
Multi-Output Learning for Predicting Evaluation and Reopening of
GitHub Pull Requests on Open-Source Projects

Peerachai Banyongrakkul and Suronapee Phoomvuthisarn
Department of Statistics, Chulalongkorn University, Bangkok, Thailand

Keywords: Pull-Based Development, Pull Request, GitHub, Deep Learning, Multi-Output Learning, Classification.

Abstract: GitHub’s pull-based development model is widely used by software development teams to manage software
complexity. Contributors create pull requests for merging changes into the main codebase, and integrators
review these requests to maintain quality and stability. However, a high volume of pull requests can over-
whelm integrators, causing feedback delays. Previous studies have built predictive models using traditional
machine learning techniques with tabular data, but these may lose meaningful information. Additionally, rely-
ing solely on acceptance and latency predictions may not be sufficient for integrators. Reopened pull requests
can add maintenance costs and burden already-busy developers. This paper proposes a novel multi-output
deep learning-based approach that early predicts acceptance, latency, and reopening of pull requests, effec-
tively handling various data sources, including tabular and textual data. Our approach also applies SMOTE
and VAE techniques to address the highly imbalanced nature of the pull request reopening. We evaluate our
approach on 143,886 pull requests from 54 open-source projects across four well-known programming lan-
guages. The experimental results show that our approach significantly outperforms the randomized baseline.
Moreover, our approach improves accuracy by 8.68%, precision by 1.01%, recall by 11.49%, and F1-score
by 6.77% in acceptance prediction, and MMAE by 6.07% in latency prediction, while improving balanced
accuracy by 9.43%, AUC by 9.37%, and TPR by 30.07% in reopening prediction over the existing approach.

1 INTRODUCTION

In recent decades, open-source software projects have
adopted the pull-based development model (Bird
et al., 2009), enabled by GitHub1 to allow contrib-
utors to make software changes in a flexible and effi-
cient manner (Gousios et al., 2016) via a pull request.
The project’s integrators are responsible for evaluat-
ing the pull request and deciding whether to accept or
reject the changes. The role of integrators is crucial in
the pull-based model (Dabbish et al., 2013) because
they must not only make important decisions but also
ensure that pull requests are evaluated in a timely mat-
ter. In popular projects, the volume of incoming pull
requests is too large (Tsay et al., 2014). Therefore, it
may increase the burden on already-busy integrators
(Gousios et al., 2015) and cause contributors to expe-
rience delayed feedback (Gousios et al., 2016).

Thus, several studies using machine learning and
statistical techniques have been proposed to support
the pull-based model, especially integrators. There
have been two main ways to study the pull request

1https://github.com/

evaluation, consisting of the decision to merge (i.e.,
acceptance) and the merging time (i.e., latency).
Most works have investigated factors influencing ac-
ceptance (Gousios et al., 2014; Tsay et al., 2014;
Soares et al., 2015; Ortu et al., 2020; Zhang et al.,
2022) and latency (Gousios et al., 2014; Yu et al.,
2015; Zhang et al., 2021), while a few works have fo-
cused on building a prediction model for acceptance
(Nikhil Khadke, 2012; Chen et al., 2019; Jiang et al.,
2020) and latency (de Lima Júnior et al., 2021).

Acceptance and latency seem to be insufficient
for the pull request evaluation. After a pull request
is closed by an integrator, in some cases, it may be
opened again for further modification and code re-
view (Mohamed et al., 2018). This pull request is
called a reopened pull request. Even though reopened
pull requests rarely happen (Jiang et al., 2019), they
may create conflicts with newly submitted pull re-
quests (McKee et al., 2017), add software mainte-
nance costs, and increase the burden for already-busy
developers (Mohamed et al., 2018). Two studies (Mo-
hamed et al., 2018; Mohamed et al., 2020) have de-
veloped models for predicting reopened pull requests,

Banyongrakkul, P. and Phoomvuthisarn, S.
Multi-Output Learning for Predicting Evaluation and Reopening of GitHub Pull Requests on Open-Source Projects.
DOI: 10.5220/0012125200003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 163-174
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

163

but they make predictions at the first decision, which
may be too late. Integrators would benefit from ear-
lier prediction results to identify pull requests more
likely to be reopened and come up with timely solu-
tions. However, early prediction is very challenging
due to limited available information. If only common
tabular features that are available, similar to existing
approaches, are used, it may not be sufficient to create
accurate predictions.

In this paper, we introduce a novel multi-output
deep learning-based approach that predicts accep-
tance, latency, and reopening of pull requests at the
time of submission. Specifically, the predictions can
be generated and provided to integrators as feedback
immediately after the pull request is created. We
make use of deep learning to focus on automating and
enhancing performance while overcoming the lim-
ited information available at submission time and the
highly imbalanced nature of reopened pull requests.
In particular, to tackle the limited information, we in-
corporate both tabular data and textual data from the
pull request description and handle the nature of the
text by using various pre-trained models. To over-
come the highly imbalanced nature, we employ a
combination of SMOTE and VAE techniques.

In addition, we address the relationship between
pull request outputs, as previous research has shown
that reopened pull requests have lower acceptance
rates and longer evaluation times than non-reopened
ones (Soares et al., 2015; Jiang et al., 2019) by shar-
ing learning between outputs. Regarding the method-
ologies, we address a gap in pull request prediction
research by using a programming language-specific
experimental setting that balances specificity and gen-
eralization. It avoids the cold-start problem for new
projects and overly generalized models, which has
been a limitation in prior research that evaluated mod-
els at the project or all-in-one level. Also, previous
studies have highlighted the significance of program-
ming language in pull request evaluation (Rahman
and Roy, 2014; Soares et al., 2015).

