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Abstract: What is known as energy-aware computing includes taking into account many different variables and param-
eters when designing an application, which makes it necessary to focus on a single one to obtain meaningful
results. In this paper, we will look at the energy consumption of three different JavaScript interpreters: bun,
node and deno; given their different conceptual designs, we should expect different energy budgets for run-
ning the (roughly) same workload, operations related to evolutionary algorithms (EA), a population-based
stochastic optimization algorithm. In this paper we will first test different tools to measure per-process energy
consumption in a precise way, trying to find the one that gives the most accurate estimation; after choosing the
tool by performing different experiments on a workload similar to the one carried out by EA, we will focus
on EA-specific functions and operators and measure how much energy they consume for different problem
sizes. From this, we will try to draw a conclusion on which JavaScript interpreter should be used in this kind
of workloads if energy (or related expenses) has a limited budget.

1 INTRODUCTION

From a language designed in the nineties for simple
browser widgets and client-side validations (Good-
man et al., 2007; Flanagan, 1998), JavaScript is nowa-
days the language most widely used by developers
in their GitHub repositories (O’Grady, 2022), oc-
cupying this position since 2014 (O’Grady, 2014),
mainly because it is almost exclusively the language
needed for front-end programming (competing only
with app development languages, such as Swift or
Kotlin, or languages transpiled to JavaScript, such
as Dart), while at the same time being strong for
full-stack development, with solid support for the
back end, including application servers, middleware,
and database programming. Other popularity indices,
such as TIOBE1, that take into account other fac-
tors besides lines of code production, currently (2023)
rank it as the seventh, although it was also the most
popular language in 2014. It can be claimed, then,
that it is among the most popular, if not the most pop-
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ular language in current development.
Due to its popularity and the fact that it has a

continuously evolving standard (ECMA, 1999), tra-
ditionally, there have been different virtual machines
(or interpreters) to run its programs. During the first
years, browsers were the only running platform avail-
able; however, the introduction of Node.js running on
the V8 JavaScript Engine (Tilkov and Vinoski, 2010)
gave it the popularity it has today; this popularity, in
turn, provoked new interpreters to spawn like deno
(Doglio, ) (written in Rust) and bun (Tomar, 2022)
programmed in the relatively unknown language Zig.

No wonder, then, that JavaScript is also a popu-
lar language for implementing metaheuristics, espe-
cially evolutionary algorithms (EA). EA (Eiben and
Smith, 2015) are population-based stochastic opti-
mization algorithms based on the representation of a
problem as a (often binary) ”chromosome”, and evo-
lution of population of these ”chromosomes” by ran-
dom change (via ”genetic” operators, mutation and
crossover) and survival of the fittest (evaluation of
those chromosomes via a so-called ”fitness” function,
and selection and reproduction of those that achieve
the best values). From the early implementations in
the browser (Smith and Sugihara, 1996; González
et al., 1999; Langdon, 2004), whole libraries (Ri-
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vas et al., 2014), through complete implementations
geared towards volunteer computing (Merelo et al.,
2016). However, one of the criticisms leveraged to-
wards these implementations is the (possible) lack of
speed when compared to other compiled languages
(mainly Java, very popular in metaheuristics imple-
mentations, or C++).

This is why, since implementation matters
(Merelo-Guervós et al., 2011), choosing the right
interpreter is going to have a significant impact on
the performance of any workload; if you decide to
choose JavaScript for any reason (such as seamless
client/server integration, or be able to run your al-
gorithm either on the browser or from the command
line if desired) knowing which VM delivers the best
performance is essential, either from the scientific, or
software engineering points of view.

At the same time, with the advent of the con-
cept of green computing (Kurp, 2008), it becomes
increasingly important to measure not only the raw
wall clock performance (which was the focus of pa-
pers such as (Merelo-Guervós et al., 2017)), but also
to achieve a certain level of performance with a cer-
tain amount of energy consumption, or else to mini-
mize the consumption needed to run a certain work-
load. This will be the main focus of this paper; since
the core of the different JS virtual machines is differ-
ent, and are created with languages with different fo-
cus (Rust is focused on memory safety (Noseda et al.,
2022), Zig based on simplicity and performance (Kel-
ley, 2019)), different energy consumption should be
expected. Since all three languages can (roughly) run
the same, unmodified source code, what we intend
with this paper is to advise on which JS interpreter
might give the lowest power consumption, the max-
imum performance, or both, so that EA practitioners
can target it for their development.

