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Abstract: The increasingly popular no- or low-code paradigm is based on functional blocks connected on a graphical
interface that is accessible to many stakeholders in an application. Areas such as machine learning, DevOps,
digital twins, simulations, and video games use this technique to facilitate communication between stakehold-
ers regarding the business logic. However, the testing methods for such interfaces that connect blocks of code
through visual programming are not well studied. In this paper, we address this research gap by taking an
example from a niche domain that nevertheless allows for full generalization to other types of applications.
Our open-source tool and proposed methods are reusing existing software testing techniques, mainly those
based on fuzzing methods, and show how they can be applied to test applications defined as visual interaction
blocks. Specifically for simulation applications, but not limited to them, the automated fuzz testing processes
can serve two main purposes: (a) automatically generate tests triggered by new stakeholder changes and (b)
support tuning of different parameters with shorter processing times. We present a comprehensive motivation
plan and high-level methods that could help industry reduce the cost of testing, designing, and tuning param-
eters, as well as a preliminary evaluation.

1 INTRODUCTION

Low-code or no-code application development is de-
fined as a methodology for developing applications by
connecting blocks of operations (implemented using
classical programming methods) and data at a high
level of granularity using a mostly graphical inter-
face. The methodology is well documented by prac-
titioners in industry 1 and in the software engineering
literature (Luo et al., 2021), (Bucaioni et al., 2022),
(Waszkowski, 2019). Its advantages can be consid-
ered from several points of view. First, it allows faster
development of prototypes for new concepts and ap-
plications. This is an important aspect, as flexibil-
ity and speed in developing prototypes to full deploy-
ment are critical for companies. Multiple stakehold-
ers can participate in product development, testing,
and evaluation because the process of linking visual
blocks is much easier to understand for people who
have no knowledge of software engineering. Second,
architecture and orchestration within an application

1https://powerapps.microsoft.com/en-us/
low-code-no-code-development-platforms and
https://www.ibm.com/cloud/blog/low-code-vs-no-code

can be better explained at a very granular level and
in a graphical format. This leads to higher product
quality and easier maintainability. Last but not least,
low-level operations and legacy source code can be
hidden, which can help focus more on the high-level
processes rather than the details.

From our study, we concluded that there is cur-
rently a large gap in automated end-to-end testing of
such components. In this regard, we take a step for-
ward by focusing on the development of a framework
capable of testing and optimizing the no-/low-level
code approach for a specific domain: simulation ap-
plications. The applications that fall into this cate-
gory are diverse: entertainment, video games, simula-
tors such as car driving, airplanes, digital skills, train-
ing of various professions such as medicine, army,
pilots, etc. These are usually implemented on a set
of libraries known nowadays as engines, e.g., Un-
real Engine2, CryEngine3, Unity4. The motivation
to apply our proposed methods to this domain stems
from the fact that no-/low-code methods have been

2https://docs.unrealengine.com
3https://www.cryengine.com
4https://unity.com
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used in this sector and its tools for years. The notion
of a graphical representation that orchestrates inputs,
data, operation blocks, and produces outputs is vari-
ously named Blueprints, Schematics, or Visual Script-
ing in today’s commercial engines. In this paper we
use the first term, i.e., Blueprint. As indicated by
our surveys, their primary motivation was to encour-
age multi-stakeholder development, maintenance, and
testing of applications. Another important motivation
was to decouple the low-level parts of the source code
from the high-level logic, so that the application as a
whole would be much easier to understand, optimize,
and evolve over the years.

Software Blueprints are an important part in
the process of product development (Godoy et al.,
2019), (Noll et al., 2016). Their use can be im-
portant in both forward and reverse engineering pro-
cesses. Blueprints are used in popular applications
such as simulation and game development environ-
ments (as mentioned earlier), software in web devel-
opment such as the Ember framework5, Flask and
Python collaboration6. The purpose of their use varies
from different perspectives. For example, in simula-
tion app development, their role is to involve stake-
holders other than programmers in the development
of software products through a reusable library of im-
plemented objects and functionalities. In the area of
web development, they are typically used to gener-
ate code at runtime, i.e., blueprints function more as
templates that are used as code generators. A well-
known method for defining blueprints in software de-
velopment methodology is the use of UML diagrams
(Bergmayr et al., 2014), but more recently they can
also be defined by API functions, as in the case of
web development frameworks, or by visual scripting
in simulation engines.
Contributions. To our knowledge, our open source
framework, available at https://github.com/AGAPIA/
EBLT, is the first to address automated testing and
tuning of processes defined by graphically defined
blueprints. Some new features are given below:

• A fully functional open source solution that can au-
tomatically create functional tests without requiring
any human effort. Any other human help is optional
and can only guide the fuzzer to get faster and more
meaningful feedback. The tool is evaluated using
examples created in one of the most popular en-
gines on the market, the Unreal Engine. It was ar-
chitecturally designed to be completely decoupled
from individual projects.

5https://cli.emberjs.com/release/advanced-use/
blueprints

6https://flask.palletsprojects.com/en/2.0.x/tutorial/
views

• Identification of real industry problems, potential
use cases for scenario testing and implementation
to solve them with minimal developer effort. Con-
siderations were made after discussions and collab-
oration with our industry partners.

• An abstraction of no-/low-code (blueprints) method
definitions that can be extended to other application
types, not just simulations.