We perform extensive experiments on four
widely-known programming languages including,
Python, R, Java, and Ruby, along with popular open-
source software projects that follow the pull-based de-
velopment model on GitHub. Our approach outper-
forms the randomized baseline, achieving impressive
results on average. We obtain an accuracy of 0.762, a
precision of 0.878, a recall of 0.791, and an F1-score
of 0.832 in acceptance prediction, while we yield an
MMAE of 1.163 in latency prediction. For reopen-
ing prediction, we achieve a balanced accuracy of
0.618, an AUC of 0.689, and a TPR of 0.694. The
experimental results demonstrate the effectiveness of

our approach in validating the main contribution of
this paper. Notably, our approach exhibits signifi-
cant improvements over an existing approach, with
enhancements of 8.68% in accuracy, 1.01% in pre-
cision, 11.49% in recall, 6.77% in F1-score, 6.07% in
MMAE, 9.43% in balanced accuracy, 9.37% in AUC,
and 30.07% in TPR. These findings provide strong
evidence that our approach effectively improves the
predictive performance in the context of pull request
evaluation and pull request reopening.

2 BACKGROUND & RELATED
WORK

In this section, we provide background information
on the pull-based development model, followed by a
comprehensive review of the existing literature.

2.1 Pull Request Workflow

Figure 1 shows GitHub’s pull-based development
workflow that allows contributors to make changes to
an open-source project without sharing access to the
main repository. Contributors create forks and make
changes locally. When a set of changes is ready to be
submitted to the main repository, they are required to
create an event, called a pull request, to request for
review and approval by an integrator. The integra-
tor inspects the changes and provides feedback. The
contributor can make additional commits to address
feedback before approval. The integrators have the
final say in whether to accept or reject pull requests,
which can have consequences depending on their ex-
perience. While pull requests can enhance the effi-
ciency and flexibility of software development, this
workflow can increase the workload for integrators,
especially in popular projects. (Gousios et al., 2015).

2.2 Pull Request Lifecycle

There are three states of pull requests on GitHub as
shown in Figure 2, including:

• Open: the pull request has been proposed by the
contributor and is during discussions or waiting
for the integrator’s decision on whether it will be
accepted or rejected.

• Merged: the integrator approves the changes in
the pull request and merges them with the main
branch, thus closing the pull request.

• Closed: the integrator is not satisfied with the
changes and closes the pull request by rejecting
it.

ICSOFT 2023 - 18th International Conference on Software Technologies

164

Figure 1: An overview of Github’s pull-based development workflow.

Figure 2: Pull request lifecycle on GitHub.

Pull requests, however, sometimes remain open
indefinitely because the integrators are too busy or
do not want to discourage the contributor by explic-
itly rejecting the pull request. In addition to the
states above, pull requests can be reopened after be-
ing closed when the decision is changed, or further
code review is required. The contributor can attempt
further updates to reopen the review process, which
may lead to a new decision from the integrator. These
pull requests are called reopened pull requests. Re-
opening a pull request is considered a risk because
it can cause the integrator to take more effort (e.g.,
add software maintenance costs and increase the bur-
den for an already busy integrator) (Jiang et al., 2019).
Moreover, it may cause conflicts with newly submit-
ted pull requests if pull requests are reopened a long
time after being closed (McKee et al., 2017). There-
fore, the notification of pull request evaluation and
pull request reopening can benefit integrators by en-
couraging timely decisions, prioritizing pull requests,
and speeding up the review process, which can lead
to accelerated software product development.

2.3 Pull Request Evaluation

Therefore, identifying the quality of pull requests is
important, and this is called pull request evaluation.
Evaluating pull requests is a complex iterative process
involving multiple stakeholders. Currently, there are
two key aspects of evaluation that researchers study,
which are acceptance and latency (Yu et al., 2015).

2.3.1 Acceptance

Works focusing on the pull request acceptance study
the factors influencing the decision of integrators on
whether to accept or reject pull requests. For exam-
ple, the work in (Gousios et al., 2014) found that the
acceptance is primarily influenced by whether the pull
request modifies recently modified code through Ran-
dom Forest. With the multidimensional association
rule, the work in (Soares et al., 2015) determined fac-
tors, including programming languages, that increase
the likelihood of a pull request merge. Other works
have studied social and technical factors, such as
comments affect metrics (Tsay et al., 2014) and con-
tributor experience and politeness (Ortu et al., 2020),
using logistic regression model. The work in (Zhang
et al., 2022) conducted a comprehensive analysis of
factors gathered from a systematic literature review
through statistical methods.

Aside from the works focusing on the influ-
encing factors, a few studies concentrate on build-
ing a high-quality predictive model. The works in
(Nikhil Khadke, 2012) and (Jiang et al., 2020) used
machine learning to achieve high accuracy in pre-
dicting pull request acceptance, with Random Forest
and XGBoost being the most effective algorithms, re-
spectively. The approach by (Jiang et al., 2020) was
claimed that it outperformed the previous approach,
by (Gousios et al., 2014), which employed Random
Forest as their best classifier. Another work is (Chen
et al., 2019) which derived new features to build the
predictive model from crowdsourcing.

2.3.2 Latency

Researchers focusing on pull request latency explore
the factors influencing the latency and estimate the
lifetime. The work in (Gousios et al., 2014) divided
the pull request lifetime into three classes and used the
Random Forest model to study pull request latency,
finding that the contributor’s merge percentage affects

Multi-Output Learning for Predicting Evaluation and Reopening of GitHub Pull Requests on Open-Source Projects

165

integration time. Logistic regression was employed in
(Yu et al., 2015) to model latency in GitHub projects
with continuous integration, and process-related fac-
tors were found to be more important when a pull re-
quest was closed.

The work in (Zhang et al., 2021) also used lin-
ear regression to study latency and found that the rel-
ative importance of factors varied depending on the
context, with process-related factors being more im-
portant when the pull request was closed. The work in
(de Lima Júnior et al., 2021) used regression and clas-
sification techniques to evaluate pull requests, finding
that linear regression worked best for regression while
Random Forest was best for classification. Moreover,
the relationship between acceptance and latency is
studied in (Soares et al., 2015). They found that an
increase in the evaluation time for a pull request re-
duces the chances of its acceptance.

