowl-
edge almost instantaneous feedback on a process that
before was slow and complex. The AEAS assessment
tool has become a compelling choice for automatic
assessment. Its functionalities were tested and refined
in a higher education environment over two years.
The results show that it is a reliable tool for grading
programming assignments written in ARM64.

Overall, this work demonstrates the value and ef-
fectiveness of the AEAS tool as a solution for auto-
matic assessment in computer science and engineer-
ing. Having the system available and open-source
opens the possibility of community improvements
and usage of the same tool in other educational en-
vironments.

As future work, there should be work in improving
scalability, enhancing student features with more con-
figurable exercise listings, and improving accessibil-
ity to turn the system even more uncomplicated. Since
the system’s architecture is highly modular, there is
likewise an open way to add compatibility with other
assembly languages, such as RISC-V.

REFERENCES

Agrawal, M. and Sharma, D. K. (2016). A state of art on
source code plagiarism detection. In 2016 2nd Inter-

national Conference on Next Generation Computing
Technologies (NGCT), Dehradun, India.

ARM (2010). ARM DS-5 Getting Started with DS-5 Ver-
sion 1.0.

Caiza, J. C. and Álamo Ramiro, J. M. d. (2013). Program-
ming assignments automatic grading: review of tools
and implementations.

codepost (2023). codePost. Available at https://codepost.
io/.

CodeRunner (2022). CodeRunner. Available at https:
//coderunner.org.nz/.

Damas, J., Lima, B., and Araujo, A. J. (2021). AOCO
- A Tool to Improve the Teaching of the ARM As-
sembly Language in Higher Education. In 2021 30th
Annual Conference of the European Association for
Education in Electrical and Information Engineering
(EAEEIE).

Douce, C., Livingstone, D., and Orwell, J. (2005). Auto-
matic test-based assessment of programming: A re-
view. Journal on Educational Resources in Comput-
ing.

Edwards, S. H. and Perez-Quinones, M. A. (2008). Web-
cat: automatically grading programming assignments.
In Proceedings of the 13th annual conference on Inno-
vation and technology in computer science education.

Higgins, C. A., Gray, G., Symeonidis, P., and Tsintsifas,
A. (2005). Automated assessment and experiences of
teaching programming. Journal on Educational Re-
sources in Computing.

Joy, M., Griffiths, N., and Boyatt, R. (2005). The boss on-
line submission and assessment system. Journal on
Educational Resources in Computing.

Kustanto, C. and Liem, I. (2009). Automatic Source
Code Plagiarism Detection. In 2009 10th ACIS In-
ternational Conference on Software Engineering, Ar-
tificial Intelligences, Networking and Parallel/Dis-
tributed Computing, Daegu.

Leal, J. P. and Silva, F. (2003). Mooshak: A web-based
multi-site programming contest system. Software:
Practice and Experience.

Marchiori, A. (2022). Labtool: A Command-Line Interface
Lab Assistant and Assessment Tool.

Mpungose, C. B. and Khoza, S. B. (2022). Postgraduate
students’ experiences on the use of moodle and canvas
learning management system. Technology, Knowledge
and Learning.

Nabil, R., Mohamed, N. E., Mahdy, A., Nader, K., Es-
sam, S., and Eliwa, E. (2021). Evalseer: An intel-
ligent gamified system for programming assignments
assessment. In 2021 International Mobile, Intelligent,
and Ubiquitous Computing Conference (MIUCC).

Tarek, M., Ashraf, A., Heidar, M., and Eliwa, E. (2022). Re-
view of programming assignments automated assess-
ment systems. In 2022 2nd International Mobile, In-
telligent, and Ubiquitous Computing Conference (MI-
UCC).

Turnitin, L. (2023). gradescope. Available at https://www.
gradescope.com/.

Automatic Test-Based Assessment of Assembly Programs

579