• Support for tuning simulation applications (auto-
matically determining parameters and simulation
contexts subject to some given constraints) by test
methods and agents. This would replace what tends
to be human work with machine work.

• A link between blueprint-based testing methods and
previous work in the general software testing lit-
erature, such as fuzzing methods, which form the
core of our proposed solution. More specifically,
we currently use whitebox fuzzing methods (Gode-
froid et al., 2012) along some various instructions
and strategies to prioritize tests.

The paper is organised as follows. The next sec-
tion shows how blueprints are currently used in the
simulation software industry. Section 3 describes re-
lated work in the literature. Our proposed and imple-
mented methods are presented in Section 4. A collec-
tion of preliminary evaluation results and discussions
are provided in Section 5. Finally, conclusions and
future work are constitute the last section.

2 BLUEPRINTS IN SIMULATION
SOFTWARE DEVELOPMENT -
AN INTRODUCTION

The basic idea of blueprints is to provide the same se-
mantic capabilities as the concept of object-oriented
programming in common programming languages,
but in a graphical representation that can be under-
stood and authored by various stakeholders in an ap-
plication, not just software engineers.

In engines commonly used in industry today,
blueprints are defined by a visual scripting tool that
allows stakeholders to connect code and data blocks
through a node-based interface. The data and code
blocks can either be implemented in source code by
software engineers and deployed as a reusable library
for different projects, or created hierarchically in the
visual tool by other stakeholders such as designers,
quality assurance engineers, managers, etc. The typ-
ical workflow is that programmers implement a ba-
sic block component that can be further extended by
other stakeholders
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Since these simulation engines share strong simi-
larities in the visual scripting aspects of the blueprints,
from their graphical representation to their backend
implementation, we have chosen Unreal Engine 5
for presentation purposes, since it is currently one of
the most popular engines used in both industry and
academia, and also has the advantage of being fully
open source, which supports our current development
and experimentation. Note that our proposed meth-
ods, architectures and source code abstractions are
also suitable for the interfaces of the other simulation
engines mentioned.

2.1 Authoring Blueprints

A blueprint, Fig. 1, 2, is similar to the concept of a
class in object-oriented programming (OOP) in that it
contains the following features:

• Variables (members) of any kind, either default or
user-defined by users.

• Internal (possibly hidden) functionality, i.e., encap-
sulation.

• Communication with other blueprints or compo-
nents of the system is possible as follows:

– Interfaces for function calls.
– Event-based systems, i.e. similar to the observer

pattern (Zhang et al., 2017).
– References between blueprints.

• Blueprints can be derived to create hierarchies as in
OOP, register functions to serve as constructors and
destructors, and they can define virtual functions.

One of the advantages of blueprints is that they
can present details about a class or functionality in
a graphical form that is easier even for software en-
gineers to understand, not to mention that they al-
low various stakeholders without technical expertise
to approach, build, and test these types of systems.
As shown in the examples in Fig. 1, the connected
white pins represent the connection flows (execution
flows) between nodes. When a node is executed,
the data inputs associated with it are retrieved, pop-
ulated, and then sent to the node functionality (which
can either be part of another blueprint, an internal
blueprint, or source code defined elsewhere). In this
way, blueprints can define complete logical flows that
link functions and data for development processes.
Simulation engine tools typically include tools to sup-
port debugging, similar to common programming lan-
guage IDEs, definition browsing, reference and con-
nection visualization.

2.2 Backend Support

Blueprints typically have a base of objects that are
provided in the form of a library of functionality. This
library is reusable between projects, and many in-
dependent developers have created such objects for
specific audiences (e.g., artificial intelligence, point-
cloud visualization, motion capture components, ar-
chitecture or film industries, etc.) and then uploaded
them to a public marketplace repository7. These
are implemented in common programming languages
such as C++, C#, or Python. The idea is that by
supporting reflection, developers can mark which of
their implementations, objects, function calls, and
events from the source code are publicly available to
blueprints.

3 RELATED WORK

As noted in the recent survey presented in (Politowski
et al., 2021), most simulation applications and game
developers still rely on human efforts to test games
by performing manual playtesting However, parts of
the systems can be automated, as is the case in (Padu-
raru et al., 2022), (Paduraru et al., 2021a) which use
artificial intelligence, computer vision, and behavior-
driven development (BDD) (Irshad et al., 2021) to
solve some of the problems in automating game test-
ing. Modern simulation engines have built-in capabil-
ities for creating functional tests at some level, either
through code or by inserting nodes into blueprint def-
initions that link the sequence of actions to their ex-
pected outcomes. The literature has explored support
in engines such as Unreal (Yang et al., 2019), or Unity
(Pasternak et al., 2018). However, there is no sup-
port for automated blueprint testing without human
effort, which is the novelty of our paper. Our plan is
to reuse existing work on automated agents capable
of exploring environments from 2D to 3D represen-
tation and support for guided fuzzing, and then ap-
ply these methods to our goal of automating blueprint
testability with minimal user intervention. Below, we
mention related work from the two areas that inspired
some of our component development.
Automated Game Testing Agents. Agents for driv-
ing automated tests that simulate human behavior in
simulation environments have been well studied in the
literature. The methods used by authors vary widely,
and each has been shown to be successful in niche
games. For example, the work in (Ariyurek et al.,
2021) and (Paduraru and Paduraru, 2019) uses tech-
niques such as Monte Carlo Tree Search (MCTS)

7https://www.unrealengine.com/marketplace
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(a) (b) (c)
Figure 1: Example of how blueprints are defined and used in the Unreal Engine 5 tool. For each node, the inputs are shown
on the left and the outputs on the right. The white connections between the arrows show the connections of the nodes, i.e.,
the concrete function flow. The other types of edges represent reading/writing data at the inputs or outputs of the nodes.
(a) Member variables definition inside a blueprint, containing names, variable type and visibility (public or private). (b)
Example of an event listening and response in blueprints (c) blueprint functionality to respond to a collision event and trigger
environmental changes - opening a door in this example.