2.4 Pull Request Reopening

To the best of our knowledge, there are only a few
works related to reopening pull requests. Mohamed
et al. (Mohamed et al., 2018) designed an approach
named DTPre to predict reopened pull requests af-
ter their first decision, which used oversampling to
handle imbalanced datasets. They evaluated DTPre
using four different classifiers on seven open-source
GitHub projects, finding that Decision Tree with over-
sampling was the best approach. The recent work
(Mohamed et al., 2020) by the same research team,
Mohamed et al., extended their work by performing
further cross-project experiments on reopened pull re-
quest prediction through the same dataset. Their ob-
jective was to handle the cold-start problem for new
software projects that have a limited number of pull
requests. Another study by (Jiang et al., 2019) investi-
gated the impact of reopened pull requests on code re-
view and found that reopened pull requests had lower
acceptance rates, longer evaluation time, and more
comments than non-reopened ones.

2.5 Gaps in Literature

The existing literature on pull request evaluation has
primarily focused on factors influencing acceptance
and latency. The studies have examined various
technical and social factors using traditional machine
learning methods to build predictive models. How-
ever, there is limited research on the topic of pull re-
quest reopening, which can have a negative impact
on software teams. Additionally, there is a lack of
models that provide timely predictions for integrators
immediately after a pull request is created. Another

gap is that text data from the pull request description
and the imbalanced nature of reopened pull requests
have not been effectively handled. The relationship
between pull request outputs, such as acceptance, la-
tency, and reopening, also needs to be addressed. Fur-
thermore, prior research on pull request prediction has
typically evaluated models at either the project or all-
in-one level, which can result in a cold-start problem
for new projects or overly generalized models. There-
fore, there is a gap in the literature in terms of using a
programming language-specific experimental setting
to balance specificity and generalization, which can
improve the applicability and relevance of the models
in real-world software development scenarios.

3 DATASET

This section describes the dataset used in this empiri-
cal study, including the process of data collection and
data labeling.

3.1 Overview of Dataset

We used GitHub data from well-known open-source
projects developed under popular programming lan-
guages. To collect the data and build our dataset,
we employed GitHub REST APIs and a web scraping
tool. Finally, we filtered the data to derive the final set
of data, consisting of 143,886 pull requests (samples)
from 54 open-source projects across four program-
ming languages (i.e., Python, R, Java, and Ruby). The
pull requests that we collected were created from Aug
2010 to Aug 2022. Table 1 illustrates our dataset, in-
cluding an overview of programming language char-
acteristics and summarizing the statistical character-
istics of the dataset for each language. As can be seen
from the table, it appears that we can categorize the
languages into two groups: a small community and
a big community. Python and R belong to the small
community group, while the rest fall into the big one.

3.2 Pull Request Collection

Our data were collected from two sources: the GitHub
server and the GitHub website, using GitHub REST
APIs and Selenium via Python scripts. We considered
only pull requests with a closed status to ensure that
they have been decided upon. Initially, we collected
the 100 most starred open-source projects written in
each programming language. Stargazer counts are
commonly used by researchers as a proxy for project
popularity (Papamichail et al., 2016). To ensure that
our dataset comprised relevant projects, we applied a

ICSOFT 2023 - 18th International Conference on Software Technologies

166

Table 1: Descriptive statistical information of our pull request dataset.

Language
Overview # Pull Requests / Project

Projects # Pull Requests Min Med Max Mean SD

Python 11 9,773 173.00 764.00 2,574.00 888.45 693.12
R 12 8,310 150.00 456.00 1,706.00 755.45 557.19
Java 12 29,202 504.00 1,247.00 6,636.00 2,433.50 2,055.49
Ruby 19 96,601 662.00 3,760.00 13,431.00 5,084.26 3,864.15

TOTAL 54 143,886

Figure 3: An example of a pull request on GitHub.

second filter based on metrics such as the number of
open issues, fork status, number of forks, number of
total commits, number of contributors, and number of
pull requests. The projects included in our dataset had
to meet the following criteria:

• Not a fork version of another project.

• Not a documentation project.

• Have a number of open issues, number of total
commits, number of contributors, and number of
pull requests greater than or equal to the median
of these metrics.

3.3 Pull Request Labeling

Figure 3 displays an example of a pull request in the
Ruby project. Due to the purpose of the demonstra-
tion, the figure has been edited and we mainly show
some important parts of the pull request. The title
and body indicate that the contributor, Mr.A, pro-
posed changes to fix an issue related to load error.

Initially, the integrator, Mr.B, rejected the pull request
as it seemed unrelated to Ruby. However, he later
reopened it as some parts seemed reasonable. The
pull request was then reviewed by another integrator,
Mr.C, who accepted it. This example highlights the
risks involved in reopening pull requests when an in-
tegrator’s initial decision is impaired due to various
factors. Thus, early recognition of such risks could
help integrators make more effective decisions.

To formulate our predictive problem, we denote
tpred as the reference point to the pull request sub-
mission time at which a prediction is made for a pull
request (i.e., prediction time). We would like to de-
velop a classification approach that can predict three
outputs: 1) acceptance, 2) latency, and 3) reopening
for a pull request at time tpred . To be more specific,
the prediction outcomes would be made using only
information available at tpred .

1) Acceptance: This reflects the decision of an in-
tegrator on whether a pull request is accepted or
rejected in the final close. There are two nominal
classes for acceptance which are Accepted: a pull
request is accepted to merge into the main branch
and Rejected: a pull request is rejected to merge
into the main branch.

2) Latency: This reflects the time difference be-
tween the pull request submission and the final
close (i.e., lifetime). We employ the way to dis-
cretize the lifetime from (de Lima Júnior et al.,
2021) where the magnitude is maintained. We
classify latency into five ordinal classes which are
Hour: lifetime ≤ 60 mins, Day: 60 mins < life-
time ≤ 24 hours, Week: 24 hours < lifetime ≤ 7
days, Month: 7 days < lifetime ≤ 4 weeks, and
GTMonth: lifetime ≥ 4 weeks.