The rest of the paper follows this plan: next we
will present the state of the art; then we will describe
the experimental setup in Section 3; results will be
presented next in Section 4, and we will end with a
discussion of results, conclusions and future lines of
work.

2 STATE OF THE ART

The power efficiency of CPUs (computations per
kilowatt-hour) has doubled roughly every year and a
half from 1946 to 2009 (Koomey et al., 2011), this im-
provement has been mainly a by-product of Moore’s
law, the trend of chip manufacturers to decrease in
half the size and distance between transistors every
two years. Unfortunately, it is expected that physi-

cal limits of electronics will slow down this minia-
turization in the near future. Nonetheless, energy ef-
ficiency is becoming the most important metric of
performance and selling point in hardware develop-
ment, and it is an important driver for current innova-
tion. The challenge of building more power-efficient
systems, can be addressed at the hardware and soft-
ware levels. In the software level, developers focus
their attention on the energy consumption of software,
proposing optimizations for more energy-efficient al-
gorithm implementations. Algorithm comparatives
nowadays include power efficiency as a performance
metric, these include encryption algorithms (Mota
et al., 2017; Thakor et al., 2021), estimation mod-
els for machine learning applications (Garcı́a-Martı́n
et al., 2019) and genetic programming (GP) (Diaz Al-
varez et al., 2018), and code refactoring (Ournani
et al., 2021). Since metaheuristics are so extensively
used in machine learning applications, its interest in
research has grown in parallel to its number of ap-
plications. Many papers focus on analyzing how cer-
tain metaheuristics parameters have an impact on en-
ergy consumption. Dı́az-Álvarez et al. (Dı́az-Álvarez
et al., 2022) studies how the populations size of EAs
influences power consumption. In an earlier work,
centered on genetic algorithms (GAs) (Fernández de
Vega et al., 2020), power-consumption of battery-
powered devices was measured for various parameter
configurations including chromosome and population
sizes. The experiments used the OneMax and Trap
function benchmark problems, and they concluded
that execution time and energy consumption do not
linearly correlate and there is a connection between
the GA parameters and power consumption. In GAs,
the mutation operator appears to be a power-hungry
component according to Abdelhafez et al. (Abdel-
hafez et al., 2019), in their paper they also report that
in a distributed evaluation setting, the communication
scheme has a grater impact. Fernández de Vega et al.
(de Vega et al., 2016) experimented with different pa-
rameters for a GP algorithm and concluded that hand-
held devices and single-board computers (SBCs) re-
quired an order of magnitude less energy to run the
same algorithm.

3 METHODOLOGY AND
EXPERIMENTAL SETUP

There are many ways to measure the consumption
of applications running in a computer; besides mea-
suring directly from the power intake, those running
as applications and tapping the computer sensors fall
roughly into two fields: power monitors and energy
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profilers (Cruz, 2021). Power monitors need addi-
tional hardware to measure the power drawn by the
whole machine; besides being expensive, their setup
is difficult, and it is complicated to measure precisely
how much a specific process consumes.

On the other hand, energy profilers are programs
that draw information from hardware sensors (Sinha
and Chandrakasan, 2001), generally exposed through
kernel calls or higher-level wrapper libraries, to pin-
point consumption by specific processes in a time
period. Tools that give these measures, either with
a graphic or a command line interface, have been
available for some time already, and have become
more popular lately. One of the mainstream proces-
sor architectures, Intel, includes an interface called
RAPL, or Running Average Power Limit (Pandru-
vada, 2014). Essentially, it consists of a series of
machine-specific registers (MSRs) that contain infor-
mation on the wattage drawn by different parts of the
architecture; the content of these registers will be pro-
cessed (through the corresponding library) and con-
sumed by different command line utilities. We will
use these command line utilities since they produce an
output that can be automatically processed and evalu-
ated, which is what we are looking for in this paper2.