Figure 2: A blueprint example showing communication be-
tween many other blueprints, similar to object-oriented sys-
tems where references to other objects are coordinated to
obtain different functionalities. In this specific case, the
input comes from two different blueprints, i.e. an anima-
tion blueprint (My AnimBlueprint), a character movement
component (Character Movement), and a member variable
called Is Crouching. After some tests consisting of Boolean
logic composed of the result of function calls (the green
functions, Is Valid, Is Flying, Is Walking,...), and by read-
ing some member variables defined in other Blueprints (Is
Interacting 01, Is Interacting 02), a final result output is ob-
tained, which decides for external systems whether the char-
acter is currently performing an action or not. The blueprint
itself can be considered a high-level utility class/function.

and behavior trees to create logical agents capable of
testing 2D or isometric types of games with limited
ranges of motion and environments.

In recent publications, Deep Reinforcement
Learning (DRL) is used to accelerate the results ob-
tained by the test agents. For example, the work in
(Zheng et al., 2019) uses DRL and evolutionary meth-
ods to optimize a set of strategies for debugging video
games by training agents in two different perspec-
tives: (a) winning the game, (b) exploring the states
of the environment as much as possible. In this com-
bination, the authors prove that for certain game gen-
res, it is possible to obtain both state and code cov-

erage detection. Using the same basic method, other
works exploit the idea of training agents by using re-
ward functions to punish their actions when they de-
viate too much from human behaviors, as shown in
(Gudmundsson et al., 2018), (Tastan and Sukthankar,
2011), and (Glavin and Madden, 2015). A novelty in
the same area, presented in (Bergdahl et al., 2020),
(Gordillo et al., 2021), (Gisslén et al., 2021), extends
the previous ideas by attempting to create a heatmap
of the situations analyzed at each point in the testing
process. Thus, the agent focuses on increasing not
only code coverage, but also physical states in the 3D
target environment. As an aside, Unity supports an
out-of-the-box solution for creating agents based on
DRL (Juliani et al., 2018). By using a modular archi-
tecture, users of our framework can switch between
these implementations depending on their needs and
available resources.
Guided Whitebox Fuzzing Techniques and Best
Practices. The type of fuzzing supported in simu-
lation engines includes the whitebox testing (Gode-
froid et al., 2012) category, as they can provide valu-
able information about the state covered by the inputs
generated by the fuzzer. This is an important aspect
to consider, as it allows the reuse of methods that al-
low orientation. Guided fuzzing has been studied in
the literature for testing general software components
and has proven successful in many applications. The
methods used to guide the fuzzer can vary depend-
ing on the purpose of the test and available compu-
tational resources. For example, fast testing methods
are based on the use of heuristics and genetic algo-
rithms ((AFL, ), (Paduraru et al., 2017)). Symbolic
execution methods that use DRL techniques are also
explored in (Böttinger et al., 2018), (Koo et al., 2019),
(Paduraru et al., 2020), (Paduraru et al., 2021b). All
these types of guidance methods can be reused in our
framework as it uses a plugin-enabled architecture.
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Figure 3: Interaction of the two main components, Fuzzer
and Executor to coordinate the automated testing processes
within our framework. The blue arrows starting from the
human actor represent the human-in-the-loop concept, i.e.,
activities where the human can play a role in defining dif-
ferent behaviors to guide the testing efforts. For example,
humans can help in selecting the agent for test execution,
configuring clusters in which the test process is executed,
and by providing hints about the input variables and their
types/ranges using our annotation support.

4 METHODS

The overall flow of the testing process is shown in
Fig. 3. There are two main components involved in
the architecture:

• Fuzzer: selects the functions and inputs for execu-
tion. Guidance methods are also included here.

• Executor: selects the agent to be used for execution
with the input values suggested by the fuzzer, and
then executes the simulation environment in one of
the available clusters. The feedback from the test-
ing process is sent back to the fuzzer so that it can
properly guide the next steps. The next section de-
scribes the implementation in detail.

4.1 Abstractization of Blueprints

Since the layouts and definitions in the graphical for-
mat of blueprints (or visual scripting, as they are
called in some of the commercial solutions used, such
as Unity) may be different, we first create an abstrac-
tion of blueprints that acts as a proxy between the sim-
ulation engines and our plugin. This way, any user or
custom simulation engine can reuse our solution.