3) Reopening: this reflects the reopening status of
a pull request, showing whether it has been re-
opened. The reopening task can be considered a
problem of anomaly detection due to the highly
imbalanced nature of the data. In this context, the
number of instances in the positive class (i.e., pull
requests that are likely to be reopened) is much

Multi-Output Learning for Predicting Evaluation and Reopening of GitHub Pull Requests on Open-Source Projects

167

smaller than the number of instances in the nega-
tive class (i.e., pull requests that are likely to be
closed). There are two nominal classes for the
reopening output which are Reopened: a pull re-
quest has been reopened at least once and NonRe-
opened: a pull request has never been reopened.

In the case of the pull request ID 2702, tpred is
2:36 PM, 27 Nov 2019. The information available at
2:36 PM, 27 Nov 2019 is used to predict three out-
comes of this pull request which are Accepted for the
acceptance output, GTMonth for the latency output,
and Reopened for the reopening output.

4 OUR APPROACH

This section presents our proposed approach for pre-
dicting pull request evaluation and reopening. We will
discuss overview of our approach and two main pro-
cesses which are feature extraction and modeling.

4.1 Overview of Our Approach

Our proposed approach is a deep learning-based clas-
sification approach for predicting acceptance, latency,
and reopening of pull requests. Figure 4 shows an
overview framework of our approach, which is di-
vided into two phases: the training phase and the ex-
ecution phase. The training phase involves using his-
torical pull requests to build predictive models. To ex-
tract features, we categorize the information of a pull
request into two groups: tabular data (represented
in blue color) and textual data (represented in green
color). Tabular data is structured data that can be ex-
tracted using common feature extraction techniques,
resulting in numerical or categorical features. Textual
data is unstructured data that require advanced learn-
ing techniques to extract meaningful features. Then,
oversampling is performed to handle the imbalanced
data in the reopening task. Our approach utilizes both
types of data (X) along with their corresponding out-
comes (Y) to train predictive models using deep learn-
ing techniques. The execution phase involves em-
ploying the trained models from the training phase to
predict three outcomes: acceptance, latency, and re-
opening, for a new pull request. From the fact that
reopening always occurs before pull request evalua-
tion and may have an impact on the other outcomes,
our approach predicts the reopening output first. This
predicted reopening output is then used as a feature
along with the other input features to predict the ac-
ceptance and latency of the pull request.

4.2 Feature Extraction

Our approach incorporates two types of feature: tab-
ular features and textual features. These features play
a crucial role in capturing relevant information from
pull requests and facilitating accurate prediction.

4.2.1 Tabular Features

A project repository and a pull request contain many
valuable attributes that can be extracted and utilized
as features to characterize the pull request. Com-
mon feature extraction techniques, such as counting,
summation, subtraction, and ratio calculation, are de-
ployed based on the attributes of the pull request. The
set of tabular features used in our approach is de-
rived from the features employed by previous works
related to prediction (Gousios et al., 2014; Jiang et al.,
2020; Mohamed et al., 2018; Mohamed et al., 2020;
de Lima Júnior et al., 2021). It is worth noting that
the features are extracted at the time of pull request
submission (tpred), so certain features that appear af-
ter submission are not available, such as the number
of comments and the number of participants.

4.2.2 Textual Features

A pull request usually contains two pieces of tex-
tual information: the title and the body. Contribu-
tors use these to summarize and describe the proposed
changes. For example, in pull request ID 2702, the ti-
tle is “Fix load error” and the body is “This is a fix
related to the following issue. rails/rails#33464 My
solution is to wait a monument if the required relative
file is busy.” The title and body can reflect the nature
of a pull request, such as the details of a review task
and the complexity of the task. Therefore, a well-
crafted title and body can reduce the integrator’s ef-
fort in executing the review task. However, they have
not been taken seriously for use as a pull request pre-
dictor in the past. Thus, we use the text as one of our
features to characterize our pull request.

In order to use text in machine learning, it must
be converted into numerical vectors. Traditional
methods like Bag of Words (BoW), N-Gram, and
Term Frequency-Inverse Document Frequency (TF-
IDF) suffer from sparsity and lose the sequential na-
ture of text (Jurafsky and Martin, 2009). Advanced
deep learning techniques, such as pre-trained word
embeddings, are capable of handling sequential data
with complex dependencies. To address this task, we
consider three state-of-the-art pre-trained word em-
beddings: Word2Vec (Mikolov and Others, 2013),
FastText (Bojanowski et al., 2016), and BERT (De-
vlin et al., 2019) in this study.

ICSOFT 2023 - 18th International Conference on Software Technologies

168

Figure 4: An overview framework of our proposed approach.

Word2Vec, developed by Google, is trained on
the Google News corpus and generates meaningful
fix-length vector representations for unique words.
However, it is context-independent and cannot dif-
ferentiate the same word in different contexts. Fast-
Text, developed by Facebook AI Research, handles
subword information and is better for rare or un-
known words. It uses N-Grams, character sequences
in words, to represent subwords. BERT is a recent
transformer-based technique that achieves state-of-
the-art performance on several natural language un-
derstanding (NLU) tasks. Unlike previous static em-
beddings, BERT offers context-dependent or seman-
tic embeddings, producing multiple vector represen-
tations for a given word based on its surrounding con-
text.

To prepare the input of the pre-trained models, we
combine two titles and one body, giving additional
weight to the title (i.e., Text = Title + Title + Body).
The text inputs undergo preprocessing, such as lower-
case conversion, punctuation cleansing, and tokeniza-
tion. During embedding, a fix-length vector represen-
tation is generated for each token. Ultimately, we em-
ploy the average pooling technique to derive the final
vector representation of the entire text.

4.3 Modeling

To simulate the real situation and address the rela-
tionship between pull request reopening and evalua-
tion, we separate modeling into two main stages: the
reopening stage and the evaluation stage. More pre-
cisely, the reopening output is predicted first, and it is
used as one of the features to predict the pull request
evaluation.

4.3.1 Reopening Stage

In the reopening stage, we follow a three-stage pro-
cess of feature extraction, oversampling, and classifi-
cation (see Figure 5). We begin by combining tabular

and textual features extracted by pre-trained word em-
bedding, as detailed in the previous section. However,
since the data is highly imbalanced, with a majority of
non-reopening samples and a minority of reopening
samples, we use the Variational Autoencoder (VAE)
to generate additional reopening samples in order to
achieve balance with the non-reopening samples.