Energy profiling, as measured by RAPL or other
APIs, includes different domains (Khan et al., 2015),
essentially the computing devices or peripherals re-
quiring the reported amount of energy. DRAM or
dynamic RAM, CORE, or GPU will report what hap-
pens on those specific devices, with a core being every
one of the computing units within the central process-
ing unit; other domains, like PKG or package, will re-
port what happens in the “package”, or CPU together
with other devices in the chipset.

Considering that the available system has an AMD
architecture, which is roughly compatible with the
RAPL architecture, we will use two command line
utilities, as they are the only ones available that can
wrap the execution of a command and report on con-
sumption for that specific command. These are open
source tools that can be obtained directly from the
corresponding repositories or by downloading and
compiling their source code.

• pinpoint (Köhler et al., 2020) (available from
https://github.com/osmhpi/pinpoint) is a tool that
uses the RAPL interface, as well as the NVIDIA

2Systems based on the AMD architecture have a similar
power profiling system called AMP with its corresponding
command line tool. However, we found that it was not well
documented, and excessively complicated for the purposes
of this article. Although not as complete, AMD processors
also include the aforementioned MSRs so RAPL-based util-
ities can run on them

registers, to report the power consumed by these
devices. In this paper, we will use it since it is the
only one out of the three tools that can show the
GPU consumption.

• perf3 (Treibig et al., 2010) is a system tool that
measures all kinds of performance events, includ-
ing power consumption. It will be used mainly for
the pkg domain; this is a domain that it is mea-
sured by all tools, but all of them would process
device readings differently, so it will provide us
with alternative estimations of the consumption.

• likwid-powermeter4 measures the CORE as well as
the PKG domain, which includes the former to-
gether with the so-called “uncore” components.

On the JavaScript side, we used three different inter-
preters:

• bun version 0.5.8

• deno version 1.32.1, which includes the v8 library
version 11.2.214.9 and typescript 5.0.2

• node.js version 18.5.0

bun and nodejs are fully compatible, so they run ex-
actly the same code. The code for deno needed a
small modification: the path to the library had to be
changed (since it does not use the node modules to
host installed modules), and it uses a different library
for processing the command line arguments. Other
than that, the business logic was exactly the same.

These were running in an Ubuntu version 20.04.1
with kernel version 5.15.0-69. The processor is an
AMD Ryzen 9 3950X 16-Core. Since we will not
be testing in a pure Intel architecture, the complete
RAPL API is not going to be available; that is also
why we will be experimenting with different tools so
that we can have an adequate coverage of energy con-
sumption for the commands we will be measuring.

A Perl script was created to perform the experi-
ments; it launched the scripts and collected results by
analyzing the standard output and putting it in a CSV
format that would allow examination of the experi-
ments.

The initial experiment consisted in a script that
used the saco-js library to perform the union of
“bags”, sets that can hold several copies of the same
item. 1024 sets were generated; these sets had 1024,
2048, 4096 elements. Then, a union of bags was per-
formed on pairs of sets until there was only one left.
This is similar to some operations performed by EAs,
mainly related to merging populations. They do not
involve floating point operations in any way.

3https://perf.wiki.kernel.org/index.php/Main Page
4https://github.com/RRZE-HPC/likwid

An Analysis of Energy Consumption of JavaScript Interpreters with Evolutionary Algorithm Workloads

177



0

10

20

30

40

50

1024 2048 4096
size

G
P

U

Figure 1: Boxplot of measurements of energy expenditures
by the GPU in the sets problem. GPU energy consumption
is measured in Joules.

The scripts to launch every kind of tool were
slightly different, mainly because the output needed
to be processed in different ways (and different kinds
of information extracted). Additionally, pinpoint,
which is the only tool that does not need superuser
privileges, sometimes returned 0 in energy measures.
This was an error, and those runs were discarded.

Finally, the scripts performed an additional task:
since it is not possible to disaggregate the readings
for our program from the energy consumed by other
processes running at the same time, what we did was
to run every program 15 times, compute the average
time, and then use the same tool to measure the energy
consumption for the sleep program during the aver-
age amount of time. The energy readings shown are
the result of subtracting this measurement from every
one of the 15 other measurements taken, so that we
can analyze the differential of energy that has been
consumed by our programs; the result is clipped at
0, since negative energy differentials would make no
sense.