Let us first consider a set of blueprints defined in
the framework’s shared library, Nlib, which can be im-
mediately reused by any project. The set of blueprints

that represent the specifics of a project is denoted by
Nbp. Thus, the total set of available blueprints is
N = Nlib ∪Nbp. Blueprints themselves may contain
other blueprints that construct complex data flows, but
in practice these hierarchies are manageable from the
point of view of definition (creation) using the graph-
ical editor provided. In this context, i.e., hypergraphs,
we consider each blueprint as a node with internal
data, input and output interfaces. Formally, each node
Ni ∈ N contains the following:

• Data: consisting of member variables, as in the ex-
ample in Fig. 1a shown. The set of member vari-
ables is denoted as Vars(Ni) = {mi0 ,mi1 , . . .}. Each
variable has two properties:

– VarType(mi j) ∈ Boolean, Int, Float, Vector, Ma-
trix, Actor, Arrays, or other user defined type

– Visibility(mi j) ∈ {Private,Public}.

• Functionality: Each blueprint definition
contains a set of functions Func(Ni) =
{Fi0 ,Fi1 , . . . ,F|Func(Ni)−1|}, which can be in-
terpreted as structured flow subcomponents.
Functions are represented using an operations
graph, as shown in Fig. 1b, 1c, and 2. Their role
is to specify the communication flows within a
blueprint (node) and to connect data, operations,
and nodes in an organized graphical format.
It should be noted that stateless utility type func-
tions can also be defined in the shared blocks li-
brary by software engineers and written in source
code. The input pins Inputs(F) and the output
pins Out put(F) of a function are comparable to the
arguments of a function in common programming
languages. Examples of input pins are shown on
the left side of the function Set Collision Enabled
in Fig. 1b, while output pins can be seen in Fig. 1c,
in the event node On Component Begin Overlap.
Note that a blueprint function definition can have
both input and output pins, cf. Fig. 2.

4.2 Testing and Tuning Blueprints With
Fuzzing

The inputs of any function F in a blueprint Ni can be
subjected to the component Fuzzer. As described in
Section 4.3, each function F can optionally be given
a schema for its inputs, Inputs(F), which contains
what is testable and what is not, the mocking com-
ponents, value ranges, and other valuable informa-
tion to better coordinate the fuzzing process. We de-
note by TBP = {Nt0 ,Nt1 , . . .} the set of blueprints to
be tested in a time step and by Tf unc(Nti) the set of de-
sired functions to be tested within each blueprint. As
mentioned earlier, each F ∈ Tf unc(Nti) can optionally
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contain a scheme defined as Schema(F). After apply-
ing and evaluating fuzzing methods according to the
latest software testing methods, the goal of blueprints
testing could be defined as follows:
• Achieve the best possible coverage in terms of

nodes and edges within a blueprint.
• Improve state value coverage, i.e., try to execute

nodes with different sets of input values as many
times as possible in the allowed test time window.
Listing 1: The blueprint fuzzing process pseudo code.

1func RunTests()

2 TFuncs = Fuzzer.Sample()

3 for each F in TFuncs do

4 input = Fuzzer.GetInput(F, Schema(F))

5 ExecutionModule.InjectInput(input ,F.ParentBP)

6 feedback = ExecutionModule.Run()

7 Fuzzer.UpdateState(feedback)

8 endfor

9endfunc

The high-level pseudocode of a test step is shown
in Listing. 1 in the RunTests function. Detailed strate-
gies are discussed in more detail in Section 4.4. First,
in line 2, the pseudocode collects the list of blueprints
and functions to be tested with the current evaluation
strategy. For each of these functions, the fuzzer com-
ponent retrieves an input object for its input pins in
line 4 using the internal strategy and the given schema
(if any). This input object is applied to the simulation
engine’s memory context and then executed in lines 5-
6. The feedback after the execution process contains
which nodes were touched in the last execution step
and against which new value ranges. This informa-
tion is sent back to the fuzzer component to properly
guide the testing efforts in the next time steps, line
7. The presented algorithm is parallelized in practice,
as different sampled inputs can be executed on indi-
vidual computers to obtain faster feedback. Note that,
according to our evaluation, this is the most expensive
process in testing simulation environments.

4.3 Data Schema and Mocking

The data types supported by our current implemen-
tation are user customizable. The Ob ject type is the
base class for each of these types. The default types
of the framework are: Types ∈ Int, Float, Vector2D,
Vector3D , Matrices, String, Object. For each input
of a testable function, the user can optionally spec-
ify a schema in a JSON file that contains annotations
for data types to control the work of Fuzzer in an ef-
ficient way. The annotations for each variable of the
base type, i.e. with the exception of the Ob ject type,
can be specified as follows:
• A concrete set of values to be used, e.g., for

a Vector3D type: {(X0,Y 0,Z0),(X1,Y 1,Z1), . . .},

denoting potentially different valid spawning po-
sitions of a character in the environment (X ,Y,Z)
given in 3D space.

• A concrete set of value ranges to be used, e.g., for
the same vector type: {([X0

s ,X
0
e ], [Y

0
s ,Y

0
e ], [Z

0
s ,Z

0
e ]),

([X1
s ,X

1
e ], [Y

1
s ,Y

1
e ], [Z

1
s ,Z

1
e ]), . . .}, meaning valid 3D

cube positions in the environment for a vector type.

• For string types only, a set of compatible regex pat-
terns. E.g., an acceptance criterion for email ad-
dresses or usernames.

For generic Object types, the annotations can be spec-
ified as follows:

• A concrete set of objects {O0,O1, . . .} in the envi-
ronment that can be used for this value. E.g., the
variable is a placeholder that can be filled at test
time with one of the specified vehicles in the world.