VAE is a generative model that can learn to ap-
proximate a probability distribution of input data by
encoding them into a lower-dimensional latent space
and then decoding them back to the original data
space. By sampling from the learned latent space,
VAE can generate new data points that are similar to
the original data, effectively increasing the size of the
dataset. To ensure that we have enough reopening
samples for training the VAE, we first use the Syn-
thetic Minority Over-sampling Technique (SMOTE)
to upsample the positive class (i.e., Reopened class).
Next, we train our VAE exclusively on pull requests
with the Reopened class. We use the decoder part of
the trained VAE to generate reopening samples by in-
troducing random noise from a normal distribution.
These generated samples are mixed with the original
ones and used to train a deep neural network (DNN)
to predict the probability of reopening as output. The
number of samples is balanced through the oversam-
pling in the training set only.

4.3.2 Evaluation Stage

During the evaluation stage, we extract features from
the pull request description and other relevant data,
similar to the feature extraction process used in the
reopening stage (without oversampling). We combine
these features with the reopening probability obtained
from the reopening stage. A DNN is then trained to
predict two outputs: acceptance and latency of the
pull request. The approach used in the evaluation
stage is depicted in Figure 6.

The architecture utilized for the DNNs in both
stages is a very common feedforward neural network,

Multi-Output Learning for Predicting Evaluation and Reopening of GitHub Pull Requests on Open-Source Projects

169

Figure 5: A model architecture of the reopening stage of
our approach.

Figure 6: A model architecture of the evaluation stage of
our approach.

consisting of an input layer, a normalization layer, fol-
lowed by multiple blocks of dense layers and dropout
layers, and an output layer. The key distinction is that
the DNN in the reopening stage solely predicts the
reopening output, while the DNN in the evaluation
stage is a multi-output DNN that predicts the accep-
tance and latency outputs using shared learning.

5 EVALUATION

In this section, we conduct a comprehensive evalu-
ation of our approach. We will outline the research
questions guiding our evaluation, define the perfor-
mance measures used, and describe the experimental
settings employed for the evaluation.

5.1 Research Questions

In this study, we aim to answer two research ques-
tions through our empirical evaluation, which seeks
to provide insights into the effectiveness of our pro-
posed approach in predicting pull request evaluation
and reopening.
RQ1: Sanity Check (Is the proposed approach suit-
able to early predict pull request evaluation and pull
request reopening?)

This aims to perform a sanity check on the suit-
ability of our approach in predicting pull request eval-
uation and reopening at the submission time. To ad-
dress this, we compare the performance of our ap-
proach against a randomized algorithm. Conducting
a sanity check using a rule-based model is a common
practice in software engineering research (Al-Zubaidi
et al., 2018; Shepperd and MacDonell, 2012; Sarro
et al., 2016). We repeat the random guessing process
5000 times and take the average performance to en-
sure statistical significance. Our approach should sur-
pass the baseline, which relies on random guessing,
to demonstrate its suitability for the early prediction
of pull request evaluation and pull request reopening.
RQ2: Does the proposed approach outperform the
existing approach?

The objective of this research question is to com-
pare the predictive performance between the exist-
ing approach and our approach. Due to the fact that
no existing approach predicts in the same manner as
our proposed approach, we utilize an alternative ap-
proach. The alternative approach incorporates tab-
ular features, feature selection techniques, and tra-
ditional machine learning-based single-output clas-
sifiers, such as Decision Tree, Random Forest, and
XGBoost, which have been recognized as the best
performers in previous studies (Gousios et al., 2014;
Jiang et al., 2020; Mohamed et al., 2018; Mohamed
et al., 2020; de Lima Júnior et al., 2021), to repre-
sent the existing approaches. The performance of our
approach should be better than the existing approach
to indicate that textual features extracted from the
pre-trained model, our oversampling technique (i.e.,
SMOTE combined with VAE), shared learning, and
deep learning classifiers can overcome the challenges,
posed by the limited information available at the time
of submission and highly imbalanced data, as well as
improve the performance for the prediction of pull re-
quest evaluation and pull request reopening.

5.2 Performance Measures

To measure the predictive performance of the ap-
proaches, we use common binary classification met-

ICSOFT 2023 - 18th International Conference on Software Technologies

170

rics, such as, accuracy, precision, recall, F1-score, and
AUC for the acceptance task. However, we applied
Macro-Averaged Absolute Error (MMAE) for the la-
tency task because it can assess the distance between
an actual class and a predicted one. It can also be ap-
plied to the imbalanced multi-class classification be-
cause of the macro-averaged technique. MMAE has
been used in many research works (Baccianella et al.,
2009; Choetkiertikul et al., 2018; Wattanakriengkrai
et al., 2019) to tackle the ordinal multi-class classi-
fication problem. Note that for the MMAE metric,
lower values indicate better performance. The for-
mula of MMAE is defined in Equation 1 where K is a
set of classes, |K| is the number of classes, k is a class
within K, yi is the true class, and nk is the number of
true classes with class k. σ is the indicator function.

MMAE =
1
|K|

K

∑
k=1

1
nk

n

∑
i=1

|ŷi − k|σ[yi = k] (1)

In addition, we used metrics that can handle highly
imbalanced data and enable accurate anomaly detec-
tion, such as, balanced accuracy (BA), AUC, True
Positive Rate (TPR), and False Negative Rate (FPR)
(Kale et al., 2022; Trauer et al., 2021) for the reopen-
ing task.

5.3 Experimental Setting

We split the data into three sets: training, valida-
tion, and testing, using a hold-out technique. Pull
requests were sorted by close date to ensure that the
model learned only from past data available at the
training time. Specifically, the pull requests in the
training set and the validation set were closed be-
fore the pull requests in the testing set, and the pull
requests in the training set were also terminated be-
fore the pull requests in the validation set. Since our
experiment was specific to programming languages,
we developed a separate approach for each language.
The small community programming languages used
a 60/20/20 split while the big ones used an 80/10/10
split. In our study, the training dataset was used to
train our model and we applied the validation dataset
to choose the best models as well as to tune hyper-
parameters. Lastly, the testing dataset was applied to
evaluate the performance of our model.