Experimenting with this simple program will
mainly allow us to calibrate the different tools in or-
der to pick only one, if possible, as well as validate
the program and iron out all possible errors in the pro-
gram itself or the processing scripts.

One of the first observations we can draw from
these initial experiments is whether measure how
much energy the GPU spends it is interesting. Since
pinpoint is the only tool able to measure this, we
will use it. We show the results in Figure reffig:gpu.
We see here that it is mostly independent of the set
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Figure 2: Boxplot of (differential) measurements of energy
consumption as measured by the CORE and PKG (package)
registers, both measured in Joules.
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Figure 3: Boxplot of (differential) measurements of energy
consumption as measured by the CORE and PKG (package)
registers, both measured in Joules.

size, but most importantly, it is 0 in most cases, more
than 50%. The rest must be essentially noise, amount-
ing to a few Joules anyway. In order to decide if we
can use this tool alone or complement it with other
measures, we need to validate or enhance its mea-
surements with others; that is why next, we will make
some test measurements with the next tool, likwid.

Another tool that we have tested, likwid, can
also measure the package energy consumption. In
this initial exploration, we will see whether this mea-
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Figure 4: Relationship between CORE and PACKAGE con-
sumption (x and y axis, respectively).

surement is significant and to what extent it is re-
lated to the core measurements. Boxplots of energy
consumption for different set size is shown in Fig-
ure 3 for the CORE (top) and PKG RAPL registers.
It seems to show that differential energy consump-
tion (once the baseline has been subtracted) is almost
negligible in the CORE register unless the size is big
enough (4096) in both cases, although the CORE reg-
ister shows a certain amount of consumption for size
= 2048. It is entirely unlikely that these kinds of
measurements have a certain degree of uncertainty;
however, apparently, pinpointwill directly estimate
these runs as 0, and thus are skipped; however, this
tool does measure a certain amount of consumption
that cannot be so easily filtered.

Plotting the relationship between these two regis-
ters (see Figure 4), however, shows a linear relation-
ship, so we do not really need to plot both. One of
them will be enough, and since PKG seems to have
the greatest variation, we will stick to that one.

Since several tools are available to measure PKG,
we need to find out what kind of measurements they
have, and if there is a correlation or even equality be-
tween them. We show how PKG energy consumption
is registered by pinpoint and likwid in Figure 5.
We have already seen in Figure 3 how the measure-
ments registered by likwid have some strange be-
havior; this chart shows that while pinpoint shows a
reasonable amount of consumption for all three sizes,
likwid just registers zero, which is not reasonable in
this case. This will lead us to discard the use of this
tool in the upcoming experiments.

Unlike what happened with the previous tool, Fig-
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Figure 5: Relationship between PKG measurements taken
by pinpoint and likwid.
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Figure 6: Relationship between PKG measurements taken
by pinpoint and perf, with boxplots with values for the three
set sizes.

ure 6 shows that there is a certain agreement between
these two, except for the fact that perf seems to
measure exceptionally low values in the lowest sizes.
A Wilcox test shows significant differences for all
three sizes; however, this might be due to a different
amount of overhead or other unknown environmental
factors.

Eventually, since pinpoint is able to measure all
size ranges accurately, we will use it exclusively, as
well as the quantity it measures, for comparison of
different virtual machines. The initial results for this
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Figure 7: PKG measurements for the set problem and the
three different virtual machines.
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Figure 8: Boxplot of energy consumption per second, in
Joules/s.

test drive are shown in Figure 7. This is due, in part,
to the fact that they take a different amount of time, so
it would be interesting to find out whether the energy
density, or the consumption of energy per second, is
similar. This is shown in Figure 8.

The interesting thing about this Figure is that the
consumption per second varies with the VM used, as
well as the size. Remarkably, deno keeps it approx-
imately constant, while bun and node exhibit a vari-
ation with the size, and not in a systematic way. It
is interesting also to note that while bun, in general,
will spend less energy for each unit of work done than
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Figure 9: Boxplot of energy consumption vs. time taken for
all three sizes and VMs.

node, it will do so at the expense of exercising the
CPU package more strenuously, spending much more
energy per second than the other two VMs.