• A concrete set of classes {C0,C1, . . .} that can be
created at test time to fill the concrete value of the
variable. E.g., a vehicle class that can be filled in.
With this method, the framework searches for all
compatible objects of the compatible class along
the hierarchy and selects one of them.

This solution also solves the mocking concept in the
case of test blueprints, for example, by selecting a
concrete set of mocking objects or values for func-
tionalities that refer to external components indepen-
dent of the test purpose.

4.4 Strategies for Testing

The first part of this section discusses how the fuzzer
component selects the blueprints and functions to be
evaluated in the next test run according to the goals
set by the user, cf. Listing 1. The second part shows
how the actual input object to be injected into the ex-
ecution module is sampled.
Blueprints and Functions Prioritization. For the
selection of blueprints to be tested within a test
run, as shown in Listing 1 line 2, the framework
considers two possible strategies One is the man-
ual one, where the list of blueprint functions to be
tested and their priorities are proposed: Tf unc =
{(Ft0 , pt0),(Ft1 , pt1), . . . (Fany, pany)}. In this setup,
Fany plays the role of a wildcard, i.e., the algorithm
has the possibility to select any blueprint function
other than the concretely specified one for testing with
the specified probability. This type of suggested se-
lection can be used for many common use cases in
practice, e.g., when performing smoke tests for some
components or cluster tests for different parts of an
implementation. It is also possible to make an auto-
matic selection if no list is specified. By default, the
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framework selects the most recently added or changed
blueprint features between test runs with higher prior-
ity. With this setup, a process observer regularly ana-
lyzes the changes to the blueprint files via the source
code repository.
Guided Input Generation. The first trivial option is
to randomly generate the input to a function according
to its schema, if the user has specified one. However,
to achieve coverage of blueprints nodes, we propose
an option that suggests to the fuzzer a prioritized list
of nodes to be reached in the test process, either in-
ternal or output nodes, LFi for each of the functions.
In practice, this could represent the effort of the hu-
man in the loop directing the test to low-level areas
that need more testing than others, are prone to bugs,
etc. The list is optional, but will be prioritized if spec-
ified. To solve the prioritization of node execution, a
modified breadth-first search algorithm is used to cre-
ate an inverted list of input pins associated with each
target node. Thus, with the set LFi of priority nodes,
the fuzzer knows the list of input pins in the function
Fi that are connected to them and could affect their
execution Inputsselected(Fi) ∈ InputsFi . This semi-
random strategy can be further improved by symbolic
execution, either online or offline, as suggested in
(Godefroid et al., 2012), (Paduraru et al., 2021b), or
(Böttinger et al., 2018). This is possible because after
the ExecutionModule evaluates the simulation against
a certain input, a path of nodes can be retrieved as
feedback. Since this path may contain certain branch
points, it would be wiser to use the symbolic solution
for the other branches that were not seen before. We
have saved this idea for the next versions of our tool.
Input Values - Sampling Strategies. For sampling
concrete input values to be filled in at test time, the
user-specified annotation may additionally contain a
priority for each value in the set, regardless of the type
used, i.e., this is suitable for concrete values, ranges,
classes of objects, or concrete objects. In practice, this
priority could mean that a particular concrete value or
range is more likely to reveal errors. Common exam-
ples in simulation engines are parts of the map or new
classes of entities that have recently been added. At
runtime, priorities are normalized, meaning that each
value has a final priority between 0−1 and the sum of
all values is 1. By default, if not specified, all values
have the same probability. Listing 2 shows the under-
lying sampling mechanism used by the fuzzer compo-
nent to obtain the values of the variables used in List-
ing 1, line 4. As shown in lines 3 and 9 for both cases,
i.e., generic objects and base types, the sample values
are extracted from the given set of concrete values ac-
cording to their priorities (function ProbRandom). In
the case of an object where a set of classes is speci-

fied (line 6), a compatible class is selected and then
created at runtime using the engine’s internal func-
tionality. Similarly, for base type objects (line 12):
If a range of ranges is specified, the algorithm first
takes a probability sample from one of the ranges and
finally a uniform sample within that range.
Listing 2: Algorithm used by the fuzzer to sample concrete
values according to the rules of annotation.

1func GetValue(var : type)

2 if var.Type is Object:

3 if var.annot.isConcrete:

4 return ProbRandom(var.annot.set)

5 else:

6 C=ProbRandom(var.annot.set)

7 return Engine.Create(C)

8 else: // a base type

9 if var.annot.isConcrete:

10 return ProbRandom(var.annot.set)

11 else:

12 range=ProbRandom(var.annot.set)

13 return RandInRange(range)

14 endif

15endfunc

Sampling Notes for Tuning Process and Value
Samples. While testing may uncover problems that
can be attributed to various causes, the situation may
be different when performing tuning processes. Usu-
ally, the designer knows exactly the parameters to be
tested, the target and their ranges. Therefore, in prac-
tice, a different annotation should be used between
testing and tuning processes.