To ensure a fair comparison of performance, all
approaches were trained and validated on the same
experimental environment using the identical dataset
with the shared data splitting. The set of tabular fea-
tures were also shared between both the existing ap-
proach and our approach. They also shared the same
tuning hyperparameter technique, which involves us-

ing a randomized algorithm with 30 iterations. Fur-
thermore, they used the same performance metrics for
model tuning. Specifically, AUC was used for the ac-
ceptance and reopening tasks, and MMAE was used
for the latency task.

6 RESULTS

This section reports the evaluation results to answer
the research questions2. Table 2 shows the evalua-
tion results for pull request evaluation and reopening
achieved by randomized baseline, existing approach,
and our approach in four programming languages.
Results for RQ1: For the pull request evaluation,
the analysis of all associated measures (i.e., accuracy,
precision, recall, F1-score, AUC, and MMAE) sug-
gests that the predictive results obtained with our ap-
proach (Our), are better than those achieved by using
the randomized baseline (Randomized) in all cases
(24/24) consistently. Our approach improves between
43.74% (in Python) to 65.21% (in Java) in terms of
accuracy, 4.71% (in Ruby) to 60.44% (in Java) in
terms of precision, 48.31% (in Python) to 65.17% (in
Java) in terms of recall, 31.57% (in R) to 62.83% (in
Java) in terms of F1-score, 29.75% (in R) to 81.85%
(in Java) in terms of AUC, and 24.79% (in R) to
28.84% (in Java) in terms of MMAE over the base-
line.

For the pull request reopening task, our approach
outperforms the randomized baseline in most cases
(14/16) in terms of balanced accuracy, AUC, TPR,
and FPR. Our approach improves over the baseline
between 17.92% (in Java) to 28.21% (in Ruby) in
terms of balanced accuracy, 24.71% (in Java) to
46.39% (in Python) in terms of AUC, and 27.15%
(in Ruby) to 52.75% (in R) in terms of TPR, while
the results for FPR were mixed, with some cases
showing improvement and others showing a decline
compared to the baseline. Specifically, our approach
improves FPR by 19.96% (in Python) and 29.27%
(in Ruby) over the baseline, while it was unable
to improve in R and Java. Our approach achieves
the best performance in Ruby, as it consistently
outperforms the baseline in all evaluation measures.

Our proposed approach outperforms the random-
ized baseline in all four programming languages,
thus our approach is suitable for predicting pull re-
quest evaluation and reopening at the submission
time.

2All the experiments were run on Macbook Pro with
macOS Monterey Version 12.4, Apple M1 Pro chip, and
16GB RAM.

Multi-Output Learning for Predicting Evaluation and Reopening of GitHub Pull Requests on Open-Source Projects

171

Table 2: Evaluation results: Performance comparison between the randomized baseline (Randomized), the existing approach
(Existing), and our approach (Our) for predicting the pull request evaluation and reopening, reported as accuracy (Acc),
precision (P), recall (R), F1-score (F1), AUC, Macro-Averaged Absolute Error (MMAE), balanced accuracy (BA), True
Positive Rate (TPR), and False Positive Rate (FPR).

Language Approach Acceptance Latency Reopening
Acc P R F1 AUC MMAE BA AUC TPR FPR

Python
Randomized 0.500 0.771 0.500 0.607 0.500 1.599 0.500 0.500 0.500 0.500
Existing 0.681 0.878 0.681 0.767 0.708 1.270 0.618 0.705 0.500 0.264
Our 0.719 0.874 0.742 0.803 0.716 1.171 0.639 0.732 0.679 0.400

R
Randomized 0.500 0.835 0.500 0.625 0.500 1.600 0.500 0.500 0.501 0.500
Existing 0.594 0.865 0.609 0.714 0.589 1.224 0.527 0.649 0.765 0.709
Our 0.721 0.874 0.777 0.823 0.649 1.204 0.600 0.715 0.765 0.564

Java
Randomized 0.500 0.523 0.500 0.511 0.500 1.600 0.500 0.500 0.501 0.500
Existing 0.792 0.815 0.779 0.797 0.872 1.198 0.554 0.584 0.362 0.254
Our 0.826 0.839 0.826 0.832 0.909 1.139 0.590 0.624 0.700 0.515

Ruby
Randomized 0.500 0.883 0.500 0.638 0.500 1.600 0.500 0.500 0.500 0.500
Existing 0.737 0.920 0.769 0.838 0.682 1.262 0.557 0.583 0.506 0.391
Our 0.781 0.925 0.819 0.868 0.720 1.141 0.641 0.684 0.635 0.354

Results for RQ2: We compare the performance
achieved from our approach (Our) against the existing
approach (Existing). For the pull request evaluation
task, the analysis of all corresponding measures sug-
gests that our approach achieves better performance
in most cases (23/24) compared to the existing ap-
proach. Our approach improves between 4.33% (in
Java) to 21.36% (in R) in terms of accuracy, 0.41%
(declining in Python) to 3.01% (in Java) in terms of
precision, 5.97% (in Java) to 27.73% (in R) in terms
of recall, 3.68% (in Java) to 15.20% (in R) in terms
of F1-score, 1.13% (in Python) to 10.20% (in R) in
terms of AUC, and 1.69% (in R) to 9.62% (in Ruby)
in terms of MMAE.

For the pull request reopening task, our approach
outperforms the existing approach in most cases
(13/16) in terms of balanced accuracy, AUC, TPR,
and FPR. Our approach improves over the baseline
between 3.40% (in Python) to 15.00% (in Ruby) in
terms of balanced accuracy, 3.89% (in Python) to
17.45% (in Ruby) in terms of AUC, and 0.00% (in
R) to 92.00% (in Java) in terms of TPR, while the
results for FPR were mixed, with some cases showing
improvement and others showing a decline compared
to the existing approach. Explicitly, our approach
improves FPR by 9.63% (in Ruby) and 20.41%
(in R) over the existing approach, while showing a
decline in Python and Java. Overall, our approach
shows better performance than the existing approach.
Ruby is also the programming language where our
approach achieves the highest performance, as it
consistently outperforms the existing approach in all
evaluation measures.