These, however, are preliminary findings with a
test problem; we will have to design experiments for
actual operations used in EAs, which we will do next.

4 EXPERIMENTAL RESULTS

As was done in (Merelo et al., 2016), which was fo-
cused on wallclock performance, the experiments will
be focused on the key operations performed by an EA:
evaluation of fitness and ”genetic” operators like mu-
tation and crossover. What we will do is, repeating the
setup in the initial exploration, check the energy con-
sumption for the processing of 40000 chromosomes,
a number chosen to take a sizable amount of memory,
but also on the ballpark of the usual number of oper-
ations in an EA benchmark, it is also small enough
to not create garbage collection problems with the
memory, something that was detected after the ini-
tial exploration. Experiments were repeated for the
same chromosome size as before, 1024, 2048, and
4096, and for the three JS virtual machines used. Al-
though the business logic is exactly the same for the
experiments, the script run comes in two versions, one
for deno and the other for bun/node, due to the dif-
ferent way they have of reading command-line argu-
ments. This does not affect the overhead in any way.
Code, as well as the data resulted from the experi-
ments and analyzed in this paper, are released with a
free license (along with this paper) from the reposi-
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Figure 10: Boxplot of PKG measurements OneMax prob-
lem and the three different virtual machines.

tory https://github.com/JJ/energy-ga-icsoft-2023.
First, we will evaluate a typical fitness function,

OneMax, which counts the number of ones in a bi-
nary (1s and 0s) string. This type of functions, which
check the values of bits in a string and assign an inte-
ger value to it are typical of many papers focused on
evaluating EAs, including parallel versions (Merelo
Guervós and Valdez, 2018).

The results are shown in Figure 9. This already
shows that time, as well as energy consumption,
for node is higher; just check the separation of the
squares representing individual experiments in that
interpreter to the rest of the values for the same color;
this separation increases with chromosome size. But
this paper focuses on energy consumption, which we
summarize next in Figure 10.

The figure shows the almost-flat growth of energy
consumption for bun. How consumption grows for
deno is weird, since it takes less energy when the
chromosome is bigger (4096). Once again, node is
the bigger energy guzzler, consuming up to 3 times
more than deno on average, and more than 6 times
as much as bun. We will see how this is reflected in
monetary terms, taking into account that the cost in
Spain today is around 0.2C/kWh. This cost, shown
in table 1, reaches almost one-hundredth of a euro for
the most ”expensive” VM, node; that gives you an
idea of the kind of cost the algorithms have, and also
how this cost decreases almost an order of magnitude
if bun is used.

The crossover operation involves copy operations
between strings, as well as creation of new strings.
We will again generate 40K chromosomes and group

Table 1: Estimated cost of the OneMax runs for every VM
and size, in C-cents.

size VM average sd
1024 bun 0.0010921 0.0000419
1024 deno 0.0015286 0.0000730
1024 node 0.0022507 0.0002090
2048 bun 0.0014913 0.0000353
2048 deno 0.0037011 0.0003269
2048 node 0.0036966 0.0003216
4096 bun 0.0016519 0.0001929
4096 deno 0.0031257 0.0000933
4096 node 0.0094820 0.0010450
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Figure 11: PKG consumption, in Joules, vs. time in sec-
onds, for the crossover and the three different virtual ma-
chines.

them in pairs; these strings will be crossed by inter-
changing a random fragment from one to the other
and back. The resulting pairs will be stored in an ar-
ray, which is eventually printed. The result of every
experiment is shown in an energy vs. wallclock time
chart in Figure 11.

The scenario is remarkably similar to the one
shown in Figure 9. In the two cases, bun achieves
the top performance and lowest energy consumption,
and node is the worst. Average energy consumption
is shown as a boxplot in Figure 12.

Here we can see again the surprising fact that deno
takes the same amount of energy, on average, as node
for size 2048, in a similar case to what happened for
OneMax (shown in Figure 10). The difference be-
tween the thriftiest, bun, and the heaviest consumer,
node, is approximately three times, in this case, less
than in the case of the OneMax fitness function.