4.5 Functional Tests, Expectations, and
Behavior Driven Methodology

To define functional tests and their expectations as
generic and reusable as possible at this level, the
proposed framework uses the behavior-driven devel-
opment testing (BDD) methodology (Irshad et al.,
2021). The framework defines a base class called
TemplateTestDef that can be overridden either in
source code or in blueprints. The base class is used to
control the message flow between the Fuzzer process
component and this test, and to enforce the definitions
of the three main steps of a BDD test:

• Set the context of the test execution, i.e., the Given
clause. For example, a test could load a specific
level, create a character, and launch an agent to per-
form a specific action on that level.

• Specify the trigger when the test should be exe-
cuted, i.e. the When clause. An example could be
that the character enters a certain area.

• Set the expectations for the test, i.e., the T hen
clause. Continuing the previous example, one type
of expectation might be to trigger a doorway.
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These three clauses can also support logical op-
erations, persistence, and state changes, and can be
defined in both the source code and the blueprint. On
a technical level, the framework provides all environ-
ment inputs and states to the user as dictionaries, al-
lowing them to decide what to use in their desired
test context. Practically, this means that a person with
no programming knowledge can use blueprints to run
functional tests from start to finish. A test blueprint
could be used as a template for testing against a data-
driven set of inputs and expected outputs defined in a
data table. More concrete examples and already im-
plemented components on this topic can be found in
(Paduraru et al., 2022).
Persistent Functional Testing. An important fea-
ture of simulation applications is that when functional
testing methods are used, most tests must be run for
multiple time steps before a decision about correct-
ness can be made (e.g., a path finding process leading
from point A to point B in the environment). To sup-
port these specifics, the proposed framework adds the
following support to the annotations:
1. Indication of which output variables can be con-

tinuously tested at regular intervals to provide
early detection of any success or failure.

2. Events listened, which can support the correctness
of states checking according to an observer pat-
tern method (Piveta and Zancanella, 2003).
An example of the definitions of inputs and out-

puts and their annotations can be seen in Listing 3.
The inputs field describes the annotation support for
the variables present on the input interface of the
blueprint, while expectedOutputs is used to define the
expectation conditions and/or parameter ranges for
the given inputs. The types of the variables are taken
from the graphical definition of the blueprint or from
their source code definition. The values of the vari-
ables can be specified either as a series of discrete
values separated by the # character (lines 4, 8), or as a
range (lines 3, 6). In the case of Vector3D representa-
tions, as in the case of the line 6, the range represents
a 3D box in which the character could be positioned
at the time of its instantiation. Entities can be defined
by their names, as shown in line 7, where the target
of the character is randomly chosen between two op-
tions. The output variables are used to indicate the re-
sult of the test, either successful or failed, along with a
diagnostic code. We distinguish between the two op-
tions by using some markers. For example, the user
can specify either a fail code (line 15), which in this
case specifies the expected time interval that the char-
acter will take to get to the destination, or a succeed
code (line 24), which in this case specifies an event
that means that the operation will be performed in a

different way and the test will be considered success-
ful). Also, output variables can be tested only at the
end of the test or continuously during its runtime, e.g.,
line 13. As shown, this variable is sampled and tested
on every 60 frame to avoid unnecessary overhead.
Listing 3: An example annotation included in a JSON file
for the pathfinding blueprint logic of a character named
PathfindingTestBP.

1 "PathfindingTestBP_annotations": {

2 "inputs" : {

3 "CharacterScale": "[min=0.8, max=1.2]",

4 "sprintSpeed ":"{100 # 200 # 300}",

5 "StartLocation": "{min=(-23.0,-19.0,53.14),

6 max=(-17.2,-18.2,41.5)}",

7 "DestLocation_asEntity": "{P2 # P3}",

8 "StartRotation" : "{(0,-90,0) # (0,0,0)}"

9 },

10
11 "expectedOutputs" : {

12 "timeToPathLimit" : {

13 "type" : "continuous -60",

14 "value" : "[min=0.0, max=10]",

15 "failCode" : "1"

16 },

17 "movingIdleLimit" : {

18 "type" : "continuous -10",

19 "value" : "[min=0.0, max=3]",

20 "failCode" : "2"

21 },

22 "characterTeleported": {

23 "type: event",

24 "successCode :"0"}

25 }}

4.6 Tuning Support

Guided fuzzing processes can be used to take a sam-
ple of inputs from a space of parameters and then
compute a fitness score or penalty with respect to var-
ious outputs expected after evaluating the input. As a
concrete real-world example, a fuzzer in a video game
might choose between different abilities of a charac-
ter to classify it into certain difficulty levels. The use
of a fuzzer is desirable in several ways. First, it al-
lows finding different behaviors (i.e., a set of param-
eters) of a character that lead to the same desired re-
sult with respect to the computed metrics without hu-
man effort. Second, it allows machines to find these
behaviors themselves, sometimes exposing potential
vulnerabilities that were not planned or conceived.
Listing 4 shows a concrete example of a tuning an-
notation from our repository. The user is expected to
write the input parameters and the results to be eval-
uated in the space. The idea behind the fitness/penal-
ization function in the default provided support is to
reach an ideal value and penalize deviations from it
according to some rules. In our current implemen-
tation, a linear 9 and a Gaussian penalty 15 are pro-
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vided. However, the user can extend the system and
write their own fitness functions.Listing 4: An example of an annotation specified in a JSON
file to automatically find parameters for an intermediate dif-
ficulty class in a video game. In this example the medium
difficulty character class is expected to beat the average hu-
man user in a given time interval and with a limited amount
of damage.