Our proposed approach outperforms the existing
approach in all four programming languages. We
can, thus, conclude that textual features extracted
from the pre-trained models, our oversampling
technique, shared learning, and deep learning clas-
sifiers improve the performance for prediction of
pull request evaluation and pull request reopening.

It is noteworthy that in our reopening experiments,
we observed the FPR improvement in 14 cases over
the baseline, while we were unable to improve in two
cases. Moreover, we observed the FPR improvement
in 13 cases over the existing approach, while we were
unable to improve in three cases. However, it is cru-
cial to consider that the importance of TPR or FPR
may vary depending on the specific application and
cost associated with each project. In our study, we
have used AUC as the main evaluation metric, which
provides a balanced measure between TPR and FPR.
This allows us to account for the trade-off between
sensitivity and specificity, and strike a balance in our
analysis. Based on AUC, our results excel in all cases.

7 THREATS TO VALIDITY

In this section, we will discuss potential threats to the
validity of our research findings.
External Validity: Our study provided a broad range
of perspectives by analyzing 54 real-world well-
known open-source projects across four popular pro-
gramming languages on GitHub. However, our find-
ings may not be representative of all programming
languages and all kinds of software projects, espe-

ICSOFT 2023 - 18th International Conference on Software Technologies

172

cially in commercial settings. To address this limi-
tation, we plan to expand our experiment to a more
diverse range of projects and languages in the future.
Internal Validity: We minimized bias and errors in
our dataset and experiments by considering actual
pull request outputs from real integrators. We also
processed only the information available at the time of
pull request submission (tpred) by scraping the GitHub
website, avoiding any potential information leakage.
Construct Validity: We adopted standard evaluation
metrics commonly used in classification tasks. The
metrics have also been employed in prior software en-
gineering research to assess the effectiveness of dif-
ferent approaches, enabling us to compare and vali-
date our results. However, evaluating the reopening
prediction presents a challenge due to highly imbal-
anced data, and there is limited prior work that ad-
dresses this issue. Therefore, we employed common
metrics that have been used in other domains to assess
our approach’s performance on this task.
Conclusion Validity: We took a meticulous and cau-
tious approach when drawing conclusions based on
the extracted features from the studied project repos-
itories. However, it should be noted that the latency
may not always reflect the actual review and integra-
tion time of a pull request, as there may be other fac-
tors beyond the integration process such as the inte-
grator having a heavy workload or lack of interaction
with the contributor (de Lima Júnior et al., 2021). Ad-
ditionally, the pull request reopening may not always
indicate the actual reopening because it can occur due
to accidental closure (Jiang et al., 2019).

8 CONCLUSIONS

In this paper, we have proposed a novel deep learning-
based approach to predict pull request acceptance, la-
tency, and reopening in open-source software projects
hosted on GitHub. Our prediction is delivered at the
time of pull request submission to enable integrators
to plan their work more effectively, especially in large
projects. Our approach combines both tabular and
textual features to capture relevant information. We
leverage the state-of-the-art pre-trained models to ex-
tract the meaningful vector representation of textual
data while we utilize the SMOTE combined with VAE
as the oversampling technique. In addition, our ap-
proach incorporates shared learning and deep neural
networks to address the gaps and the challenges and to
improve the predictive performance for the prediction
of pull request evaluation and pull request reopening.

We have conducted an extensive evaluation on
four well-known programming languages, which

demonstrated that our approach significantly outper-
forms random guessing, and shows the advantages of
our approach over the existing approach. In terms of
future work, we plan to validate our approach with
a wider range of programming languages along with
larger projects, especially those in industrial settings.
We aim to explore new sources of information that
can better characterize pull requests, such as code
changes, to enhance the predictive performance, par-
ticularly for the reopening task. We plan to take the
next step in the development of our approach by inte-
grating it as a tool within the GitHub platform. This
will allow us to gather feedback from real users and
enable future analysis and refinement of the approach.

REFERENCES

Al-Zubaidi, W. H. A., Dam, H. K., Choetkiertikul, M., and
Ghose, A. (2018). Multi-Objective Iteration Plan-
ning in Agile Development. Proceedings of Asia-
Pacific Software Engineering Conference (APSEC),
2018-Decem:484–493.

Baccianella, S., Esuli, A., and Sebastiani, F. (2009). Evalua-
tion Measures for Ordinal Regression. In Proceedings
of 9th International Conference on Intelligent Systems
Design and Applications, pages 283–287, Pisa, Italy.

Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J., German,
D. M., and Devanbu, P. (2009). The promises and
perils of mining git. In Proceedings of 6th IEEE In-
ternational Working Conference on Mining Software
Repositories, pages 1–10, Vancouver, BC, Canada.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword infor-
mation. arXiv preprint arXiv:1607.04606.

Chen, D., Stolee, K., and Menzies, T. (2019). Replica-
tion can improve prior results: A github study of
pull request acceptance. In Proceedings of IEEE In-
ternational Conference on Program Comprehension,
volume 2019-May, pages 179–190, Montreal, QC,
Canada. IEEE Computer Society.

Choetkiertikul, M., Dam, H. K., Tran, T., Ghose, A., and
Grundy, J. (2018). Predicting Delivery Capability in
Iterative Software Development. IEEE Transactions
on Software Engineering, 44(6):551–573.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2013).
Leveraging transparency. IEEE Software, 30(1):37–
43.

de Lima Júnior, M. L., Soares, D., Plastino, A., and Murta,
L. (2021). Predicting the lifetime of pull requests in
open-source projects. Journal of Software: Evolution
and Process, 33(6).

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transformers
for language understanding. In Burstein, J., Doran,
C., and Solorio, T., editors, Proceedings of the 2019
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,

Multi-Output Learning for Predicting Evaluation and Reopening of GitHub Pull Requests on Open-Source Projects

173

MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186. Association for Computa-
tional Linguistics.