Given that the results for the two EA-specific
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Figure 12: Boxplot of PKG measurements for the crossover
operator and the three different virtual machines.

functions, as well as the test function, are quite con-
clusive, we should not expect anything different from
the mutation function, so we will leave the experi-
ments at these two, and proceed to the conclusions.

5 CONCLUSIONS

In this paper, we set out to study the energy effi-
ciency of different JavaScript interpreters in EA work-
loads, by studying how short scripts that are exten-
sively used in implementations of these algorithms
work and how these energy expenses scale with the
chromosome size. We have developed a methodol-
ogy to accurately measure per-process consumption;
we have also adopted a tool, pinpoint, that is able to
give good estimations of sensor readings, discarding
experiments where that estimation was not adequate;
this tool has been calibrated by comparing its read-
ings with other tools, which were also evaluated for
the same purpose and eventually discarded. We have
also adopted a benchmark-based approach, similar to
the one used to measure performance, so that con-
sumption for specific operations can be pinpointed,
discarding noise produced by an implementation of a
complete algorithm; that is, a whole program includes
different operations, applied in different proportion,
that might cancel each other. Testing short code paths,
as proposed by (Hähnel et al., 2012) makes easier to
understand their individual contribution to the over-
all consumption of the algorithm, and eventually op-
timize their specific code, or the number of times they
are applied in the algorithm.

During the exploratory data analysis, we have es-
tablished that, in Linux machines, pinpoint can be
profitably used to measure per-process energy con-
sumption, as long as these measurements are repeated
and the process themselves include short snippets of
business logic; this tool should be preferred over oth-
ers that are either less accurate or simply take into
account different aspects of energy consumption.

The main point of this paper, however, was to
check which JavaScript interpreter should be used if
our objective is to consume the minimum amount of
energy; the experiments have reliably confirmed bun
to be that tool. Not only it consumes less for all
the range of chromosome sizes used; it also takes
less time and can run applications written for Node
(mostly) unmodified; its consumption also scales bet-
ter with problem size. This might be due to design
considerations, but also to the fact that the language
used to write it, Zig, emphasizes compile-time safety
and manual memory allocation by default, and avoids
hidden control flow. The only inconvenience of this
interpreter is that it has not reached version 1.0 yet,
being currently in version 0.5.9; this might prevent
any company or organization from using it in produc-
tion environments.

If that is an issue, deno might be a good alterna-
tive. Except in a specific case, it is going to be faster
and consume less energy than node, even more so
when memory requirements are high. According to
our initial exploration, it will also consume less en-
ergy per second, thus for workloads that take roughly
the same time, it will be a better candidate than node.
As an inconvenience, it needs minor modifications to
run, at least if you need core or other kind of exter-
nal libraries; its core library modules are different to
those used in node/bun, although that need not be a
disadvantage per se.

The previous two points imply that, energy-wise,
there are no good reasons to use node.js for running
EAs. Except if the business logic uses specific, early-
adoption, or some features that, for some reason, does
not work with bun yet, we would advise anyone to
keep using bun for this kind of workloads.

As we have indicated in the experimental session,
the wide advantage that bun has over the other inter-
preters does not leave much room for adopting dif-
ferent benchmarks that could make that ranking vary;
at any rate, these experiments have shown how much
faster and energy-saving bun is (from 1/3 to 1/6 the
energy consumed by node), but it would be interest-
ing to know what happens to this gap under different
operations like selection or different kind of mutation.
At the same time, even if EAs are mostly GPU-free,
there are some fitness functions that operate on float-
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ing point numbers and thus would need to use the
GPU; how interpreters work in this area could be an
interesting future line of work. This, along with test-
ing different versions of the interpreters as they are
published, will be the subject of future research.
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Khan, K. N., Nybäck, F., Ou, Z., Nurminen, J. K., Niemi,
T., Eulisse, G., Elmer, P., and Abdurachmanov, D.
(2015). Energy profiling using IgProf. In 2015
15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 1115–1118. IEEE.

Koomey, J. G., Berard, S., Sanchez, M., and Wong, H.
(2011). Web extra appendix: implications of historical
trends in the electrical efficiency of computing. IEEE
Annals of the History of Computing, 33(3):S1–S30.

Kurp, P. (2008). Green computing. Communications of the
ACM, 51(10):11–13.
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