1"EBLTTest_Ex1.RPGTemplate_AI_mediumDiff": {

2 "inputs" : {

3 "HitRate": "[min=0.5, max=2]",

4 "potions": "[min=0, max=3]",

5 "jumpSpaces": "[min=0, max=3]"

6 },

7 "expectedOutputs" : {

8 "timeToBeatEasyAI" : {

9 "type" : "tuning -linear",

10 "value" : "[ideal=180, std=600]",

11 "penalization": "[min=0.0, max=1.0]"

12 },

13 }

14 "damageTaken" : {

15 "type" : "tuning -gaussian",

16 "value" : "[ideal=20, std=50]",

17 "penalization" : "[min=0.0, max=1.0]"

18 }}

4.7 Discussion About Testing Agents

As discussed in Section 3, there are several types of
agents for testing simulation environments addressing
various use cases such as closed spaces or open-world
simulation environments, each with their strengths
and drawbacks in different cases. In addition, it is
common in this domain to test applications against
scripted AI behaviors intended for specific tasks. To
address these requirements, the framework’s architec-
ture completely separates the agents that control the
testing and tuning processes from the processes them-
selves (Fig. 3). This provides a pluginable architec-
ture so that the framework provide transparent inter-
faces for communicating with the agents deployed by
the user. This also helps from the point of view that
agents designed for different purposes (e.g., those that
test more normal user behavior, others that test abnor-
mal users or exploration of large space environments)
can be used in different execution contexts using the
same source code and blueprint definitions.

5 EVALUATION

The framework presented in this paper, cf. our open
source repository, has been tested in the Unreal En-
gine 5 engine with several open source available demo
projects: an educational tutorial project (Hour of
Code), a city traffic simulator (City Sample), and an

RPG game template. The diversity of the projects
shows that the current implementation works as in-
tended, i.e., as a plugin that is not associated with a
concrete implementation. Because of the abstraction
and interfaces provided, the core of the implemen-
tation can be reused for other simulation engines or
applications developed with no/low code paradigms.
Most work on testing such tools deals with quantita-
tive evaluation by having the implemented test agents
act in the environments to find hidden bugs. The met-
rics used are usually the source code, the environment
and the state coverage. This type of evaluation is not
very useful in our case, and we can only say that our
methods can fully reuse this type of agents, as men-
tioned in Section 4.7.
Expectations. Ideally, the evaluation process of the
proposed framework should consider if and how it
can save the cost and increase the testability of the
projects with less human supervision or effort. As de-
scribed in this section, we found that:

• The testability of software projects can be signif-
icantly increased by several factors. First, more
tests can be defined by promoting simplicity of
definitions and by involving more stakeholders
(with or without software engineering skills) in
creating the tests. Second, more testable content
is automatically added to a project’s source code.

• Costs savings are expected from several perspec-
tives. First, new or changed features are automati-
cally discovered, prioritized and tested. Users can
optionally contribute by providing only schemas
or guided high-level prioritization of blueprints to
be tested to support the effort and get faster feed-
back. But overall, the testing of blueprints func-
tionalities is automatic. Second, it should be noted
that source code written by software engineers can
be made available for testing only by adding a
node that calls the part of the code to be tested
in a blueprint. This is an important point to con-
sider as non-technical people can add testability
to projects and guide them. Third, tuning various
behaviors and parameters in simulation applica-
tions takes a lot of development time. As shown
in Section 4.6, the proposed automated methods
can replace human labor with machine efforts.

5.1 Usefulness of the Tool in Relation to
Typical Problems

To outline the usefulness of the proposed framework,
we follow (Zheng et al., 2019)’s classification and dis-
tribution of observed problems in game development
(from our point of view, this is transferable to simu-
lation applications in general). E.g., of issues that are
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described in the author’s work: crashes, getting stuck
in certain states, logical issues, game/simulation bal-
ance issues, load/stress testing.

5.2 Qualitative Evaluation

We tested our prototype tool for 9 months (at the
time of writing our paper) at one of our industry
partners with a group consisting of: 4 software en-
gineers, 3 game designers, 7 animators, 5 technical
artists, and 2 producers (management group). The
group of software engineers developed new features
to connect different parts of the engine or game logic.
They were also very interested in using the functional
tests for stress/load testing. The other stakeholders
either wrote functional tests or provided general sup-
port in evaluating the quality of their own work or the
project in general, i.e., animations, rendered art, sta-
bility, or generated game balance/exploits. The ini-
tial set of blueprints within the prototype was 945
divided among several categories (see Fig. 1a). Of
these, the group supported annotations for 75% of the
blueprints, with a detailed data schema defined for 84
deemed important to the project. By using the tool
we proposed, the users did not have to perform any
additional complex manual work. The three impor-
tant research question we wanted to evaluate from a
qualitative evaluation is given below.
RQ1: Does The Testing Tool Help Increase the
Percentage of Testable Content in a Project? To
answer this question, we evaluated the percentage of
newly introduced features that contained tests after
their submission in the 9 months of using the frame-
work. This percentage was compared to the previ-
ous 9 months before the introduction of the proposed
tool. Table 1 shows that the percentage of components
tested increased significantly, especially for features
introduced by stakeholders other than software engi-
neers (e.g., animations, UI art, sound). The table also
shows that in these same areas, there was a great in-
terest in providing user guidance through our annota-
tion support for features that have concrete input/out-
put ranges of values or context. It is also worth not-
ing that software engineers and vendors implemented
significantly more load/stress testing and auto-tuning
for the project as a result of our support (more visual
details in our supplemental material). We attribute the
demonstrated improvements mainly to the fact that by
using our framework, more stakeholders had the op-
portunity to assess the quality of their own work and
the project as a whole.
RQ2: Does the Proposed Testing Tool Help a
Project Achieve Higher Code Coverage (Branch
Coverage)? While the first study showed a compar-