Gousios, G., Pinzger, M., and Deursen, A. V. (2014). An
exploratory study of the pull-based software develop-
ment model. In Proceedings of International Con-
ference on Software Engineering, number 1 in ICSE
2014, pages 345–355, Hyderabad, India. IEEE Com-
puter Society.

Gousios, G., Storey, M. A., and Bacchelli, A. (2016). Work
practices and challenges in pull-based development:
The contributor’s perspective. In Proceedings of In-
ternational Conference on Software Engineering, vol-
ume 14-22-May-2016, pages 285–296, Austin, TX,
USA. IEEE Computer Society.

Gousios, G., Zaidman, A., Storey, M.-A., and van Deursen,
A. (2015). Work Practices and Challenges in Pull-
Based Development: The Integrator’s Perspective. In
Proceedings of 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, vol-
ume 1, pages 358–368, Florence, Italy.

Jiang, J., Mohamed, A., and Zhang, L. (2019). What are the
Characteristics of Reopened Pull Requests? A Case
Study on Open Source Projects in GitHub. IEEE Ac-
cess, 7:102751–102761.

Jiang, J., teng Zheng, J., Yang, Y., and Zhang, L. (2020).
CTCPPre: A prediction method for accepted pull re-
quests in GitHub. Journal of Central South University,
27(2):449–468.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language
Processing (2nd Edition). Prentice-Hall, Inc., USA.

Kale, R., Lu, Z., Fok, K. W., and Thing, V. L. L. (2022).
A Hybrid Deep Learning Anomaly Detection Frame-
work for Intrusion Detection. In Proceedings of
IEEE 8th Intl Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE Intl Conference on
High Performance and Smart Computing, (HPSC)
and IEEE Intl Conference on Intelligent Data and Se-
curity (IDS), pages 137–142, Jinan, China.

McKee, S., Nelson, N., Sarma, A., and Dig, D. (2017). Soft-
ware Practitioner Perspectives on Merge Conflicts and
Resolutions. 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
467–478.

Mikolov, T. and Others (2013). Distributed representa-
tions of words and phrases and their compositionality.
Advances in Neural Information Processing Systems,
pages 1–9.

Mohamed, A., Zhang, L., and Jiang, J. (2020). Cross-
project reopened pull request prediction in github. In
Garcı́a-Castro, R., editor, Proceedings of The 32nd In-
ternational Conference on Software Engineering and
Knowledge Engineering, SEKE 2020, KSIR Virtual
Conference Center, USA, July 9-19, 2020, pages 435–
438, USA. KSI Research Inc.

Mohamed, A., Zhang, L., Jiang, J., and Ktob, A. (2018).
Predicting Which Pull Requests Will Get Reopened in
GitHub. In Proceedings of Asia-Pacific Software En-
gineering Conference (APSEC), volume 2018-Decem,
pages 375–385. IEEE Computer Society.

Nikhil Khadke, Ming Han Teh, M. S. (2012). Predicting
Acceptance of GitHub Pull Requests.

Ortu, M., Destefanis, G., Graziotin, D., Marchesi, M., and
Tonelli, R. (2020). How do you Propose Your Code
Changes? Empirical Analysis of Affect Metrics of
Pull Requests on GitHub. IEEE Access, 8:110897–
110907.

Papamichail, M., Diamantopoulos, T., and Symeonidis, A.
(2016). User-Perceived Source Code Quality Estima-
tion Based on Static Analysis Metrics. In Proceedings
of 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages 100–
107.

Rahman, M. M. and Roy, C. K. (2014). An insight into
the pull requests of GitHub. In Proceedings of 11th
Working Conference on Mining Software Repositories
(MSR 2014), pages 364–367. Association for Comput-
ing Machinery.

Sarro, F., Petrozziello, A., and Harman, M. (2016). Multi-
objective software effort estimation. In Proceedings
of International Conference on Software Engineering,
volume 14-22-May-, pages 619–630.

Shepperd, M. and MacDonell, S. (2012). Evaluating pre-
diction systems in software project estimation. Infor-
mation and Software Technology, 54(8):820–827.

Soares, D., Limeira, M., Murta, L., and Plastino, A. (2015).
Acceptance factors of pull requests in open-source
projects. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 1541–1546,
New York, NY, USA. Association for Computing Ma-
chinery.

Trauer, J., Pfingstl, S., Finsterer, M., and Zimmermann, M.
(2021). Improving production efficiency with a dig-
ital twin based on anomaly detection. Sustainability
(Switzerland), 13(18).

Tsay, J., Dabbish, L., and Herbsleb, J. (2014). Influence
of social and technical factors for evaluating contribu-
tion in GitHub. In Proceedings of International Con-
ference on Software Engineering, number 1 in ICSE
2014, pages 356–366, Hyderabad, India. IEEE Com-
puter Society.

Wattanakriengkrai, S., Srisermphoak, N., Sintoplertchaikul,
S., Choetkiertikul, M., Ragkhitwetsagul, C., Sunet-
nanta, T., Hata, H., and Matsumoto, K. (2019). Auto-
matic Classifying Self-Admitted Technical Debt Us-
ing N-Gram IDF. In Proceedings of the Asia-Pacific
Software Engineering Conference (APSEC), volume
2019-Decem, pages 316–322.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu,
B. (2015). Wait For It: Determinants of Pull Request
Evaluation Latency on GitHub. 2015 IEEE/ACM 12th
Working Conference on Mining Software Reposito-
ries, pages 367–371.

Zhang, X., Yu, Y., Gousios, G., and Rastogi, A. (2022). Pull
Request Decision Explained: An Empirical Overview.
IEEE Transactions on Software Engineering, 49.

Zhang, X., Yu, Y., Wang, T., Rastogi, A., and Wang, H.
(2021). Pull Request Latency Explained: An Empiri-
cal Overview. Empirical Software Engineering, 27.

ICSOFT 2023 - 18th International Conference on Software Technologies

174