Table 1: The first two columns contain the percentage of
testable new features introduced in a 9-month period before
and after the introduction of our test tool. The third column
contains the percentage of tests that have annotations. The
breakdown is by project area, but an overall view of the
entire project can also be found in the last row.

Area Before After Annotations
proposed tool percent

Gameplay 58% 79% 80%
Animations 41% 84% 11%
Physics 78% 83% 18%
Rendering 46% 51% 80%
Sound 39% 82% 90%
UI/art 29% 75% 100%
Load/Stress,
Performance,
Tuning

61% 90% 100%

Overall 59% 78% 75%

ative test at the feature level, we also want to see the
delta in code coverage, i.e., how much the percentage
of code coverage of newly introduced code for fea-
ture implementations changed in the analyzed time
windows before and after the tool was introduced.
As Table 2 shows, there is a similar trend as above,
which was to be expected since blueprints connect
blocks that are actually implemented in the source
code. Note that before the introduction of tool sup-
port, tests were mainly written by software engineers
using classical unit or functional tests. The improve-
ments observed this time are not only due to the fact
that more stakeholders are supported in writing tests,
but also because the tests can be automatically created
by the tool even if there are no annotations. Thus, the
blocks become testable by simply connecting them in
the Blueprint Designer.

Table 2: Code coverage as a percentage of newly introduced
source code in the 9-month analysis periods before and after
the introduction of the test tool. Previous methods used unit
and functional testing with existing tools available in their
own game engines.

Area Before After
Overall 39% 53%

RQ3: What is the Subjective Opinion of the People
Involved in the Experiment (User Study)?To evalu-
ate this goal, we asked each person involved in testing
the tool for feedback on what they think about the no-
/low-code paradigm in general and how our tool can
help in testing a project that uses it. Due to space con-
straints, we are including the responses we received in
our repository. To summarize the conclusion of every-
one involved in the experiments: A visual representa-
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tion of the architecture and logic can greatly facilitate
the testing process. The input/output variables and the
connections between components become more visi-
ble, while the proposed annotation and testing support
can help to identify problems faster and facilitate the
maintenance of the project between cycles.

5.3 Discussion on the Efficiency of
Using Existing Work For Fuzzing
and Symbolic Execution Methods

As mentioned in Section 4.4, symbolic and concolic
execution can be used in conjunction with the pro-
posed tools by incorporating an external agent into
the architecture shown in Fig. 3. This is another av-
enue that we will explore further in our future work.
In an initial assessment of the work in progress, we
found that the use of unprocessed source code meth-
ods, as used in previous work, is generally impracti-
cal for simulation software, except in short and highly
targeted test scenarios.

A concrete example might be a common path-
finding case in which a character C must find and
follow a path between a point A and B in the envi-
ronment. The character’s collision capsule CCP(C)
would be tested against nearby meshes in the environ-
ment located between A and B at each frame. At any
time, the mesh sizes of the environment or of CCP(C)
can be changed by a symbolic execution method to
take different execution paths, either at runtime of the
path or at the execution of the move itself. It would
be an impractical waste of resources and feedback to
complete tests in a short time while covering only a
minimal number of states or code. This is one of
the reasons why in this work we have presented and
implemented the standard version of the agent that
tests the environment based on guided fuzzing meth-
ods. However, for future work, we have ideas for
distinguishing the space in which symbolic execution
should be used and for freezing some states of the en-
vironment.

Annotations can be used to drive the fuzzing pro-
cesses without having to include the BDD or func-
tional test templates. In general, the fuzzing pro-
cesses cannot be used directly to specify expected out-
puts. However, expected value ranges can be defined
in many situations. For example, consider the com-
mon industry requirement that the average number of
frames per second should not fall below 30 fps, no
matter what values the fuzzer produces. It is also clear
from our experiments that a suitable input instruc-
tion can significantly reduce the computational cost
of achieving the required coverage in a given time.

6 CONCLUSION AND FUTURE
WORK

This paper presents a method for testing software
that builds on the no-/low-code paradigm and focuses
on simulation engines as a concrete implementation
and testing platform. While different application do-
mains and underlying components can play an im-
portant role in testing the visually connected blocks
(blueprints) in the targeted paradigm, we believe that
our abstraction can at least help generalize to other
types of applications as well. Through the use of our
framework and implemented tools, we have shown
how most of the common testing and tuning use cases
in the industry can be addressed. In addition, we plan
to explore other methods to practically integrate ex-
isting work in the literature on symbolic/concolic ex-
ecution into our methods. Possible ideas on this point
include freezing states and discretizing time steps
when invoking the symbolic solver. We plan to work
closely with industry partners to evaluate the methods
in depth to determine the importance of long-term use
of blueprints on different types of projects. We also
imagine with
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